

New Jersey Geological Survey Geological Survey Report GSR 38

GROUND-WATER FLOW AND FUTURE CONDITIONS IN THE POTOMAC-RARITAN-MAGOTHY AQUIFER SYSTEM, CAMDEN AREA, NEW JERSEY

N.J. Department of Environmental Protection - Division of Science and Research

STATE OF NEW JERSEY Christine Todd Whitman, Governor

Department of Environmental Protection Robert C. Shinn, Jr., Commissioner

Policy and Planning Lewis J. Nagy, Assistant Commissioner

Division of Science and Research Robert K. Tucker, Ph.D., Director

Geological Survey Haig F. Kasabach, State Geologist

NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION

The mission of the New Jersey Department of Environmental Protection is to assist the residents of New Jersey in preserving, sustaining, protecting and enhancing the environment to ensure the integration of high environmental quality, public health and economic vitality.

NEW JERSEY GEOLOGICAL SURVEY

The mission of the New Jersey Geological Survey is to map, research, interpret and provide scientific information regarding the state's geology and ground-water resources. This information supports the regulatory and planning functions of DEP and other governmental agencies and provides the business community and public with the information necessary to address environmental concerns and make economic decisions.

Cover illustration: Idealized cross section through the hydrogeologic units of the Potomac-Raritan-Magothy Aquifer system, Camden Area, New Jersey, showing water movement toward a pumping well. Not to scale.

New Jersey Geological Survey Geological Survey Report GSR 38

GROUND-WATER FLOW AND FUTURE CONDITIONS IN THE POTOMAC-RARITAN-MAGOTHY AQUIFER SYSTEM, CAMDEN AREA, NEW JERSEY

by Anthony S. Navoy and Glen B. Carleton U.S. Geological Survey West Trenton, New Jersey

Prepared by the U.S. Geological Survey in cooperation with the New Jersey Department of Environmental Protection Division of Science and Research Geological Survey

New Jersey Department of Environmental Protection Division of Science and Research Geological Survey CN 427 Trenton, NJ 08625 1995 Printed on recycled paper

New Jersey Geological Survey Reports (ISSN 0741-7357) are published by the New Jersey Geological Survey, CN 427, Trenton, NJ 08625. This report may be reproduced in whole or part provided that suitable reference to the source of the copied material is provided.

Additional copies of this and other reports may be obtained from:

DEP, Maps and Publications Sales Office Bureau of Revenue CN 417 Trenton, NJ 08625-0417

A price list is available on request.

•

The data and interpretations presented in this report are those of the U.S. Geological Survey

Use of brand, commercial, or trade names is for identification purposes only and does not constitute endorsement by the New Jersey Geological Survey.

CONTENTS

.

Page

Abstract	1
Introduction	3
Purpose and scope	3
Location and extent of study area	3
Well-numbering system	5
Previous investigations	
A cknowledgments	6
Hudrogoology, ground water flow, and water supply issues	0
Hydrogeology, glouid-watci now, and watci-suppry issues	0
Coologia satting	0
Characteristics of hudrogeologic units	0
A guifer and confining unit hydraulic properties	17
Aquiter and continuing-unit hydraulic properties	17
Precipitation and recharge	17
Ground-water withdrawais	
Annual withdrawais	17 - 21
Future water use	
Ground-water levels	21
Ground-water quality	20
Ground-water flow	31
Predevelopment flow system	31
Stressed flow system	33
Delaware river/aquifer-system interaction	35
Aquifer geometry near river	35
Riverbed materials and permeability	37
Nature of the interaction	37
Water-supply issues	39
Cones of depression	39
Recharge containing surficial contaminants	39
Intrusion of downdip saline water	39
Vulnerability to contamination from Delaware River	40
Drought-related saltwater encroachment	40
Saltwater encroachment related to global climate change and sea-level rise	41
Ground-water flow under current and future conditions	46
Simulation of ground-water flow	46
Model discretization	46
Boundary conditions	49
Model calibration	49
Calibrated-model parameters	53
Model sensitivity	68
Current conditions	69
General flow hudget and nattern	69
Denotes now budget and patient and	78
Magnitude and distribution of river recharge	78
Pringing and using the rectarge	78
KIVEI-IIIIIUEIICEU ZOHES	01
Future conditions	00 QQ
WIINDRAWAI SCENARIOS	

CONTENTS--Continued

,

General regional flow conditions	
Effects of Delaware River ship-channel deepening	
Summary and conclusions	
References cited	

ILLUSTRATIONS

(Plates follow text in pocket)

- Plate 1. Hydrostratigraphic sections A-A' to E-E' through the Potomac-Raritan-Magothy aquifer system in the vicinity of the Delaware River, Camden area, New Jersey.
 - 2. Hydrostratigraphic section F-F' through the Potomac-Raritan-Magothy aquifer system in the vicinity of the Delaware River, Camden area, New Jersey.

Figures

1-9. Maps showing:	
1. Location of study area	4
The thickness of the Merchantville-Woodbury confining unit, Camden area, New Jersey	9
3. The altitude of the top of the upper aquifer of the Potomac-Raritan-Magothy aquifer system, Camden area, New Jersey	10
4. The thickness of the upper aquifer of the Potomac-Raritan-Magothy aquifer system, Camden area, New Jersey	11
5. The altitude of the top of the middle aquifer of the Potomac-Raritan-Mag- othy aquifer system, Camden area, New Jersey	12
 The thickness of the middle aquifer of the Potomac-Raritan-Magothy aqui- fer system, Camden area, New Jersey 	13
7. The altitude of the top of the lower aquifer of the Potomac-Raritan-Magothy aquifer system, Camden area, New Jersey	14
8. The thickness of the lower aquifer of the Potomac-Raritan-Magothy aquifer, Camden area, New Jersey	15
9. The altitude of the top of bedrock surface, Camden area, New Jersey	16
othy aquifer system in the Camden area, New Jersey, 1918-87	19
11. Map showing the approximate potentiometric surface of the middle aquifer of the Potomac-Raritan-Magothy aquifer system in southern New Jersey, prior to 1900	
12. Map showing locations of selected long-term observation wells in the Camden	<i>22</i>
area, New Jersey	23
13. Hydrograph showing water levels in well 07-108 (Camden DIV 10), 1933-87	24
14. Hydrographs showing water levels in wells 05-258 (1963-91), 05-262 (1968-91), and 05-261(1968-91) (Medford 1.4, and 5)	25
15. Hydrographs showing water levels in wells 07-412 (1963-91) and 07-413 (1964-91) (Elm Tree 2 and 3)	25 76
16. Hydrographs showing water levels in wells 15-296 and 15-297 (Shell 5 and 6), 1962-91	20

ILLUSTRATIONS -- continued

•

-

Figure 17. Map showing the potentiometric surface of the upper aquifer of the Potomac- Raritan-Magothy aquifer system, Camden area, New Jersey, fall 1988
 Map showing the potentiometric surface of the middle aquifer of the Potomac- Raritan-Magothy aquifer system, Camden area, New Jersey, fall 1988
19. Map showing the potentiometric surface of the lower aquifer of the Potomac- Raritan-Magothy aquifer system, Camden area, New Jersey, fall 1988
20. Map showing generalized pattern of prepumping ground-water flow in the Po- tomac-Raritan-Magothy aquifer system and approximate location of the downdip limit of freshwater in southern New Jersey
 Map showing generalized pattern of ground-water flow under stressed condi- tions in the Potomac-Raritan-Magothy aquifer system in southern New Jer- sey
22. Map showing locations of hydrostratigraphic sections, reference wells, and out- crops of the upper, middle, and lower aquifers of the Potomac-Raritan-Mag- othy aquifer system in the vicinity of the Delaware River, Camden area, New Jersey
23. Map showing relative permeability of shallow Delaware River bed material, Camden area, New Jersey
24. Map showing location of various freshwater-saltwater-interface positions in the Delaware River and Estuary
25. Graph of specific conductance of water samples collected from the Delaware River at the Benjamin Franklin Bridge, Philadelphia, Pennsylvania, Novem- ber and December 1964
26. Graphs showing dissolved chloride concentration in water from selected water- supply wells near the Delaware River in Camden, New Jersey
27. Graph showing apparent sea level at Philadelphia, Pennsylvania, 1923-8045
28. Schematic representation of aquifers, confining units, and boundary conditions used in the Camden area flow model
29. Map showing finite-difference-model grid for the study area
30. Map showing grid for regional aquifer-system-analysis (RASA) model and lo- cation of Camden area model
31. Schematic representation of modeled river/aquifer connection
32. Graph showing annual ground-water withdrawals by aquifer, 1915-87, and mod- el stress-period withdrawals
33-35. Hydrographs of simulated and measured water levels for:
33. The upper aquifer of the Potomac-Raritan-Magothy aquifer system
34. The middle aquifer of the Potomac-Raritan-Magothy aquifer system
35. The lower aquifer of the Potomac-Raritan-Magothy aquifer system
36-38. Maps showing simulated and measured fall 1988 potentiometric surfaces for:
36. The upper aquifer of the Potomac-Raritan-Magothy aquifer system
37. The middle aquifer of the Potomac-Raritan-Magothy aquifer system
38. The lower aquifer of the Potomac-Raritan-Magothy aquifer system
39-41. Maps showing hydraulic conductivity used in the model for:
39. The upper aquifer of the Potomac-Raritan-Magothy aquifer system
40. The middle aquifer of the Potomac-Raritan-Magothy aquifer system
41. The lower aquifer of the Potomac-Raritan-Magothy aquifer system
42-44. Maps showing vertical leakance used in the model for:
42. The confining unit between the Englishtown aquifer system and the upper aquifer of the Potomac-Raritan-Magothy aquifer system

ILLUSTRATIONS -- continued

.

Ľ

		Page
Figure	43. The confining unit between the upper and middle aquifers of the Potomac- Raritan-Magothy aquifer system	(E
	44. The confining unit between the middle and lower aquifers of the Potomac-	.05
45	Raritan-Magothy aquifer system	.66
45.	Map showing distribution of recharge used in the model	.67
40-40.	46. The upper aquifer of the Potomon Register Magnetic equifus and	
	40. The upper aquifer of the Determon Desiter Magoiny aquifer system	.71
	47. The induce aquifer of the Potoman Paritan Magothy aquifer system	.72
49-51	Mans showing simulated flow for 1083-88 between.	. 73
12 01.	49. The Englishtown aquifer system or other overlying units and the upper aquifer of the Potomac-Raritan-Magothy aquifer system	74
	50. The upper and middle aquifers of the Potomac-Raritan-Magothy aquifer	75
	51. The middle and lower aquifers of the Potomac-Raritan-Magothy aquifer	76
52.	Maps showing the simulated flow between the Delaware River and the upper, middle, and lower aquifers of the Potomac-Raritan-Magothy aquifer system, 1983-88	70
53.	Maps showing simulated river-influenced zones, 1983-88, in the upper, middle, and lower aquifers of the Potomac-Raritan-Magothy aquifer system	81
54.	Graph showing simulated withdrawals for Scenarios A, B, and C	83
55-57.1	Maps showing simulated potentiometric surface for Scenario A (unconstrained withdrawals) in the year 2020 in:	
	55. The upper aquifer of the Potomac-Raritan-Magothy aquifer system	84
	56. The middle aquifer of the Potomac-Raritan-Magothy aquifer system	85
50 (0	57. The lower aquifer of the Potomac-Raritan-Magothy aquifer system	86
38-00.	maps showing simulated potentiometric surface for Scenario B (withdrawals maintained at current levels) in the year 2020 in:	
	58. the upper aquifer of the Potomac-Raritan-Magothy aquifer system	87
	59. the middle aquifer of the Potomac-Raritan-Magothy aquifer system	88
61 62	60. the lower aquifer of the Potomac-Raritan-Magothy aquifer system	89
01-03. '	withdrawal reduction) in the year 2020 in:	
	61. the upper aquifer of the Potomac-Raritan-Magothy aquifer system	90
	62. the middle aquifer of the Potomac-Raritan-Magothy aquifer system	91
61 66	03. the lower aquifer of the Potomac-Raritan-Magothy aquifer system.	92
04-00.	simulated hydrographs showing water levels for Scenarios A, B, and C in ob- servation well:	
	64. 15-297 (Shell Obs 6) in the upper aquifer of the Potomac-Raritan-Magothy aquifer system	93
	65. 05-261 (Medford 5) in the middle aquifer of the Potomac-Raritan-Magothy aquifer system	93
	66. 07-412 (Elm Tree 2) in the lower aquifer of the Potomac-Raritan-Magothy aquifer system	94
67-69 . I	Maps showing water-budget zones for:	
	67. the upper aquifer of the Potomac-Raritan-Magothy aquifer system	95
	68. the middle aquifer of the Potomac-Raritan-Magothy aquifer system	96

ILLUSTRATIONS -- continued

.

Figure	69. the lower aquifer of the Potomac-Raritan-Magothy aquifer system	97
70-72 .	Schematic diagrams showing general flow budgets for the upper, middle, and	
	lower aquifers of the Potomac-Raritan-Magothy aquifer system for:	
	70. Scenario A (unconstrained withdrawals).	99
	71. Scenario B (withdrawals maintained at current levels)	.00
	72. Scenario C (35 percent withdrawal reduction)	.01

٠

.

TABLES

Table 1. Geologic and hydrogeologic units in the Coastal Plain of New Jersey	8
 Selected data on hydraulic characteristics of the Potomac-Raritan-Mago fer system and related units in the vicinity of the Camden area, New Jersey	thy aqui- 18
3. Annual ground-water withdrawals from the Potomac-Raritan-Magothy system in the Camden area, New Jersey, 1981-87	aquifer 111
4. Water levels in the Potomac-Raritan-Magothy aquifer system in the Came New Jersey	den area, 119
5. Well-location and -construction data	131
 Logs of selected wells and test boreholes in the vicinity of the Delaward River 	2 148
7. Results of model sensitivity analysis	
8. Simulated flow budget for the Potomac-Raritan-Magothy aquifer syster 1983-88	n, 77
9. Simulated withdrawals for the three ground-water withdrawal scenarios	i 175
10. Comparison of simulated Potomac-Raritan-Magothy aquifer system flow nents among scenarios	w compo-

CONVERSION FACTORS, ABBREVIATED WATER-QUALITY UNIT, AND VERTICAL DATUM

Multiply	Ву	To obtain
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second
foot (ft)	0.3048	meter
foot per day (ft/d)	0.3048	meter per day
foot per second (ft/s)	0.3048	meter per second
foot squared per day (ft ² /d)	0.0929	meter squared per day
foot per day per foot ((ft/d)/ft)	1.00	meter per day per meter
gallon per day	0.003785	cubic meter per day
inch (in.)	2.54	centimeter
inch per year (in/yr)	2.54	centimeter per year
mile (mi)	1.609	kilometer
square mile (mi ²)	2.590	square kilometer
million gallons per day (Mgal/d)	3785.	cubic meter per day
Abbreviated water-quality unit:	mg/L	(milligram per liter)

.

Sea level--In this report "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)--a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929.

GROUND-WATER FLOW AND FUTURE CONDITIONS IN THE POTOMAC-RARITAN-MAGOTHY AQUIFER SYSTEM, CAMDEN AREA, NEW JERSEY

By Anthony S. Navoy and Glen B. Carleton

ABSTRACT

The Potomac-Raritan-Magothy aquifer system, locally referred to as "the PRM," is composed of Cretaceous clastic deposits that are present at the base of the Coastal Plain sediments. These deposits extend southeast from the Fall Line and underlie southern New Jersey. The Delaware River flows across the outcrop of the aquifer system in the vicinity of Camden, New Jersey, and Philadelphia, Pennsylvania, and is, therefore, hydraulically connected to the aquifer system. The river is affected by tides throughout this reach, but is fresh most of the time.

The aquifer system provides most of the potable water supply for the Camden area. Ground-water withdrawals (pumpage), which began about 1900, currently (1987) total about 125 million gallons per day. The high rate of withdrawal has created a regional cone of depression in the aquifer system's potentiometric surface that extends more than 100 ft below sea level, reversing the natural hydraulic gradient between the aquifer system and the river. Under predevelopment conditions, ground water discharged to the Delaware River. Now, the cone of depression provides the gradient to induce water to flow from the river into the aquifer system in many places. A significant amount of the recharge originates as precipitation on the local outcrop of the aquifer system. Ground water also flows into the cone of depression from other parts of the aquifer system both laterally and vertically from overlying aquifers. The magnitude of the ground-water withdrawal has resulted in several potentially deleterious circumstances or threats to the potable supply from the aquifer: (1) deep cones of depression and continuing water-level decline, (2) movement of saline water from the downdip parts of the aquifer toward public supply wells, (3) induced infiltration of saltwater from the Delaware River, and (4) induced infiltration of water containing contaminants from human-related activities on the aquifer system's outcrop area.

A finite-difference model was developed to simulate ground-water flow in the three aquifers of the Potomac-Raritan-Magothy aquifer system in the Camden area and adjacent parts of Pennsylvania. Results of the simulations were used to evaluate (1) the ground-water-flow system; (2) the sensitivity of the system to potential threats to ground-water potability; and (3) the effects of withdrawals, sea-level rise, and channel dredging on ground-water levels and on the flow budget of the aquifer system. The initial model input data and boundary flows between the modeled area and the parts of the aquifers outside the modeled area were derived from the New Jersey Coastal Plain Regional Aquifer System Analysis (RASA) model. Simulated results obtained with the calibrated model indicate that the most significant sources of water to the Potomac-Raritan-Magothy aquifer system are recharge from precipitation on the outcrop and flow from overlying aquifers. Induced flow from the Delaware River and related tributaries is simulated to be currently (1987) about 29 million gallons per day, which is about 25 percent of total withdrawals. Results of a particletracking analysis of the simulation show that about one-third of the water-supply withdrawals from the Potomac-Raritan-Magothy aquifer system in the Camden area are within the area influenced by induced recharge from the Delaware River and its tributaries. Lateral flow from outside the areas where water is withdrawn is about 12 million gallons per day. About 8 million gallons per day flows into the study area from the southeast (downdip). The induced movement of saline water from this direction could threaten the potability of the water supply.

The effects of future water-supply withdrawals on the Potomac-Raritan-Magothy aquifer system in the Camden area were evaluated by simulating three withdrawal scenarios with the ground-water flow model: withdrawals continued in an unconstrained manner (Scenario A), withdrawals maintained at current (1987) rates (Scenario B), and withdrawals reduced to 65 percent of 1983 rates (Scenario C). The distribution of withdrawals in each of the scenarios is identical. Withdrawals are simulated for the 30-year period from 1990 to 2020.

The rate of withdrawals in Scenario A was increased to 27 percent more than the current (1987) rate by the year 2020, when the regional cones of depression are predicted to extend to a maxi. um depth of about 140 ft below sea level. This is a decline of about 40 ft from present (1987) levels. Because the simulated increase in withdrawals was distributed linearly through time, the rate of decline was constant. Locally available recharge to the Potomac-Raritan-Magothy aquifer system would account for about 59 percent of the water withdrawn. Inflow, possibly containing saline water, from southeast (downdip) of the Camden area would account for about 6 percent of the water withdrawn.

The rate of withdrawals in Scenario B was the same as the current rate through the year 2020. The depths of the regional cones of depression are predicted to remain essentially at present (1987) levels because the withdrawals remained fixed. The simulated water-level stabilization would occur within a 5-year period. Locally available recharge to the Potomac-Raritan-Magothy aquifer system would account for about 63 percent of the water withdrawn. Inflow derived from downdip, possibly saline water from southeast of the Camden area would account for about 7 percent of the water withdrawn.

The rate of withdrawals in Scenario C was 35 percent less than the 1983 rate and was fixed at that rate until the year 2020. The regional cones of depression are predicted to extend to a maximum depth of about 60 ft below sea level. These levels, which are similar to those observed in the mid-1960's, represent a recovery of about 40 ft from present levels. The simulation results indicate that the majority of the recovery would take place over the initial 5-year period. With withdrawals fixed, water levels would remain essentially constant thereafter. Locally available recharge to the Potomac-Raritan-Magothy aquifer system would account for about 76 percent of the water withdrawn. Inflow derived from downdip, possibly saline water from southeast of the Camden area would account for about 9 percent of the water withdrawn. Although the inflow derived from saline water, when considered as a percentage, would be 6 percent in Scenario A and 9 percent in Scenario C, the actual volume of the flow decreased from Scenario A to Scenario C, as would be expected as a result of the lower withdrawal rates.

The significant difference among the three scenarios is the proportion of water derived from locally available recharge to water derived from distant sources when considered as components of the total amount of water withdrawn for public supply in the study area. As withdrawals increased from Scenario C rates to Scenario A rates, the proportion of water leaking from overlying aquifers and flowing from the Potomac-Raritan-Magothy aquifer system in areas distant from the Camden area increased from about 60 percent of the total water withdrawn to about 75 percent. The flow of water from the distant sources has contributed to the problems in this area. The minimization of dependency on the flow of water from distant sources may constitute a viable water-management objective for the Potomac-Raritan-Magothy aquifer system in the Camden area.

INTRODUCTION

The Potomac-Raritan-Magothy aquifer system, locally referred to as "the PRM," is the primary source of water supply in the Camden area of southwestern New Jersey. Currently (1987), about 125 million gallons per day is withdrawn (pumped) from the aquifer system to supply the needs of communities in Burlington, Camden, and Gloucester Counties that are part of the study area. This volume of withdrawal has resulted in a large, regional-scale cone of depression in the potentiometric surface of the aquifer system. Water levels extend to depths of greater than 100 ft below sea level. Because of the proximity of withdrawals to its outcrop and a hydraulic connection to the Delaware River, a substantial amount of recharge is available to the aquifer system.

In spite of the availability of recharge, however, problems have arisen that could threaten the sustainability of the aquifer system as a primary source of water supply as a result of the withdrawals. These problems are (1) continued water-level decline, (2) contamination by infiltration of water containing materials derived from human activities on the outcrop, (3) potential contamination by the intrusion of saltwater from the Delaware River during droughts, and (4) potential contamination by the lateral and vertical intrusion of saline water from downdip parts of the aquifer system.

Optimal management of the aquifer system's water resources is a primary concern. The efficient use of the resource will be aided by the results of a quantitative evaluation of ground-water flow in the Potomac-Raritan-Magothy aquifer system, including an assessment of the relative importances of various flow-system components, and on the effects of future water use.

The U.S. Geological Survey (USGS), in cooperation with the New Jersey Department of Environmental Protection (NJDEP), conducted an investigation to evaluate the sensitivity of the aquifer system in the Camden area to possible changes in ground-water withdrawal rates and to evaluate the significance of various threats to the water supply. These evaluations make it necessary to quantitatively understand and measure the functional components of the flow system and to develop a predictive capability for the effects of various development alternatives on the aquifer system.

Purpose and Scope

This report (1) describes the hydrogeology and ground-water flow system of the Potomac-Raritan-Magothy aquifer system in the Camden area, including the interaction between the aquifer system and the Delaware River; (2) compiles and presents hydrogeologic data relevant to the investigation of ground-water flow in the Camden area; (3) identifies and documents the problems that threaten the sustainability of the aquifer system as a primary source of water supply for the Camden area; (4) describes a ground-water flow model of the aquifer system designed to simulate ground-water flow, interaction with the Delaware River, and the function of significant features of the flow system; and (5) describes the use of the flow model to evaluate the effects of future ground-water withdrawal scenarios.

Location and Extent of Study Area

The report focuses on the Potomac-Raritan-Magothy aquifer system in the Camden area of the New Jersey Coastal Plain, shown in figure 1. The Fall Line, on the Pennsylvania side of the Delaware River, forms a hydrologic boundary on the northwestern side of the study area. The Camden area includes Camden County, most of Gloucester County, and the western part of Burlington County. Parts of Salem, Cumberland, and Atlantic Counties are included within the study area to facilitate study of the aquifer system, which is laterally continuous through these areas. Because withdrawals from the aquifer system in these three

Figure 1. Location of study area.

counties are not used significantly, they are considered only peripherally and are not part of the focus of this report. The study area also extends into the Coastal Plain of southeastern Pennsylvania, including parts of Philadelphia. This area is geographically adjacent to the Camden area and constitutes a hydrogeologically significant part of the flow system; therefore, it is considered part of the focus of this report.

Well-Numbering System

Several numbering systems for identifying wells and boreholes have been used in previous hydrogeologic investigations of the study area. The system used by the USGS, New Jersey District Office, is generally followed in this report. It consists of a two-digit county code followed by a three- or four-digit sequential number. Several wells located in Pennsylvania that are used in this report are part of the data base maintained by the USGS Pennsylvania Subdistrict Office in Malvern, Pennsylvania. Accordingly, their two-letter county code with a three-digit sequence number is used in this report. The county codes are as follows:

Atlantic County, N.J.	01
Burlington County, N.J.	05
Camden County, N.J.	07
Cumberland County, N.J.	11
Gloucester County, N.J.	15
Salem County, N.J.	33
Bucks County, Pa.	Bk or 51
Delaware County, Pa.	De or 45
Philadelphia County, Pa.	Ph or 101

i

Logs of test boreholes were reported by Greenman and others (1961) by using the single letter "B" and a two- or three-digit sequence number as an identifier. In order to maintain a correspondence to that source of information, that system also is used.

Previous Investigations

Many investigations of the Potomac-Raritan-Magothy aquifer system in the Camden area have been conducted. Thompson (1932) investigated the aquifer system in the City of Camden. He recognized the significance of the interconnection between the Delaware River and the aquifer system. Barksdale and others (1958) summarized the available ground-water resources of the lower Delaware River valley. They documented the deepening cones of depression in the aquifer system in the Camden area. Greenman and others (1961) focused on the Coastal Plain deposits in southeastern Pennsylvania. They amassed a significant collection of well logs, developed hydrostratigraphic correlations and fence diagrams across the area, and attempted to relate the hydrostratigraphy in the Philadelphia area to that devised by other workers in the Raritan Bay area of the northern New Jersey Coastal Plain. However, their use of Raritan Bay subdivisional nomenclature has not persisted in the Philadelphia and Camden areas. Hardt and Hilton (1969), Rush (1968), and Farlekas and others (1976) published results of ground-water investigations of Gloucester, Burlington, and Camden Counties, respectively. Their work represents a significant source of quantitative data on the aquifer system, including hydrostratigraphy, water levels, and water quality. Luzier (1980) and Harbaugh and others (1980) used a single-layer ground-water-flow model of the aquifer system across the New Jersey Coastal Plain to determine flow paths and evaluate effects of potential management strategies. Their analysis was limited by coarse horizontal discretization and the two-dimensional perspective of flow. They attempted to quantify the flow between the aquifer system and Delaware River, and to test the effectiveness of several barrier-well strategies to reduce the updip movement of deep saline water within the

aquifer system. Camp Dresser and McKee, Inc. (1984a, 1984b, 1987), investigated the water-supply potential of the aquifer system in the Camden area on behalf of the NJDEP. They determined future demand, investigated the availability of production facilities, and assessed the long-term productivity of the aquifer system. As a result of their work, NJDEP declared Water-Supply Critical Area #2 and recommended a reduction of withdrawals from the aquifer system in the Camden area to minimize potential deleterious consequences resulting from deepening cones of depression. Their method of analysis did not take advantage of numerical ground-water flow modeling techniques and was constrained by their treatment of the aquifer system as a single layer throughout the Camden area. Sloto (1988) developed a ground-water flow model of the lower aquifer of the Potomac-Raritan-Magothy aquifer system in Philadelphia and nearby parts of New Jersey to determine the results of various management strategies. This model did not incorporate a detailed study of the interconnection with the Delaware River by focusing on the deepest aquifer. The USGS Regional Aquifer System Analysis (RASA) of the North Atlantic Coastal Plain project included a detailed definition of the hydrostratigraphy of the New Jersey Coastal Plain (Zapecza, 1989) and an assessment of ground-water flow obtained by using an 11-layer flow model (Martin, 1990). These two investigations represent benchmark studies of the hydrogeology of the New Jersey Coastal Plain. They provide a regional perspective that will facilitate further study at a finer resolution.

Acknowledgments

Thanks are given to the many individuals of Burlington, Camden, and Gloucester Counties who provided assistance by sharing their well logs, water-quality data, and withdrawal data, or by providing access to their facilities for data collection. The authors particularly acknowledge the invaluable assistance of Richard Westergaard of the Planning Department of Gloucester County and Frederick H. Martin, Jr., of the Department of Utilities of the City of Camden.

HYDROGEOLOGY, GROUND-WATER FLOW, AND WATER-SUPPLY ISSUES

Hydrogeology

Understanding the hydrogeology of the Camden area requires the investigation of the nature of the Coastal Plain deposits and the hydrologic forces that act upon them. These can be viewed in terms of basic hydrogeologic elements-- namely, the framework of the aquifers, precipitation and recharge, ground-water withdrawals, ground-water levels, and ground-water quality. These elements are the foundation of the ground-water-flow system and are described below.

Geologic Setting

The Atlantic Coastal Plain physiographic province extends from Florida to New York and is separated along its western edge from the Piedmont physiographic province by the Fall Line. In New Jersey and Pennsylvania, the Fall Line extends from Raritan Bay to the Delaware Bay, shown in figure 1, defining the northwestern edge of the Coastal Plain. The sedimentary deposits of the New Jersey and Pennsylvania Coastal Plain, to the southeast of the Fall Line, are composed of a three-part sediment sequence that lies unconformably on a pre-Cretaceous bedrock basement. From the basement rocks upward, the sediment sequence consists of lower Cretaceous nonmarine sand and clay, with some gravel; Cretaceous to Eocene glauconitic marine sand, silt, and clay; and upper Oligocene to Holocene nonmarine to marine shallow continental shelf sand and silt (Owens and Sohl, 1969; Olsson, 1978). This sediment sequence strikes roughly northeast to southwest, and dips gently and thickens seaward. The Potomac-Raritan-Magothy aquifer system comprises the lowest part of the sequence. A more comprehensive treatment of the regional geology can be found in Owens and Sohl (1977), Maher (1971), Brown and others (1972), and Zapecza (1989).

Characteristics of Hydrogeologic Units

The Potomac-Raritan-Magothy aquifer system contains upper, middle, and lower aquifers separated by intervening confining units. It is bounded above by the Merchantville-Woodbury confining unit and below by the bedrock surface. The relations among the geologic and hydrogeologic units of the New Jersey Coastal Plain are shown in table 1. The upper aquifer generally corresponds to the sands of the Magothy Formation, and the middle and lower aquifers generally correspond to the sand deposits within the undifferentiated Potomac Group and Raritan Formation. Further discussion of the aquifer system and other hydrogeologic units of the New Jersey Coastal Plain is given in Zapecza (1989).

The aquifer system is confined by the Merchantville-Woodbury confining unit. The approximate thickness of the Merchantville-Woodbury confining unit, which ranges from 0 to more than 200 ft in the study area is shown in figure 2. The unit thickness downdip at a rate of about 4 ft/mi.

The altitude of the top of the upper aquifer and its outcrop area are shown in figure 3. This unit is present across the study area, in nearly uniform thickness, as shown in figure 4. The upper aquifer, unlike the middle or lower aquifer, can be distinguished in the downdip part of the study area, however, differentiation of the upper and middle aquifers is difficult locally, where the intervening confining unit thins as a result of the complex depositional nature of deltaic deposits.

The altitude of the top of the middle aquifer and its outcrop area is shown in figure 5. The thickness of this unit is illustrated in figure 6. The unit has not been differentiated from the lower aquifer in downdip areas. In the Philadelphia area, the outcrop of the middle aquifer is overlain by a thin veneer of upper Cenozoic clay deposits (Owens and Minard, 1979).

The altitude of the top of the lower aquifer and its outcrop area are shown in figure 7. The thickness of the lower aquifer is shown in figure 8. The unit thickens downdip at a rate of about 20 ft/mi. Beginning about 10 to 12 miles downdip from the outcrop area, the middle aquifer is indistinguishable from the lower aquifer as a result of an increase in the thickness and number of interfingering clay and silt beds (Zapecza, 1989). In the northeastern corner of the study area, in the vicinity of Mount Holly, the lower aquifer pinches out in the subsurface as a result of the presence of a local bedrock high (Zapecza, 1989).

Locally, in the updip part of the study area, the confining unit between the upper and middle aquifers is lenticular and discontinuous. This is particularly evident in the northwestern corner of Gloucester County where the upper and middle aquifers are not easily differentiable as a result of the lenticular habit of the intervening confining unit (Lewis and others, 1991; Barton and Kozinski, 1991). The thickness of the confining unit between the middle and lower aquifers varies, particularly in the updip part of the study area, as a result of the lenticular nature of the unit.

The crystalline bedrock underlying the Coastal Plain sediments, a mica schist, is largely impermeable. A weathered zone of clay and loose mica overlies the hard bedrock and varies in thickness, with a maximum of 15 ft. This zone can function as an aquifer or aquitard depending on the degree of weathering. Available information is insufficient to delineate the weathered zone from unweathered bedrock on a regional basis. The top of bedrock surface is shown in figure 9. The surface is irregular in the updip part of the study area as a result of the presence of erosional troughs, which were mapped by Greenman and others (1961). These troughs are situated transverse to the present Delaware River channel and may represent incised channels of a pre-Cretaceous drainage system. Although the bedrock surface appears more uniform downdip, this results from a decrease in data-point density.

S	STEMSERIE	d GEOLOGIC			RO		
					UNIT		CHARACTERISTICS
- Jan	Holocene	deposits	Sand, silt and black mud.				Surficial material, commonly
uater		Beach sand and gravei	Sand, quartz, light-colored, medium- to coarse-grained pebbly.	ur	ndiffe	rentiated	aquifers. Locally some units may act as confining upits. Thicker sands are
Ō	Pleistocene	Cape May Formation		1			capable of yielding large quantities
		Pennsauken Formation Bridgeton Formation	Sand, quartz, light-colored, heterogeneous, clayey, pebbly.		Kid		A major aquifer system. Ground
		Beacon Hill Gravel	Gravel, quartz, light-colored, sandy.	1	Col	nansey hiler	water occurs generally under water-table conditions. In Cape
	Miocene	Cohansey Sand	Sand, quartz, light-colored, medium- to coarse-grained, pebbly, local clay beds.		syst	têm	is under artesian conditions.
Tertiary		Kirkwood Formation	Sand, quartz, gray and tan, very line to medium-grained, micaceous, and dark- colored diatomaceous clay.	Rio wate C	Confi Gran or-be Confi tlanti DO-fo	ning unit de aring zone ning unit ic City pot sand	Thick diatomaceous clay bed occurs along coast and for a short distance inland. A thin water-bearing sand is present in the middle of this unit. A major aquifer along the coast.
	Oligogene	Piney Point		4			Poorly permeable sediments.
	Eocene	Formation Formation Formation	Sand, quartz and glauconite, fine- to coarse-grained.	5	Pi ac	ney Point quiler	Yields moderate quantities of water.
		Manasquan Formation	Clay, silty and sandy, glauconitic, green gray, and brown, contains fine-grained quartz.	<u></u>	<u> </u>		Poorly permeable sediments.
	Paleocene	Vincentown Formation	Sand, quartz, gray and green, fine- to coarse-grained, glauconitic, and brown clayey, very fossiliferous, glauconite and quartz calcarenite.	confin	Vij aq	ncentown juifer	Yields small to moderate quantities of water in and near its outcrop area.
		Homerstown Sand	Sand, clayey, glauconitic, dark-green, fine- to coarse-grained.	Ē			Poorly permeable sediments.
		Tinton Sand Red Bank Sand	Sand, quartz, glauconitic, brown and gray, fine- to coarse-grained, clayey, micaceous.	isodu	Red	Bank Sand	Yields small quantities of water in and
		Navesink Formation	Sand, clayey, silty, glauconitic, green and black, medium- to coarse-orained.	Ŝ			Poorly permeable sediments.
		Mount Laurel Sand	Sand, quartz, brown and gray, fine- to coarse-grained, slightly glauconitic.	 Wer Lau	nona rel a	h-Mount quifer	A major aquifer.
		Wenonah Formation	Sand, very fine- to fine-grained, gray and brown, silty, slightly glauconitic.				
	Upper Cretaceous	Marshalltown Formation	Clay, silty, dark-greenish-gray; contains glauconitic quartz sand.	We	nona nfinin	ah ah Ig unit	A leaky confining unit.
sn	0.01000000	Englishtown Formation	Sand, quartz, tan and gray, fine- to medium- grained; local clay beds.	En	glish Jifer	town system	A major aquifer. Two sand units in Monmouth and ocean Counties
ee Ge		Woodbury Clay	Clay, gray and black, and micaceous silt.	Me	rcha	ntville-	
Creta		Merchantville Formation	Clay, glauconitic, micaceous, gray and black; locally very fine grained quartz and glauconitic sand are present.	COL	xodb hfinir	ury 19 unit	A major comming unit. Locally the Merchantville Formation may contain a thin water-bearing sand.
		Magothy Formation	Sand, quartz, light-gray, fine- to coarse grained. Local beds of dark gray lignitic clay. Includes Old Bridge Sand Member.	gothy		Upper aquifer	A major aquifer system. In the
		Raritan Formation	Sand, quartz, light-gray, fine- to coarse- grained, poorly arkosic; contains red, white, and variegated clay. Includes Farrington Sand Member.	:-Raritan-Ma uifer system		Middle aquifer	northern Coastal Plain, the upper aquifer is equivalent to the Old Bridge aquifer and the middle aquifer is equivalent to the Farrington aquifer. In the Delaware River Valley, three aquifer and the second
	Lower Cretaceous	Potomac Group	Alternating clay, silt, sand, and gravel.	Potomac		unit Lower aquifer	aquiters are recognized. In the deeper subsurface, units below the upper aquifer are undifferentiated.
Pre	Cretaceous	Bedrock	Precambrian and lower Paleozoic crystalline rocks, schist and gneiss; locally Triassic sandstone and shale, and Jurassic diabase are present.	Be	drod 1finir	k ng unit	No wells obtain water from these consolidated rocks, except along Fall line.

 Table 1. --Geologic and hydrogeologic units in the Coastal Plain of New Jersey

 [Modified from Zapecza, 1989, table 2.]

Figure 2. Thickness of the Merchantville-Woodbury confining unit, Camden area, New Jersey (modified from E.C. Regan, U.S. Geological Survey written commun., 1986).

Figure 3. Altitude of the top of the upper aquifer of the Potomac-Raritan-Magothy aquifer system, Camden area, New Jersey (modified from E.C. Regan, U.S. Geological Survey, written commun., 1986).

Figure 4. Thickness of the upper aquifer of the Potomac-Raritan-Magothy aquifer system, Camden area, New Jersey (modified from E.C. Regan, U.S. Geological Survey, written commun., 1986).

Figure 5. Altitude of the top of the middle aquifer of the Potomac-Raritan-Magothy aquifer system, Camden area, New Jersey (modified from E.C. Regan, U.S. Geological Survey, written commun., 1986).

Figure 6. Thickness of the middle aquifer of the Potomac-Raritan-Magothy aquifer system, Camden area, New Jersey (modified from E.C. Regan, U.S. Geological Survey, written commun., 1986).

Figure 7. Altitude of the top of the lower aquifer of the Potomac-Raritan-Magothy aquifer system, Camden area, New Jersey (modified from E.C. Regan, U.S. Geological Survey, written commun., 1986).

Figure 8. Thickness of the lower aquifer of the Potomac-Raritan-Magothy aquifer system, Camden area, New Jersey (modified from E.C. Regan, U.S. Geological Survey, written commun., 1986).

Figure 9. Altitude of the top of bedrock surface, Camden area, New Jersey (modified from E.C. Regan, U.S. Geological Survey, written commun., 1986).

Aquifer and Confining-Unit Hydraulic Properties

The aquifers of the Potomac-Raritan-Magothy aquifer system are among the most permeable of the New Jersey Coastal Plain. Selected data on transmissivity, hydraulic conductivity, storage coefficients, and vertical hydraulic conductivity for the aquifer system and related units in the Camden area are summarized in table 2. The data in table 2 are not internally consistent because they originate from different sources and types of analyses and may not represent actual hydraulic characteristics as a result of the method of collection or analysis (Martin, 1990, p. 9). The data from Martin (1990) are the calibrated hydraulic properties from the RASA model in the Camden area. These data probably are the best estimates of hydraulic properties available at a regional scale.

Precipitation and Recharge

Precipitation in the Coastal Plain of New Jersey is about 45 in/yr. Rhodehamel (1970, p. 6-7) estimated evapotranspiration to be about 22.5 in/yr, surface-water runoff to be about 2.5 in/yr, and recharge to the ground-water system to be about 20 in/yr. Of the 20 in/yr that recharges the ground-water system, about 17 in/yr is discharged as base flow to streams; the remainder flows into deeper aquifers. Rhodehamel's estimates are based on the flow system of the entire Coastal Plain. In the Camden area, the amount of recharge to the ground-water system may be less than 20 in/yr as a result of urbanization. Much of the water that has entered the ground may be intercepted by public-supply wells in the Camden area, reducing the ground-water contribution to base flow. The direct measurement of recharge in the urbanized Camden area was not attempted. Measurement of stream base flow as a method of approximating recharge was not possible either, as a result of tidal effects. Therefore, the only feasible quantitative approach to the estimation of recharge is to check or modify values derived from similar areas elsewhere in the Coastal Plain during calibration of water levels obtained by using a ground-water-flow model.

Ground-Water Withdrawals

Ground water is the major source of potable water in the Camden area. In 1980, 95 percent of groundwater withdrawals in Burlington, Camden, and Gloucester Counties were from either the upper, middle, or lower aquifer (Vowinkel, 1984, p. 19). Although early withdrawals from the aquifer system were concentrated in the City of Camden, development in the suburbs has led to increased use over much of the study area.

Annual withdrawals

Significant development of the aquifer system began in 1898, when the first withdrawals from wells in the City of Camden's Morris well field were made (Farlekas and others, 1976, p. 26). Annual withdrawals from each of the upper, middle, and lower aquifers and the combined total are shown in figure 10. The increase in withdrawals from the 1930's to the 1970's is readily apparent. Use of the lower aquifer has been, and continues to be, the highest among the three aquifers. Use of the upper and middle aquifers currently (1987) is similar. Current (1987) withdrawals from the aquifer system in the Camden area are about 125 Mgal/d. Positive correlation between population and withdrawals was strong from the turn of the century until the 1970's. Population increased more slowly in the 1970's (Camp Dresser and McKee, Inc., 1984a, p. 3-9), while withdrawals slightly decreased. Economic conditions also affect withdrawals directly by increasing or decreasing industrial withdrawals and indirectly by affecting population. The decrease in withdrawals from 1980 to 1981, shown in figure 10, may have been caused, in part, by the statewide restriction on water use imposed in 1981 as a result of drought conditions that year (Camp Dresser and McKee, Inc., 1984a, p. 3-22).

Transmissivity (ft ² /d)	Hydraulic conductivity (ft/d)	Storage coefficient (dimensionless)	Source of data	Location			Reference
			ENGLISHTOWN AQU	UIFER SY	STEM		
2,100		2.7x10 ⁻⁴	Aquifer test	Clement	on, Camden Co.	Farlekas and others (1976, p. 61)	
500		1.0x10 ⁻⁴	Simulation results	Camden	area	Martin ((1990, p. 104)
		UPPER AQUIFER OF	THE POTOMAC-RAR	RITAN-MA	GOTHY AQUIFER SYS	ТЕМ	
500-3,000		1.0x10 ⁻⁴	Aquifer test	Delmarv	a Peninsula	Cushing	and others (1973, p. 41)
16,600	240	1.0x10 ⁻³	Aguifer test	Haddon	Heights, Camden Co.	Barksda	le and others (1958, n. 97)
2,300-9,000		5.8x10 ⁻⁴ -2.4x10 ⁻³	Aquifer test	Old Brid	ge, Middlesex Co.	Barksda	le and others (1958, p. 47)
6,000-35,000		8.0x10 ⁻⁵ -8.0x10 ⁻³	Simulation results	NJ. Coa	stal Plain	Luzier (1980. p. 44)
2,000-10,000		1.0x10 ⁻⁴	Simulation results	Camden	area	Martin ((1990, p. 103)
		MIDDLE AQUIFER OF	THE POTOMAC-RA	RITAN-M/	AGOTHY AQUIFER SYS	STEM	·····
6,200-12,000	130-270	2.1×10^{-4}	Aquifer test	Burlingto	on Twp., Burlington Co.	Rush (1	968, p. 33)
22,000	200	6.0×10^{-2}	Aguifer test	Burlingto	on Twp., Burlington Co.	Rush (1	968, p. 33)
28,200-68,600		1.1x10 ⁻⁴ -5.8x10 ⁻⁴	Aquifer test	Palmyra,	Burlington Co.	Rush (1	968, p. 33)
13,100-17,400	217-290	1.0x10 ⁻⁴ -2.4x10 ⁻⁴	Aquifer test	Beverly,	Burlington Co.	Rush (1	968, p. 33)
20,000	200	1.5x10 ⁻⁴	Aquifer test	Riverton, Gloucester Co.		Barksdale and others (1958, p. 97)	
6,300	200	1.5x10 ⁻⁴	Aquifer test	Gibbstown, Gloucester Co.		Barksda	le and others (1958, p. 97)
8,300	350	1.2x10 ⁻³	Aquifer test	Camden, Camden Co.		Barksdale and others (1958, p. 97)	
6,000-35,000		8.0x10 ⁻⁵ -8.0x10 ⁻³	Simulation results	N.J. Coastal Plain		Luzier (1980, p. 44)	
4,000-10,000		1.0x10 ⁻⁴	Simulation results	Camden area		Martin (1990, p. 102)	
		LOWER AQUIFER OF	THE POTOMAC-RAI	RITAN-MA	GOTHY AQUIFER SYS	TEM	· · ·
2.300-6,700		1.0x10 ⁻⁴ -3.5x10 ⁻⁴	Aquifer test	Camden.	Camden Co.	Farlekas and others (1976, p. 38)	
3,200-3,700		3.3x10 ⁻⁵ -1.5x10 ⁻³	Aquifer test	Camden.	Camden Co.	Farlekas and others (1976, p. 38)	
8,300	350	1.2x10 ⁻³	Aquifer test	Camden,	Camden Co.	Barksdale and others (1958 p. 97)	
16,600	240	1.0x10 ⁻³	Aquifer test	Haddon I	laddon Heights, Camden Co. Barksdale and of		le and others (1958, p. 97)
6,800-9,100	140-190	9.0x10 ⁻⁵ -1.7x10 ⁻⁴	Aquifer test	Westville, Gloucester Co.		Barksda	le and others (1958, p. 97)
6,000-35,000		8.0x10 ⁻⁵ -8.0x10 ⁻³	Simulation results	N.J. Coa	N.J. Coastal Plain		1980, p. 44)
4,000-10,000		1.0x10 ⁻⁴	Simulation results	Camden	area	Martin ((1990, p. 101)
		Vertical hydraulic	Source	- of			
Geologic	unit	conductivity (ft/d)	data		Location		Reference
lishtown Formation	n (clayey-silt lithofacies)	1.9x10 ⁸	Laborato	ary test	Lakewood, Ocean Co.		Nichols (1977a, p. 58)
Ierchantville Formation		1.0x10 ⁻⁴ -4.0x10 ⁻⁴	Laborato	ry test	Winslow Township, Carr	iden Co.	Farlekas and others (1976, p. 133-134)
chantville Formati	on and Woodbury Clay	3.7x10 ⁻⁶ -6.0x10 ⁻⁵	Laborato	ry test	y test Fort Dix, Burlington Co.		Nichols (1977b, p. 58)
chantville Formati	on and Woodbury Clay	3.6x10 ⁻⁶ -1.4x10 ⁻⁵	Laborato	ny test	Lakewood, Ocean Co. Nichols (1977b, p. 58)		Nichols (1977b, p. 58)
chantville Formati	on and Woodbury Clay	4.3x10°	Simulatio	Simulation results Northern NJ. Coastal Plain Nichols (Nichols (1977a, p. 76)	
chantville Formati	on and Woodbury Clay	8.6x10 ⁻⁷ -1.7x10 ⁻³	Simulatio	on results	N.J. Coastal Plain		Luzier (1980, p. 29)
oodbury Clay		1.0x10 -3.0x10 ⁻²	Laborato	ny test	Winslow Township, Carr	iden Co.	Farlekas and others (1976, p. 133-134)

Figure 10. Historical annual withdrawals from the Potomac-Raritan-Magothy aquifer system in the Camden area, New Jersey, 1918-87.

Seasonal variations in withdrawals change from year to year, depending on the amount and temporal distribution of precipitation, and on temperature. Agricultural withdrawals are most affected by climatic fluctuations. Domestic and industrial use increase significantly during the summer and are affected by climatic changes from year to year. For the purposes of this report, however, where multiannual effects are the focus of investigation, only the annual rates are used in the analyses.

Both overall use (fig. 10) and concentration of use of the lower aquifer are highest among the three aquifers. In 1983, the City of Camden and other major users pumped 8.67 billion gallons (23.8 Mgal/d) from the lower aquifer in Pennsauken Township. The next highest withdrawal was from wells within the City of Camden, through which 2.08 billion gallons (5.70 Mgal/d) was withdrawn in 1983, also from the lower aquifer. Withdrawals from the middle aquifer were smaller, whereas the upper aquifer was the least stressed of the three. Withdrawals from the aquifer system in the southernmost part and southeastern corner of the study area were not significant.

The sources of water-use data used in this report are Zapecza and others (1987) and the NJDEP, Bureau of Water Allocation. The source, character, and limitations of the data are described briefly below. A more complete presentation can be found in Zapecza and others (1987, p. 7-9).

Water-use data used in this report cover three periods: 1918-55, 1956-80, and 1981-87. Data for the most recent period are presented in table 3 (at end of report). These data were retrieved from the State Water Use Data System (SWUDS), a computerized data base of the New Jersey District of the USGS. SWUDS contains statewide well-owner and site information and monthly withdrawal data, which are reported quarterly to the NJDEP, Bureau of Water Allocation. Although a single water-allocation permit may cover multiple ground- and surface-water sources, all withdrawals presented in this report are for the aquifer system only. In most cases, the owner reported withdrawals, either metered or estimated by multiplying hours of pump operation by pump capacity, by well. In cases where data were unreported or withdrawals from multiple wells were aggregated, the amount or distribution of withdrawal was estimated.

Data for the periods before 1981 were taken from Zapecza and others (1987, tables 2 and 3). Like the data for 1981-87, those for 1956-80 were compiled from quarterly reports and, where possible, were recorded as monthly withdrawal by well; however, some data were aggregated. The data for 1918-55 were compiled only as annual totals for each user. Public suppliers have been required to report total annual withdrawals since 1917, whereas private users who own wells with pumps having a capacity of 100,000 gal/d or greater have been required to obtain permits and report withdrawals since 1947. Owners of private wells drilled before 1947 were "grandfathered" and were not required to report until 1980 (Vowinkel, 1984, p. 5). Therefore, most of the data for 1918-55 are for public suppliers who reported only annual totals. Withdrawals from individual aquifers were estimated from the proportion of wells in each aquifer that were in operation in each year. In addition to the public-supply data, industrial-withdrawal data were estimated by identifying wells that were in service prior to 1956. The estimates are based on the installation dates and the percentage of water withdrawn through these wells in relation to the overall total diversion by the company in 1956 (Zapecza and others, 1987, p. 8).

Vowinkel (1984, p.7) divided withdrawals into three categories: public-supply, industrial and commercial, and agricultural. These categories accounted for 86, 13, and 1 percent, respectively, of aquifersystem withdrawals in the study area in 1980. Industrial use includes only withdrawals made directly by industrial or commercial users, not water supplied by a public supplier to such a user. Many agricultural users have "grandfather" rights and did not begin to report their use until 1980; however, because agricultural use represented about 1 percent of reported withdrawals from the Camden area in 1983, the effect of any missing data from previous years is thought to be minor. Self-supplied domestic users were not considered because the data are unavailable and the quantity of use is small. Camp Dresser and McKee, Inc. (1984a, p. 3- 19), estimate that less than 4 percent of the population in the Camden area is self-supplied. Of these users, some have wells that are screened in shallow aquifers above the Potomac-Raritan-Magothy aquifer system.

Future water use

Camp Dresser & McKee, Inc. (1984a, p. 3-46), projects that future average-day water demand for public purveyors and self-supplied users in the Camden area will be 123.1 Mgal/d in the year 2000, and 136.0 Mgal/d in 2020. On the basis of 1980 withdrawals of 110.1 Mgal/d, these values represent increases of 13.0 Mgal/d (12 percent) and 25.9 Mgal/d (24 percent), respectively. Because the increase in demand by self-supplied users is expected to be minimal, this projected increase in total demand is due primarily to an increase in demand by public purveyors of 14 percent by the year 2000 and 27 percent by 2020. Currently (1987), the NJDEP is not issuing permanent permits for new withdrawals from the aquifer system in the Camden area because of perceived overdraft conditions. Future demand for water in the Camden area is likely to be satisfied, at least in part, from sources other than the Potomac-Raritan-Magothy aquifer system.

Ground-Water Levels

Before development, the potentiometric surface of the aquifer system stood above sea level in the Camden area. The approximate altitude of this surface is shown in figure 11. About 1900, few wells were present in the area; consequently, few recorded water-level measurements are available. Therefore, this potentiometric surface is an approximation. Furthermore, it is an integration of the potentiometric surface of the three component aquifers, because data are insufficient to construct separate surfaces.

Once water-supply pumping was initiated on a large scale, water levels declined. Several patterns of decline are evident in the Camden area, as exhibited by the hydrographs of water levels in the observation wells whose locations are shown in figure 12. The hydrograph in figure 13 of water levels in well 07-108 (Camden DIV 10), which is open to the lower aquifer in Pennsauken near the Delaware River and in which measurements were initiated in the 1930's, shows a seasonal variation, probably resulting from changes in nearby pumping rates and climatic conditions that affect recharge. From a long-term perspective, the water level declined steadily from the 1930's to about 1970; stabilized for about 10 years, from 1970 to 1980; and recovered about 15 ft from 1980 to 1987.

The nested observation wells 05-258 (Medford #1), open to the upper aquifer; 05-261 (Medford #5), open to the middle aquifer; and 05-262 (Medford #4), open to the lower aquifer, are located in Burlington County. The nested observation wells 07-413 (Elm Tree #3), open to the middle aquifer, and 07-412 (Elm Tree #2), open to the lower aquifer, are located in central Camden County. The hydrographs of both sets of wells (figs. 14 and 15, respectively) exhibit a different water-level history than that shown by 07-108 (Camden DIV 10) (fig. 13). Water levels in these wells, monitored since the mid-1960's, declined consistently. Although the rate of decline has slowed since about 1980, the trend has continued to the present (1990). The declines are evident in all three aquifers.

The nested observation wells 15-297 (Shell #6), open to the upper aquifer and 15-296 (Shell #5), open to the lower aquifer, are located in Gloucester County near the Delaware River. These wells also have been monitored since the mid-1960's, and show a third, different water-level history than the others. The water levels, shown in figure 16, have declined less and more slowly than those in the Medford or Elm Tree wells, and have remained fairly stable since the 1970's.

Figure 11. Approximate potentiometric surface of the middle aquifer of the Potomac-Raritan-Magothy aquifer system in southern New Jersey, prior to 1900 (modified from Martin, 1990, fig. 31).

22

Figure 13. Water levels in well 07-108. (Camden DIV 10), 1933 -87.

Although these hydrographs indicate the general rate and magnitude of water-level decline in the area, the number of long-term observation wells is too small to clearly determine the areal variation in the potentiometric surface. A map of the potentiometric surface can only be developed from synoptic measurements of water levels in many wells. Previously published potentiometric-surface maps include those drawn by Barksdale and others (1958) for the early 1950's; Gill and Farlekas (1976) for 1900, 1956, and 1968; Luzier (1980) for 1973; Walker (1983) for 1978; and Eckel and Walker (1986) for 1983.

The potentiometric surfaces for the upper, middle, and lower aquifers in the fall of 1988 are shown in figures 17, 18, and 19, respectively. The effects of withdrawals are evident in each of the aquifers as regional cones of depression. The resolution of the maps is insufficient to show the cones of depression surrounding individual pumped wells. The regional cones of depression, which are generally centered in northcentral Camden County, extend to depths in excess of 90 ft below sea level. Given that the predevelopment potentiometric surface was above sea level (fig. 11), the magnitude of water-level decline due to withdrawals exceeds 100 ft in the centers of the cones.

The water-level data used to construct the three potentiometric-surface maps in figures 17, 18, and 19 are listed in table 4 (at end of report). Water-level measurements made in 1978, 1983, 1984, 1986, and 1988 are also presented in table 4. The owners and construction characteristics of the wells used for water-level measurements and those used for other purposes in this report are compiled in table 5 (at end of report).

Figure 14. Water levels in wells 05-258 (1963-91), 05-262 (1968-91), and 05-261 (1968-91) (Medford 1,4, and 5).

Figure 15. Water levels in wells 07-412 (1963-91) and 07-413 (1964-91) (Elm Tree 2 and 3).

Ground-Water Quality

The quality of water in the Potomac-Raritan-Magothy aquifer system in the Camden area is affected by natural processes and by the introduction of contaminants from anthropogenic sources. Five distinct water-quality zones, or "hydrochemical facies," in the aquifer system have been delineated by Back (1966) on the basis of concentrations of inorganic, naturally occurring water constituents. The locations of these zones are related to the regional ground-water flow patterns in the aquifer system. The regional flow pattern determines the source, pathway residence time, and ultimate destination of the water. These factors, in turn, affect the composition of the water and the reactions of the water with aquifer matrix material. Additional discussion of these processes can be found in Back (1966) and Ervin and others (1994).

1

Figure 16. Water levels in wells 15-296 and 15-297 (Shell 5 and 6), 1962-91.

From a simplified geochemical standpoint, the five zones of aquifer-system water can be reduced to two -- potable and nonpotable -- with respect to water supply in the Camden area. Nonpotable water is found in the deep, downdip parts of the aquifer system. In the study area it is found in the southeastern part of Gloucester County and may be found in the extreme southeastern part of Camden County. Concentrations of dissolved solids in the nonpotable water range from the threshold of potability at its updip extent to slightly higher than those found in seawater (Knobel, 1985, p. 31, "Ragovin" well samples) at the farthest downdip sampling site in Cumberland County (outside the study area). The composition of the nonpotable water is indicative of ion-exchange reactions and possible mixing of freshwater with seawater. Additional information on these processes can be found in Ervin and others (1994).

Figure 17. Potentiometric surface of the upper aquifer of the Potomac-Raritan-Magothy aquifer system, Camden area, New Jersey, fall 1988 (modified from Rosman and Storck, 1995).

Figure 18. Potentiometric surface of the middle aquifer of the Potomac-Raritan-Magothy aquifer system, Camden area, New Jersey, fall 1988 (modified from Rosman and Storck, 1995).

Figure 19. Potentiometric surface of the lower aquifer of the Potomac-Raritan-Magothy aquifer system, Camden area, New Jersey, fall 1988 (modified from Rosman and Storck, 1995).

The approximate downdip limit of freshwater (less than 250 mg/L dissolved chloride) in the lower aquifer is shown in figure 20 (Gill and Farlekas, 1976). The saline water probably is found farthest updip in the lower aquifer and farther downdip (and therefore deeper) in each successive aquifer overlying the lower aquifer. This configuration is supported by Meisler (1980). Generally, as the depth to the top of the aquifer system increases as one proceeds in a downdip direction, the cost of installing a well also increases. The number of wells completed in the aquifer system decreases significantly in favor of production from overlying units, such as the Wenonah-Mount Laurel and Cohansey aquifers in the areas that require increased well depth and that are near saline water. Thus, water-quality data are sparse and the location and concentration gradient of the interface between freshwater and downdip saline water must be inferred. Therefore, the updip limit of freshwater shown in figure 20 is only an approximation of the position of the interface in the lower aquifer. The interface position in the upper and middle aquifers probably is present farther to the southeast.

The presence of dissolved iron and contaminants related to human activities in the water of the aquifer system along its outcrop and, to some extent, in the confined parts of the aquifer system near the outcrop areas, has significantly affected the potability of the water supply in many parts of the Camden area. These topics are discussed in more detail in Ervin and others (1994) and Langmuir (1969).

Ground-Water Flow

Ground water enters the Potomac-Raritan-Magothy aquifer system in its recharge area, flows toward parts of the aquifer with lower head potential, and eventually discharges to the surface, such as through discharge to the Delaware River or flow to a well. The flow-system components must be understood and quantified in order to predict the effects of external and internal stresses on them.

Predevelopment Flow System

The ground-water flow regime of the aquifer system in the study area is affected by the properties of the aquifers and confining units, and by stresses located outside the Camden area. Because the aquifer system in the Camden area is an integral part of the Coastal Plain, the local flow system must be evaluated within the context of the larger scale system. The direction of flow and locations of recharge and discharge areas in southern New Jersey before development can be inferred from the potentiometric-surface map of the aquifer system prior to 1900 (fig. 11). These features are indicated in figure 20. Recharge entered the regional flow system through the aquifer-system outcrop at relatively higher elevations in Mercer and Middlesex Counties. Ground water in the Camden area traveled along an arcuate path to discharge into the Delaware River and adjacent low-lying tributary reaches that stand at or near sea level in the aquifer-system outcrop. This resulted in a U-shaped (in map view) flow system with recharge and discharge occurring on the same linear outcrop area. In the upgradient areas, nearer to the recharge area, ground water generally flowed downward from the shallower units toward the deeper units. In the downgradient areas, nearer to the discharge area, ground water generally flowed upward from the deeper units toward the shallower units and subsequently discharged to low-lying surface-water bodies. Flow across the Merchantville-Woodbury confining unit was impeded by low vertical hydraulic conductivity. Flow to and from the crystalline bedrock was insignificant.

Flow paths between the recharge and discharge areas were essentially concentric. The flow rate decreased in the downdip direction as path length increased. Ervin and others (1994) and Gill and Farlekas (1976) observed a transition from fresh to saline water in the downdip part of the aquifer system, parallel to the flow lines. The saline water was characterized by dissolved-chemical concentrations indicative of ion-

Figure 20. Generalized pattern of prepumping ground-water flow in the Potomac-Raritan-Magothy aquifer system and approximate location of the downdip limit of freshwater in southern New Jersey (modified from Martin, 1990, fig. 21).

exchange processes. This transition marked the effective limit of fresh ground-water flow in the aquifer system. Ground-water flow seaward of the transition was effectively stagnant. The elevated chloride concentration resulted from past mixing with sea water and from ion-exchange reactions with geologic material.

Stressed Flow System

Over the past ninety years, the development of ground-water supplies from the aquifer system in the Camden area has resulted in declining water levels caused by the stress of pumping. Declines of as much as 120 ft have been observed. This has affected the ground-water flow regime by reversing the hydraulic gradients in the area, but many of the features of the predevelopment flow system, discussed above, are still evident. The withdrawals in the Camden area have lowered the aquifer system's potentiometric surface to below sea level, inducing recharge from the Delaware River and its tributaries into the aquifer system. Thus, many places along the Delaware River are no longer discharge areas, but have become recharge areas. Figure 21 shows generalized ground-water flow paths under stressed conditions: the long-distance, arcuate, and long-travel-time path from Mercer and Middlesex Counties; the intermediate-distance paths from downdip areas; and the short-distance, short-travel-time path from the Delaware River.

Concurrent development of the aquifer system across the Delaware River in Philadelphia also induced recharge from the Delaware River to satisfy Philadelphia's withdrawals. As contamination with iron and manganese, probably occurring naturally, and other constituents related to human activities became intolerable, the major ground-water users gradually switched to municipal surface-water supply. By the mid-1960's, withdrawals on the Pennsylvania side of the river had been curtailed substantially and water levels recovered, facilitating the flow of water under the Delaware River from Philadelphia into the Camden area. Results of analyses of ground-water samples have provided evidence of this under-river flow (Greenman and others, 1961; Ervin and others, 1994), indicating that the Pennsylvania side of the Delaware River probably also has become a recharge area for the aquifer system in the Camden area.

The hydrographs of water levels in wells 05-258 in the upper aquifer, 05-261 in the middle aquifer, and 05-262 in the lower aquifer (Medford wells #1, #5, and #4, respectively; fig. 14) and wells 07-413 in the middle aquifer and 07-412 in the lower aquifer (Elm Tree wells #3 and #2, respectively; fig. 15) show continuing, unabated declines. These observation wells are not located near local recharge areas, such as the river or the aquifer-system outcrop. Although the rate of withdrawals has stabilized, the water-level declines continue. This behavior may indicate that the ground-water flow system in the downdip parts of the study area is not under equilibrium conditions.

Water levels in well 07-108 in the lower aquifer (Camden DIV 10 well, fig. 13) and wells 15-297 in the upper aquifer and 15-296 in the lower aquifer (Shell observation wells #6 and #5, respectively; fig. 16) declined but subsequently stabilized or recovered. Because areas near the river can receive induced recharge from it, water levels tend to be stable. Although withdrawals are largest near the Delaware River, the reduced magnitude of drawdown and apparent stability of water levels indicate that the hydraulic connection of the river and outcrop with the aquifer system is highly effective. Furthermore, the locations of the deepest cones of depression observed in the aquifer system are not near the river and do not coincide with the locations of the largest withdrawals.

Because the study area is urbanized, the characteristics of the unconfined part of the aquifer system are difficult to investigate and remain largely unknown. Most public water-supply wells in the area are screened in the confined part of the aquifer system to maximize protection from surficial contamination. Because water-supply wells are a primary source of hydrologic data, information about the water table is scarce. Available data (for example, Barton and Krebs (1990)), indicate that vertical flows are significant

Figure 21. Generalized pattern of ground-water flow under stressed conditions in the Potomac-Raritan-Magothy aquifer system in southern New Jersey.

as a result of withdrawals from the underlying, confined parts of the aquifer system, that induce downward flow from the unconfined part of the aquifer system into the confined part. This vertical flow is indicated by the presence of depressions in the water table that extend below sea level. In Pennsauken, the municipality with the largest withdrawals, the water table is drawn down by leakage to the confined part of the aquifer system to below sea level within a mile of the Delaware River (Barton and Krebs, 1990).

Delaware River/Aquifer-System Interaction

The interaction between the Delaware River and the aquifer system is the most significant feature of the ground-water flow system in the Camden area. This interaction depends on two major factors: (1) the physical orientation of the geologic material beneath the river and (2) the hydraulic conditions controlling flow. The aquifer system and related confining units are laterally extensive and lie under or are adjacent to the river. The riverbed material, which is superimposed over these regional units, is composed of river deposits or reworked formation material, all modified by dredging operations. The riverbed material does not have a hydraulically significant contact with laterally adjacent regional geologic units, but it does have a significant vertical connection to the river. Given the aquifer system's physical contact with the river, the rate and magnitude of flow are controlled by the relative hydraulic potential across the connection and by the aquifer-system and riverbed hydraulic conductivities.

Aquifer geometry near river

Within the Camden area, the aquifer system extends from the New Jersey Coastal Plain across the Delaware River into southeastern Pennsylvania. Where the course of the Delaware River crosses troughs in the bedrock surface, a significant thickness of aquifer-system and hydraulically associated Cenozoic deposits fills these troughs and provides an avenue for the exchange of water with the river and with the flow system on the Pennsylvania side. Where bedrock highs exist under the riverbed, under-river flow is impeded and interaction between the river and the aquifers on the New Jersey side is limited to lateral infiltration along the banks rather than across the entire river perimeter. Therefore, the hydrogeologic framework of the deposits within these troughs controls the interaction between river and aquifer system, and under-river flow.

Figure 22 shows the outcrops of the upper, middle, and lower aquifers in the vicinity of the river. Where an aquifer crops out beneath the river, direct river-aquifer interaction may occur. Plate 1 shows hydrostratigraphic sections across the river at selected locations, which are indicated on figure 22. Plate 2 shows the hydrostratigraphic section along the course of the Delaware River, also indicated on figure 22, from the perspective of looking toward New Jersey from Pennsylvania. The approximate position of the river bottom is indicated so that the units in contact with the sides or river bottom can be differentiated. The map of aquifer outcrops and the hydrostratigraphic sections were constructed from the well logs compiled in table 6 (at end of report) and results of a surface-geophysical survey conducted by using marine-seismic and electromagnetic-conductance (EM) methods. A part of the survey conducted along the course of the river is documented in Duran (1986); the methods used for the survey are described in Duran (1987). The original data are stored at the USGS, New Jersey District, office. The resolution of this investigation obscures the local-scale variability, therefore, the delineated regional aquifer contact may not be exactly consistent with a sand-clay boundary in a particular log. In the preparation of plates 1 and 2, the "average" position of the contact, with respect to the regional geologic trend of the unit, was determined when nearby well logs contained contradictory information.

Figure 22. Locations of hydrostratigraphic sections, reference wells, and outcrops of the upper, middle, and lower aquifers of the Potomac-Raritan-Magothy aquifer system in the vicinity of the Delaware River, Camden area, New Jersey.

Riverbed materials and permeability

The riverbed materials are evident in the results of the shallow-focus EM survey. Figure 23 shows the distribution of shallow riverbed material classified as sand, silt, or clay on the basis of the survey results. In some areas of the riverbed, the particle size of the materials seems to be directly related to that of the underlying regional geologic material; for example, the riverbed materials are sandy where an aquifer underlies the river. In other areas, they seem to bear no relation to underlying regional geologic units. Nearbank material generally appears to be less permeable than material in central-channel areas, perhaps as a result of the former presence of wetlands.

Nature of the interaction

In the upstream part of the study area, in Burlington County, the river's primary contact is with the middle aquifer, although tributaries to the Delaware River cross the outcrop of the upper aquifer. Along the course of the river in Camden County, the river's primary contact is with the lower aquifer; however, tributaries cross the middle and upper aquifers. In Gloucester County, the river is connected with the upper and lower aquifers; the only contact with the middle aquifer occurs along the tributaries.

The contact between the aquifer system and the tributaries of the Delaware River, such as Rancocas River, Cooper River, and Big Timber Creek, could play an important role in river-aquifer interaction. The tributaries can be a source of induced recharge. Because the parts of the tributaries that are in contact with the aquifer system in the study area are tidally affected, they are subject to the same problems, such as saltwater encroachment, as the main channel of the Delaware River. The tributaries generally have not been dredged, so the riverbed may contain more organic matter than the Delaware River and, therefore, the permeability of the riverbed may be lower.

The elevation of the Delaware River within the study area averages 0.5 ft above sea level. The river is tidal throughout the study area and upstream to Trenton, N.J. The tidal range is about 5.5 ft. Before the aquifer system was developed as a significant water-supply source aquifer heads were above sea level. Because the river level was at about sea level, ground water discharged to the Delaware River and the low-lying parts of its tributaries. When the aquifer system was developed, heads declined to below sea level. By the 1980's, heads beneath the river were as much as 60 ft below sea level, as estimated from potentiometric levels on the banks and in adjacent land areas (figs. 17, 18, and 19). The water levels that were estimated to be considerably below sea level were verified by installing temporary well points into the aquifer system at a location in the middle of the river. Wells were installed at Horseshoe Shoal into the middle (101-008) and lower (101-007) aquifers. The heads were measured to be about 5 ft below sea level in the middle aquifer and about 27 ft below sea level in the lower aquifer. Because the accuracy of vertical elevation control for these measurements was not ideal, these measurements are approximate. The direct measurement did, however, verify the existence of a considerable head difference between the river and the aquifer system.

Luzier (1980, p. 66) determined that a significant part of the aquifer-system withdrawals in the Camden area is derived from induced recharge from the river. He estimated that 42 percent of the ground-water flow into the Camden area due to withdrawals in the early 1970's came from the river. This conclusion had been reached qualitatively by most earlier workers, such as Barksdale and others (1958) and Thompson (1932). The locations of the highest intensity withdrawals do not coincide with the deepest points of the regional cone of depression in any of the three aquifers. The regional cones are centered in the vicinity of Cherry Hill, N.J., about 8 miles east of the river, but the largest withdrawals are in Pennsauken, N.J., and elsewhere in close proximity to the river. At these locations, recharge is induced from the river or from the outcrop area to satisfy the intense, adjacent withdrawals. The withdrawals farther from the river, such as

,

Figure 23. Relative permeability of shallow Delaware River bed material, Camden area, New Jersey.

near Cherry Hill, are cut off from the induced-recharge sources that are directly available to the aquifer system by the river-proximal withdrawals, causing the deepest regional cones of depression to form as water flows through confining units from overlying aquifers or flows laterally from distant recharge locations to satisfy the withdrawals.

Duran (1986) shows that downstream from the study area the riverbed is composed primarily of clayey material. This indicates that the river-to-aquifer flow is impeded farther downstream and is less significant than it is in the study area.

Water-Supply Issues

The sustainability of water supply from the aquifer system in the Camden area is threatened by several existing or potential regional-scale problems. Ground-water levels in some areas continue to decline as a result of pumping. Contaminants, namely organic compounds and metals, have entered the aquifer system from environmentally hazardous sites and land-use areas on the aquifer system's outcrop (recharge) area. Contamination of the aquifer system by saltwater intruding from the Delaware River during drought conditions is a potential problem, as is contamination of parts of the aquifer system from intrusion of saline water from areas farther downdip. Each of these threats is a manifestation of withdrawals.

Cones of Depression

Concern about the presence of deep cones of depression in the potentiometric surfaces of the aquifer system is focused on two aspects: the depth of the depressions and the rate of water-level decline. The lowered water levels result in higher energy costs to pump water. An ultimate concern of water managers in the area is the possibility that withdrawals could become so intense as to dewater significant parts of the aquifer system.

Dependence on the aquifer system as a source of water supply in the Camden area increased with the population. A decline in water levels in the aquifer system caused by water-supply withdrawals began at the turn of the century, when ground water was first used for public supply, and continued into the 1980's, when regional population and industrial growth slowed significantly. Consequently, the rate of increase of water-supply withdrawals also slowed substantially, but, in some areas, as indicated earlier in this report, water levels have continued to decline at a consistent rate, which may indicate a lag time for the stabilization of water levels that could be an important consideration with regard to future management decisions.

Recharge Containing Surficial Contaminants

A substantial amount of water enters the aquifer system as recharge because water-supply withdrawals in the Camden area are significant. The source of this water is precipitation that passes through an urban area in which industrial and commercial activities are common. Runoff from urban areas typically contains a variety of contaminants that can adversely affect the potability of the water supply.Because mitigation of contamination is difficult, the presence of these compounds in water from the aquifer system could lead to the need for treatment prior to use.

Intrusion of Downdip Saline Water

Saline water occurs naturally in the downdip parts of the aquifer system in the southern part of the study area and may move toward water-supply withdrawal locations in response to the low and declining water levels. A potentiometric gradient has been established (figs. 17-19) that could allow ground water to

flow from this area toward the water-supply wells. In addition to this lateral flow, saline water potentially could flow vertically through a confining unit (referred to as upconing). Both modes of saline-water intrusion could occur in combination along a particular flow path.

The distinction between modes of intrusion is not solely for the sake of categorization, however. The ability to detect and abate contamination resulting from saline-water intrusion can differ substantially depending on the mode. A regional freshwater-saltwater interface moving laterally through an aquifer may advance slowly. If a warning network of monitor wells is in place, the movement is predictable, allowing for the timely development of abatement strategies. An upconing situation, however, may not allow for the same degree of warning. Saline water in an aquifer underlying a pumped aquifer flows vertically through the confining unit. Although the movement is slow, it is directed toward individual production wells. Therefore, when saline water reaches the pumped aquifer, the production wells are affected first, and monitor wells that are not virtually adjacent to the production wells may not be useful for the detection of the upconing saline water.

The location in the Camden area most likely to be affected by saline-water intrusion is Gloucester County, especially in the upper aquifer. The interface between saline water and freshwater in the upper aquifer is southeast of the production wells. Although the location of the interface is not well-established, it may be as much as several miles from the nearest water-supply wells. Borehole geophysical logs from the vicinity of the communities of Clayton, Pitman, and Glassboro in Gloucester County indicate that in some locations saline water may occur as little as several tens of ft beneath the pumped aquifer. Even though potable water is separated from nonpotable water by confining units, vertical movement can be expected. Therefore, the upconing mode of intrusion may be the most likely mechanism by which deep saline water can be expected to enter the aquifer, moving vertically over a short distance through low-permeability material rather than laterally over several miles through high-permeability material.

Vulnerability to Contamination From Delaware River

Two types of contaminants potentially can enter the aquifer system from the river: contaminants related to human activities, such as pesticides, industrial waste, and sewage; and contaminants related to saltwater from downstream in the Delaware Estuary. Since the 1970's, dumping of hazardous compounds into the river has been substantially controlled and curtailed. Because of the transient nature of dumping and the slow rates of ground-water flow and recharge, the vulnerability to contamination from these compounds is low. The potential for the encroachment of saltwater up the Delaware Estuary into a position where it would recharge the aquifer system, however, is more likely, and could result from a reduction in the freshwater flow of the river (drought), a rise in sea level, or both. The term "saltwater encroachment" is used herein to describe the movement of saltwater in the Delaware River. In order to minimize confusion, the term "saltwater intrusion" is used herein to describe the movement of saltwater in the ground-water system.

Drought-Related Saltwater Encroachment

Within the Delaware Estuary, the freshwater of the river mixes with sea water, forming a salinity transition zone. Cohen and McCarthy (1962, p. B14) report that the transition zone was in excess of 40 miles long during August of 1955. The length of the transition zone can be determined by measuring the distance between freshwater and water in which the concentration of dissolved chloride is 6,000 mg/L, a concentration about one-half that of dissolved chloride in sea water. Under normal conditions, the midpoint of the transition zone, with respect to dissolved-chloride concentration, is found near the Delaware Memorial Bridges, near Wilmington, Del. (Hull and others, 1986, p. 26). Freshwater and saltwater in this part of the estuary are generally well-mixed; therefore, the front exhibits consistent salinity with depth, rather than being a wedge-shaped front (C.H.J. Hull, Delaware River Basin Commission, oral commun., 1985). The 250-mg/L chloride-concentration line is commonly used to indicate the location of the interface between potable and nonpotable water. The use of the term "freshwater-saltwater interface" in this report indicates the interface between saltwater and freshwater where the concentration of chloride is 250 mg/L.

The freshwater-saltwater interface in the Delaware River moves daily in response to tides and seasonally in response to variations in rainfall. The fluctuation of the interface location in response to tides is about 6 miles. The normal interface position can be considered to be in the vicinity of the Delaware Memorial Bridges, shown in figure 24. During average summer low freshwater flow of the river, the interface moves to the Chester, Pa., area. During a severe drought, the interface could be expected to move farther upstream. The maximum observed upstream encroachment occurred in November 1964, when the interface moved into the Philadelphia and Camden area to a position at about the Benjamin Franklin Bridge, shown on figure 24.

When the freshwater-saltwater interface in the Delaware River reached the Camden area in November and December 1964 water-supply withdrawals were intense and may have drawn saltwater into the aquifer system. The specific conductance of water samples collected from the Delaware River, shown in figure 25, is evidence of the encroachment of saltwater in November and December 1964 in this area. Presumably, a slug of water having higher-than-normal chloride concentration recharged the aquifer. After that occurrence, higher-than-normal chloride values were observed in the aquifer system in the Camden area. Dissolved-chloride concentrations of water from selected water-supply wells near the Delaware River are shown in figure 26. The concentrations generally peaked in 1965 or later, probably indicating the passing of the slug of water that was recharged during the drought event. The highest concentration measured was approximately 80 mg/L, whereas the background chloride concentration of water in the aquifer system in that area is about 10 to 20 mg/L, shown as the concentrations prior to the peaks on figure 26. Because the sampling frequency was low, the peak concentration and timing cannot be clearly established. Ultimately, the data show that this drought-related intrusion event did not threaten potability, but it does prove that an encroachment event can adversely affect the water supply.

Saltwater Encroachment Related to Global Climate Change and Sea-Level Rise

The northeastern United States has experienced climatic variation, from continental glaciation to temperate climates, in recent geologic history. Earth's average temperature during the last ice age (18,000 years b.p.) averaged 5°C lower than today (Donn and others, 1962). The reasons for the climatic change in the geologic past could possibly relate to variations in the Earth's orbital eccentricity or to changes in the latitude of land masses resulting from plate tectonics.

Recently, climatic researchers have observed an increase in the atmospheric concentration of gases that are attributed to industrial and related activities (Smagorinsky, 1982). These products of industrialization, such as carbon dioxide, methane, and water vapor, are termed "greenhouse gases." Greenhouse gases are transparent to visible light, but are relatively opaque to heat radiation. The trapping of additional heat by the increasing concentration of greenhouse gases, causing a global warming trend, is considered feasible (Smagorinsky, 1982). A projected manifestation of a global warming trend is sea-level rise as a result of increased melting of mountain glaciers and polar ice caps, and the volumetric expansion of sea water due to the higher temperature.

Other climatic effects, such as increased cloud cover or decreased global reflectivity, could affect the magnitude and rate of global warming and related sea-level rise. Hoffman and others (1983) suggest that many such uncertainties are associated with predictions of warming and sea-level rise. They compiled

Figure 24. Location of various freshwater-saltwater-interface positions in the Delaware River and Estuary (Ayers and Leavesley, 1989, fig. 9).

Figure 25. Specific conductance of water samples collected from the Delaware River at the Benjamin Franklin Bridge, Philadelphia, Pennsylvania, November and December, 1964.

published sea-level-rise estimates and categorized them as conservative or liberal, on the basis of the uncertainties in the effects of controlling factors. The compiled rises are 0.4 and 2.0 ft by the year 2025, for conservative and liberal estimates, respectively, and 1.25 and 7 ft by 2075, for conservative and liberal estimates, respectively.

These values were derived by considering the effects of a global temperature rise due to greenhouse gases, but other factors also can affect sea level, which has varied substantially over geologic time. Changes in the size and shape of ocean basins can affect sea level (Hays and Pitman, 1973), as can the weight and subsequent removal of continental glaciers. On a regional or local scale, many processes can affect relative sea level. About 1 ft of apparent sea-level rise has been measured at Philadelphia over the last century (Hicks and others, 1983) that pre-dates any of the greenhouse affects. This change in apparent mean sea level from 1923-80 is shown in figure 27. Any rise due to global warming would be superimposed on this continuing local rise.

Figure 26. Dissolved chloride concentration of water from selected water-supply wells near the Delaware River in Camden, New Jersey (modified from Lennon and others, 1986, fig. 15).

Figure 27. Apparent sea level at Philadelphia, Pennsylvania, 1923 to 1980 (Hull, Thatcher, and Tortoriello, 1986, fig. 7).

A change in sea level is only one side of the potential driving force on the position of the freshwatersaltwater interface in an estuary. Higher temperatures caused by a global climatic change could change the freshwater flow of the Delaware River. Any change that would reduce the discharge, such as a reduction in rainfall or increase in evapotranspiration (caused by a lengthening of the growing season), would enable the interface to move upstream. Two of three general-circulation-model (GCM) investigations reported by McCabe and Ayers (1989) predict decreases in total annual runoff of 7 to 39 percent from the Delaware River Basin as a result of increased atmospheric carbon dioxide, whereas results of the other investigation indicated a slight increase (2 to 9 percent) in total annual runoff. Because of the uncertainties involved in the GCM's and their coarse scale compared to the size of the Delaware River Basin, these findings are not conclusive. The historical trend of sea-level rise is documented. Furthermore, the potential exists for an acceleration of the rise as a result of the global warming, although the actual rate may be arguable. Nevertheless, the likelihood of a future rise in sea level in the Delaware River and Estuary is high.

GROUND-WATER FLOW UNDER CURRENT AND FUTURE CONDITIONS

Simulation of Ground-Water Flow

Evaluation of the effects of ground-water withdrawal on the aquifer system in the Camden area requires a detailed understanding of the ground-water system, including the interaction between the Delaware River and the aquifer system, directions of ground-water flow, and ground-water flow budgets. A ground-water-flow model of the Potomac-Raritan-Magothy aquifer system with a quantitative predictive capability was developed to evaluate the potential effects of alternative future ground-water-withdrawal scenarios.

Construction of the flow model and simulation of withdrawal scenarios was accomplished in several stages. A conceptual model of the flow system was developed on the basis of the hydrogeologic data described earlier in this report. The objectives of this study require a quantitative, numerical model that can simulate ground-water flow in the aquifer system in the Camden area, the interaction with the Delaware River and its tributaries, and the hydrologic effects of the Coastal Plain deposits outside the immediate study area. The density of the simulated ground water was assumed to be invariant and characteristic of freshwater. The "Modular Model" computer program of McDonald and Harbaugh (1988) meets these requirements and was used to perform the simulations. The conceptual model of the flow system expresses, in general terms, the boundary and initial conditions, and hydrologic parameters that constitute the input data for the numerical model. The numerical model was then calibrated to assure that it adequately represents measured field data, with regard to the objectives of the investigation. The model's sensitivity to the variation of important input parameters was determined to judge the accuracy of final results. Finally, the various ground-water withdrawal scenarios were simulated.

Model Discretization

The model is a quasi-three-dimensional representation of the hydrogeologic units in the study area that consists of five layers. The layers represent aquifers, where ground-water flow is assumed to be horizontal. Ground-water flow through confining units is assumed to be vertical only and is simulated as one-dimensional flow between the aquifer layers. Heads in confining units are not explicitly determined. A schematic representation of model layers is shown in figure 28. Heads in layer 1 of the model are held constant; they provide vertical leakage to the overlying Coastal Plain deposits that are not directly modeled. Layer 2 represents the Englishtown aquifer system, which overlies the Potomac-Raritan-Magothy aquifer system. The Englishtown aquifer system, although not the main focus of this investigation, is incorporated in the model to act as a buffer for the stabilization of vertical flow with the Potomac-Raritan-Magothy aquifer system. Layers 3, 4, and 5 represent the upper, middle, and lower aquifers of the Potomac-Raritan-Magothy aquifer system, respectively.

Each modeled layer was discretized horizontally into the grid shown in figure 29, consisting of 99 rows and 106 columns. The grid is variably spaced and is oriented approximately parallel to the Fall Line and to the strike of the aquifer system (42° E.). The dimensions of the smallest grid cells are 880 ft by 1,650 ft (0.05 mi²). The smallest cells are generally near the Delaware River. The dimensions of the largest cells are 2,200 ft by 3,300 ft (0.26 mi²). The largest cells are generally located in the downdip, southeastern part of the study area where data are sparse.

Pennsylvania

EXPLANATION

Figure 28. Schematic representation of aquifers, confining units, and boundary conditions used in the Camden area flow model.

Figure 29. Finite-difference-model grid for the study area.

Boundary Conditions

The boundaries of ground-water flow models are assigned conditions that are intended to represent the sense and function of the realistic limits of the flow system. The vertical boundary beneath the lower aquifer, representing the contact with bedrock (bottom of the model) and the lateral boundary to the northwest, representing the pinchout of Coastal Plain deposits at the Fall Line, are simulated as no-flow boundaries. Ground-water flow between the Coastal Plain and bedrock units is assumed to be insignificant.

The lateral boundaries on the northeastern, southwestern, and southeastern edges of the model are simulated as specified-flow boundaries, which represent the connection between the modeled area and other parts of the Coastal Plain that are outside of the study area. The locations of these boundaries are not hydrologically significant, but they are sufficiently far from the main focus of the investigation that boundary effects are minimal. The values of the specified flows are derived from the New Jersey Coastal Plain RASA ground-water flow model (Martin, 1990). Although the discretization of the RASA model is much coarser than that of the Camden area model, the RASA model simulates the entire New Jersey Coastal Plain and consists of 10 aquifer layers. The RASA model has hydrologically valid lateral boundaries on all sides and incorporates all significant Coastal Plain aquifers. The relation of the RASA model grid to the Camden area model is shown in figure 30. During simulations, identical Camden area stresses were simulated in both the RASA and Camden area models. The flows across the Camden area model flux boundaries are derived from the RASA model and incorporated into the Camden area model by using the Modular Model code's well package. Thus, the flow system of the entire Coastal Plain is incorporated into the Camden area model, but without the burden of maintaining the same resolution of horizontal and vertical discretization, which would require prohibitively large computer resources. The discretization of the Camden area model is sufficiently fine that any inconsistency in flow at the boundary resulting from the change in scale from the RASA model is smoothed.

The upper surface of the model includes several significant boundaries, the connection with the Delaware River and its tributaries, the recharge received from precipitation on the outcrop areas, and the vertical flow to and from the overlying Coastal Plain deposits. The connection between the aquifer system and the river is simulated as a head-dependent boundary condition by using the river package of the Modular Model. A one-dimensional flow path is specified by using the aquifer heads, river stage, and riverbed hydraulic conductivity, shown schematically in figure 31. Cells that are in contact with the river were determined by intersecting the model grid (fig. 29) with the map of aquifer outcrops (fig. 22) and a map of the river geometry. Recharge is a specified flow, in which a specified rate is applied over the cells in the topmost active layer representing the outcrop area. Flow from overlying Coastal Plain deposits was simulated by adjusting the constant heads of model layer 1 to produce the required flow to model layer 2, the Englishtown aquifer system.

Model Calibration

Results of a model simulation are meaningful only if the model adequately reflects reality or, in other words, is calibrated. The Camden flow model was calibrated by using a trial-and-error approach. Parameters were adjusted, a simulation was performed, and the results were evaluated on the basis of the fit between the simulated and measured data. These data include water levels recorded at long-term observation wells and synoptic water-level measurements. The model also had to be consistent with the general concepts of flow in the aquifer system, such as magnitude and direction, before the model was considered calibrated. If the model can adequately simulate changes in head and flow (to the degree to which we know them) in response to changing stresses, such as water-supply withdrawals, it can then be used to provide realistic, detailed information on the distribution of heads and flows at a resolution that is impossible to obtain from

Figure 31. Schematic representation of modeled river/aquifer connection (modified from McDonald and Harbaugh, 1988, fig. 33).

available data. Furthermore, the model can be used to simulate responses to future withdrawals realistically; however, the future conditions must not be too different from historical conditions for the model to produce meaningful results.

The initial conditions for the model are the predevelopment water levels in the aquifers, considered to be in equilibrium (steady-state) (Martin, 1990). For calibration, the model simulated, in transient mode, the period from predevelopment conditions beginning about 1900 through the period when water-supply withdrawals increased and water levels declined, to 1988, the year for which the most recent synoptic water-level measurements for the study area were available. The historical withdrawal data were simplified into 10 stress periods. Withdrawal rates were fixed at an average level for the period, shown in figure 32, and were adjusted to account for pumping in Pennsylvania. The model simulates 10 time steps within each stress period to generate a continuity in water-level change.

Other input parameters, such as hydraulic conductivity, storage, and vertical leakance, were derived from the New Jersey Coastal Plain RASA model (Martin, 1990). The initial values are close approximations of actual values and distributions; however, because of the substantial difference in grid size and spacing between the two models, initial values in the Camden area model were adjusted to more accurately simulate the Delaware River and recharge along the aquifer system's outcrop. Aquifer-thickness data (figs. 4, 6, and 8), developed at a higher resolution than was available for the RASA model, were used in conjunction with

YEAR

Figure 32. Annual ground-water withdrawals by aquifer, 1915-87, and model stress-period withdrawals.

hydraulic-conductivity data to generate the aquifer transmissivities. Initial values of recharge were set at a rate of 18 inches per year, on the basis of a water budget for the New Jersey Coastal Plain reported by Rhodehamel (1970). Initial values for the magnitude of streambed hydraulic conductivity were based on typical values for sand, silt, and clay as reported by Freeze and Cherry (1979, p. 29), and were distributed according to the information on figure 23.

The model was judged to be calibrated when the following criteria were met:

- 1. Simulated hydrographs matched the measured, long-term hydrographs to within 15 ft in most cases.
- 2. The interpreted 1988 potentiometric surfaces, including the depths of the cones of depression, were reproduced to within 15 ft. The locations and configurations of the simulated cones were consistent with measured data.
- 3. The general direction of flow and magnitudes of hydraulic-parameter values were consistent with the conceptual model of ground-water flow in the study area.

The 15-ft accuracy in water levels required for this calibration was determined on the basis of several factors. Seasonal variations in water levels in the aquifer system, caused by seasonal variations in withdrawals and climatic factors, can be in the range of 10 to 20 ft/yr, resulting in a minimum change of \pm 5 ft over several years. Because the purpose of this model is to evaluate conditions over several years, the calibration was not intended to bring the model to a seasonal time base. The potential accuracy of synoptic water-level measurements made in the field, if errors in reading measuring devices are ignored, is related to the accuracy of the measurement-site altitude. Altitudes of most water-level measurement sites from which data were used in this study were estimated from USGS topographic quadrangle maps with 10-ft contour intervals. Their accuracy therefore can be considered to be \pm 5 ft. Thus, accounting for seasonality and measurement accuracy results in a potential error of 10 ft. On a semiquantitative basis, an additional \pm 5 ft of error from other sources must be tolerated, such as errors in the areal distribution of model parameters. Together, these sources of error yield an acceptable calibration accuracy goal of \pm 15 ft.

The comparison of simulated to measured hydrographs for the 22 long-term aquifer-system monitor wells, whose locations are indicated in figure 12, are shown in figures 33 to 35. In most cases, the hydrographs match to within 10 ft and, in some cases, they match to within 5 ft. These results fall within the calibration goal indicated above. The match was at or slightly worse than the tolerated limit at only 3 of the 22 sites. Attempts to bring the simulated water levels at the three sites to within the calibration criteria caused simulated water levels at other sites to violate the criteria to a larger degree. Therefore, the match at these three sites was considered tolerable, even though it did not meet the calibration criteria.

The general shape and configuration of the simulated potentiometric surfaces of the aquifer system are comparable, within the tolerable levels, to those of the measured surfaces, as shown in figures 36 to 38. The model's performance is consistent with the general concept of the flow system. The calibration criteria were satisfied, except in the case of the three sites discussed above, and the model was judged to provide a satisfactory representation of ground-water flow in the aquifer system in the Camden area.

Calibrated-Model Parameters

The major model parameters that describe the hydrologic characteristics of the aquifer system are aquifer transmissivity, aquifer storage, confining-unit vertical leakance, recharge, and hydraulic properties of streambeds.

Figure 33. Simulated and measured water levels for the upper aquifer of the Potomac-Raritan-Magothy aquifer system.

ጟ

Figure 34. Simulated and measured water levels for the middle aquifer of the Potomac-Raritan-Magothy aquifer system.

អ្ន

Figure 35. Simulated and measured water levels for the lower aquifer of the Potomac-Raritan-Magothy aquifer system.

Figure 36. Simulated and measured fall 1988 potentiometric surfaces for the upper aquifer of the Potomac-Raritan-Magothy aquifer system.

Figure 37. Simulated and measured fall 1988 potentiometric surfaces for the middle aquifer of the Potomac-Raritan-Magothy aquifer system.

Figure 38. Simulated and measured fall 1988 potentiometric surfaces for the lower aquifer of the Potomac-Raritan-Magothy aquifer system.

The aquifer transmissivity is calculated from the horizontal hydraulic conductivity and the aquifer's saturated thickness. Thickness (figs. 5, 7, and 9) was considered to be invariant for purposes of model calibration. The calibrated hydraulic conductivities vary spatially and range from 7 to 130 ft/d. This variation is attributable to a decrease in the grain size of aquifer material in the downdip direction. The clay content increases in that same direction. The magnitude and distribution of hydraulic conductivities of the aquifer system used in the calibrated model are shown in figures 39 to 41. The transmissivities used in the calibrated model are generally similar to those in the RASA model (Martin, 1990). The minor differences that do exist are, in part, the result of the comparatively fine grid size of the Camden area model, which allows a more accurate definition of thickness in the vicinity of the boundaries with the Delaware River and Fall Line. The calibrated transmissivities of the upper aquifer average about 4,000 ft²/d over the modeled area, ranging from near zero where the unit thins at its updip limit to a maximum of about 11,500 ft²/d. Transmissivities of the middle aquifer average about 5,500 ft²/d, and range from near zero to about 15,000 ft²/d. Transmissivities of the lower aquifer average about 7,100 ft²/d, and range from near zero to about 25,000 ft²/d. Because the overlying Englishtown aquifer system was not a primary focus of this investigation, the RASA model transmissivity for this unit (Martin, 1990, fig. 58) was used and was not varied during calibration. A storage coefficient of 1.0×10^{-4} was used for all aquifers.

The calibrated hydraulic conductivities or transmissivities of the aquifer system from the Camden and RASA models are generally lower than those reported from results of aquifer tests, such as those listed in table 2. This is expected and can be explained in several ways. The proximity of significant recharge, such as from the Delaware River or its tributaries, affected many of the aquifer-test analyses, especially those conducted prior to the 1960's. The asymmetrical nature of a line recharge source near the pumped well during an aquifer test could result in erroneously elevated transmissivity values. Furthermore, the typical aquifer test is used to evaluate the properties of a discrete sand layer (in the case of the Coastal Plain). The simulated regional aquifer layer, however, may incorporate the tested sand with other sands and intervening clays that together are not sufficiently thick or extensive to be considered or simulated as a confining unit. The result is that the hydraulic conductivities of regional-scale aquifer layers in a calibrated flow model are expected to be lower than those determined from local-scale aquifer tests. Therefore, calibrated flow models are better suited for determining aquifer properties at a regional scale than are local-scale aquifer tests.

The confining-unit vertical leakance (vertical hydraulic conductivity divided by confining-unit thickness) for the calibrated model ranged from 1.0×10^{-6} to 1.0×10^{-12} (ft/d)/ ft. The magnitude and distribution of vertical leakance for the confining unit between the Englishtown aquifer system and the upper aquifer, between the upper and middle aquifers, and between the middle and lower aquifers, respectively, are shown in figures 42 to 44.

Water directly enters the aquifer system as recharge from precipitation only on an outcrop area. The recharge value used in the model is not the total, or gross, amount of rainfall impinging on the outcrop area, but is the net amount that enters into the saturated part of the aquifer, after evapotranspiration and direct surface runoff. The objective of this study is to evaluate withdrawal scenarios on a multi-year basis. Therefore, the recharge rates used in the model were not varied through time. The values of recharge rates to the uppermost active cells of the calibrated model range from 4 to 16 in/yr. The distribution of recharge over the upper surface of the model is shown in figure 45. The lower recharge rates, 4 to 9 in/yr, were used primarily on the Pennsylvania side of the river, where the aquifer system thins at its updip limit. During model calibration, recharge rates higher than these caused unrealistically high heads in the aquifer system. Reducing the values corrected this problem. Similarly, unrealistically high heads also resulted at cells adjacent to the Delaware River and its major tributaries. The lower recharge values were used in these locations as well.

Figure 39. Hydraulic conductivity used in the model for the upper aquifer of the Potomac-Raritan-Magothy aquifer system.

.

Figure 40. Hydraulic conductivity used in the model for the middle aquifer of the Potomac-Raritan-Magothy aquifer system.

÷

Figure 41. Hydraulic conductivity used in the model for the lower aquifer of the Potomac-Raritan-Magothy aquifer system.

Figure 42. Vertical leakance used in the model for the confining unit between the Englishtown aquifer system and the upper aquifer of the Potomac-Raritan-Magothy aquifer system.

Figure 43. Vertical leakance used in the model for the confining unit between the upper and middle aquifers of the Potomac-Raritan-Magothy aquifer system.

Figure 44. Vertical leakance used in the model for the confining unit between the middle and lower aquifers of the Potomac-Raritan-Magothy aquifer system.

Figure 45. Distribution of recharge used in the model.

The connection of the Delaware River and its tributaries to the aquifer system was simulated by using the river package of the Modular Model computer program. For model cells at which river interaction is significant, the stage of the river, the riverbed conductance, and the elevation of the river bottom are specified. If the head in the aquifer system adjacent to the river is known, then the flow between the river and the aquifer system is directly calculated by the model. The Delaware River and its tributaries in contact with the aquifer system are generally under tidal conditions. Whereas river stage varies nearly 6 ft with every tidal cycle, it is the average stage that is significant for a multi-year ground-water model calibration. The river elevation is approximately 0.5 ft above sea level in the Camden area. The Delaware River bottom has been dredged to a consistent depth of about 40 ft throughout the study area. The tributaries are about 10 ft deep. The distribution of the material comprising the river bottom, discussed earlier, is shown on figure 23. The river-bottom material was classified as high, moderate, or low permeability. Values of 28, 0.028, and 0.00028 ft/d are used in the calibrated model for the vertical hydraulic conductivity through the riverbed of the high-, moderate- and low-permeability zones, respectively. At the start of the calibration process, typical values for the hydraulic conductivity of sand, silt, and clay, as reported by Freeze and Cherry (1979, p. 29) were used. These initial values were then adjusted to calibrate water levels near the river. The thickness of the riverbed sediments, differentiated from the aquifer-system material, is assumed to be 10 ft. The riverbed conductance is calculated as follows:

$$C_{rb} = \frac{K \times A_{rb}}{M} ,$$

where

Crb = riverbed conductance (L²), K = vertical hydraulic conductivity of riverbed (L/t), Arb = area of riverbed (L²), andM = riverbed thickness (L).

Model Sensitivity

The model-calibration process involves the use of a trial-and-error approach to fit simulated groundwater levels to observed levels by modifying the initial values of model-input parameters. The most significant parameters in the Camden area model are recharge, transmissivity, vertical leakance, and riverbed hydraulic conductivity. The initial model-parameter values were based on measurements made at various observation points and values derived from the more coarsely gridded RASA model (Martin, 1990). Some of the data, such as riverbed hydraulic conductivities, were recorded as relative rankings (low, moderate, or high permeability). The absolute magnitude and areal variation of measured field parameters beyond the collection locations are speculative; however, the calibrated input data set of the Camden area model can provide information about them because model calibration yielded ground-water levels that are consistent with observed data. Therefore, these calibrated values can be considered a close representation of the actual values and distributions. The precision of this information derived from the model may, however, be affected by the sensitivity of simulated head values (the calibration criterion) to variation in values of particular input parameters. For instance, insensitivity of the model to variation in values of a particular parameter may allow values of that parameter to range widely without affecting values of the simulated heads. The degree of sensitivity can be tested by performing a sensitivity analysis.

A variety of strategies can be used to assess a model's sensitivity. The strategy that is most appropriate for this study is to determine the degree of change in an input-parameter value that will result in a change in simulated head that is sufficiently large to affect the model's calibration. The magnitude of change or variation that affects the model's calibration can be considered to approximate the precision of the calibrated model's input data, especially with regard to the use of the parameter values outside this modeling process. The Camden area model, as previously stated, was calibrated by using a criterion of 15 ft for the fit between simulated and observed data. Most of the simulated hydrographs showed water levels that were within 5 to 10 ft of the observed data. Therefore, the significant sensitivity test is to determine the variation in parameter values that would cause simulated heads to change between 5 and 15 ft. A change of this magnitude would be sufficiently large to cause simulated long-term water levels in observation wells to violate the calibration criteria.

The sensitivity test was accomplished by using a trial-and-error method. A statistically based evaluation would certainly be feasible; however, during the calibration process, the sensitivity is readily apparent and estimation of the change in value that yields an approximate 15-ft change in simulated head is relatively easy. With this knowledge of the model's performance, the input parameters were varied. The intent of this analysis is to determine the sensitivity to changes in input parameters. The sensitivity could be expected to vary spatially and could depend on concurrent changes in several parameters. The model could also show temporal sensitivity. Determining the sensitivity to this degree is beyond the intent of the evaluation. Therefore, one parameter was varied at a time, and changes were applied over the entire model under steadystate conditions based on the withdrawals developed for stress-period 10 (1984-88). Values were both increased and decreased to test the relative sensitivity or symmetry of the direction of parameter change.

Recharge, when varied by +/- 35 percent; hydraulic conductivity, when varied by +/- 20 percent; vertical leakance, when varied by +/- 60 percent; and riverbed hydraulic conductivity, when varied by +/- 100 percent, all result in a 5- to 15-ft change in simulated heads. These variations represent sufficient changes in value to disrupt model calibration. Table 7 summarizes the changes applied to the input parameters and the general response of the simulated water levels.

Current Conditions

The results of the ground-water flow simulation are generally consistent with the concept of regional ground-water flow in the Potomac-Raritan-Magothy aquifer system in the Camden area developed previously in this report. Use of the model allows the various flow-system components to be quantified and their relative importance determined.

General Flow Budget and Pattern

The budget is of particular interest in understanding the flow system from a regional viewpoint. Table 8 shows the magnitude of the various flow-system components as simulated for the period 1983-88 (model stress period 10). The discrepancy between inflow and outflow of water for this simulation is low, indicating that the model is well-balanced.

The largest budget components are the inflow to the system from recharge along the aquifer system's outcrop (not including the outcrop in the river) and the discharge from wells. The outflow from constant heads represents the vertical boundary flow leaving the modeled area as flow from layer 2, the Englishtown aquifer system, into layer 1. The next largest components are incoming lateral boundary flows and river leakage (in and out). The outgoing lateral boundary flow is small. This budget represents the end of stress period 10, which has a duration of 5 years (1983-88). The flows attributable to changes in aquifer storage are small because the simulated system is approaching a steady-state configuration. This near-equilibrium may be the result of the model's fixed withdrawals during stress periods, rather than a reflection of the state of the real system where withdrawals continuously vary with time and, for the purposes of this investigation, is not significant.

Parameter	Sensitivity variation	Range of value	Range of sensitivity
RECHARGE	+/- 35%	4 - 16 in/yr	1.4 - 5.6 in/yr
Symmetric and lower a aquifer out lington Cou downdip pa	al response of wate aquifer outcrops of crops in westernme inty. Less sensitive arts of the aquifer s	er levels to increase or decre n Pennsylvania side of Del ost Gloucester County, and e in outcrops in Camden Co system that are distant from	ease. Greatest sensitivity in middle aware River, in upper and middle in middle aquifer outcrop in Bur- bunty. Least sensitive in confined in the outcrops.
HYDRAULIC CONDUCTIVITY	+/- 20%	7 - 90 ft/d	1.4 - 18 ft/d
Response o	f water levels to c to increase. Great	hange is asymmetrical. Meterst sensitivity is in confin	ore sensitive (by several ft) to de- ed part of aquifer system, in area
within the c	one of depression.		
VERTICAL EAKANCE	one of depression. +/- 60%	10 ⁻⁶ - 10 ⁻¹² (ft/d)/ft	6.0x10 ⁻⁷ - 6.0x10 ⁻¹³ (ft/d)/ft
VERTICAL LEAKANCE Response of crease. Grea	one of depression. +/- 60% f water levels to ch atest sensitivity is j	10 ⁻⁶ - 10 ⁻¹² (ft/d)/ft nange is asymmetrical. Mor in confined part of the aqui	$6.0 \times 10^{-7} - 6.0 \times 10^{-13}$ (ft/d)/ft re sensitive to decrease than to in- fer system.
Response of crease. Great CIVERBED CIVERBED CIVERDED CIVERDED CONDUCTIVITY	one of depression. +/- 60% f water levels to ch atest sensitivity is i +/- 100%	$10^{-6} - 10^{-12}$ (ft/d)/ft hange is asymmetrical. More in confined part of the aqui .000283 - 28.34 ft/d	6.0x10 ⁻⁷ - 6.0x10 ⁻¹³ (ft/d)/ft re sensitive to decrease than to in- fer system. .000283 - 28.34 ft/d

Flow between aquifers takes place in response to the stresses applied to the system. The primary stresses are withdrawals from wells for water supply. Figures 46 to 48 show the locations of these withdrawals in the model for the upper, middle, and lower aquifers, respectively. Figures 49 to 51 show the direction and magnitude of the simulated flow between the respective simulated layers in response to the stress. Some trends are apparent. The middle aquifer acts as a conduit between the upper and lower aquifers outside Burlington County. In the vicinity of the City of Camden, the most intensive withdrawals are from the lower aquifer. In that same area, the outcrop of the upper aquifer is large. The model shows a strong downward flow to the lower aquifer caused by the withdrawals. In the central part of Camden and Gloucester Counties, the withdrawals are primarily from the upper aquifer. Simulated flow is generally upward from the middle aquifer into the upper aquifer. The cone of depression in the middle aquifer in Camden and Gloucester Counties, the middle aquifer is used more extensively. The largest simulated vertical flows are into the middle aquifer from the aquifers.

Figure 46. Locations of withdrawals in the flow model for 1983-88, for the upper aquifer of the Potomac-Raritan-Magothy aquifer system.

Figure 47. Locations of withdrawals in the flow model for 1983-88, for the middle aquifer of the Potomac-Raritan-Magothy aquifer system.

Figure 48. Locations of withdrawals in the flow model for 1983-88, for the lower aquifer of the Potomac-Raritan-Magothy aquifer system.

Figure 49. Simulated flow for 1983-88 between the Englishtown aquifer system or other overlying units and the upper aquifer of the Potomac-Raritan-Magothy aquifer system.

Figure 50. Simulated flow for 1983-88 between the upper and middle aquifers of the Potomac-Raritan-Magothy aquifer system.

Figure 51. Simulated flow for 1983-88 between the middle and lower aquifers of the Potomac-Raritan-Magothy aquifer system.

ł

Table 8.--Simulated flow budget for the Potomac-Raritan-Magothy aquifer system. 1983-88

1.01	LOW IO MODEL	
Storage Constant head Boundary flow Recharge Leakage from river	0.35314 Mgal/d 13:142 20.675 172.51 29.470	0.54636 ft ³ /s 20.333 31.989 266.91 45.596
Total Inflow	236.15	365.37 ·
OUTH	LOW FROM MODEL	
Storage Constant head Wells (withdrawal) Boundary flow Leakage to river	0.77513 91.099 127.09 .20102 16.852	1.1992 140.95 196.63 .31094 26.073
Total outflow	236.01	365.16
Inflow - Outflow	0.13730	0.21240
(perc	ent discrepancy = 0.06)	

[Mgal/d, million gallons per day; ft³/s, cubic feet per second]

The simulated hydrographs in figures 33 to 35 show that water levels stabilize within 3 to 5 years after the initiation of a stress period, with its associated changes in withdrawal. The question of the length of time required for the aquifer system's water levels to stabilize if withdrawals were maintained at a particular level is especially important with respect to the management of the aquifer system. Water managers are interested in understanding the conditions necessary to bring the aquifer system to a steady-state condition in order to maintain a sustainable long-term water supply. The measured water-level hydrograph does not show the same step-like water-level response to changes in withdrawals as does the simulated hydrograph. This results in part from the imposition of an increase in withdrawals at the beginning of the stress period that is held constant for the duration of the model stress period, rather than a realistic situation in which change is gradual and continuous. The model probably allows water levels to stabilize and reach apparent steady-state conditions earlier than would be expected in the real system. Therefore, the 3- to 5-year period required by the model to reach stability probably is the minimum time necessary to reach stability in an ideal situation in which all stresses are maintained at a constant rate. The actual time required to reach stability in the real world is likely to be longer, perhaps 10 to 15 years, but this estimate is speculative.

Given the 3- to 5-year stabilization period for simulated water levels after changes in stress, further analysis of the flow system could be accomplished by using the model in a steady-state mode without incurring serious error. Furthermore, due to the likelihood of a curtailment or restrictions on water use from the aquifer system in the future, a substantial future increase in withdrawals is unlikely. Thus, current (1987) withdrawal conditions can be used for further analysis as a likely future scenario.

River-Aquifer Interaction

River-aquifer interactive processes in the Camden area can be evaluated by using the Camden area ground-water flow model. The model can be used to determine the location and amount of flow between the river and the aquifer system, which otherwise would require a prohibitively expensive field program to collect data on differential head measurements or actual leakage flows.

Magnitude and distribution of river recharge

The amount of water from the river recharging the aquifer system was about 30 Mgal/d in 1983-88, as simulated by the model. This amount is smaller than that estimated by previous investigators. The models developed by Luzier (1980), Harbaugh and others (1980), and Martin (1990) have relatively coarse grid spacing and represent the Delaware River as a constant-head boundary with considerable overlap into the landward outcrop area of the aquifer system that also contributes recharge. At the coarse scale, the significance of the flow from the river relative to recharge from the outcrop area could not be resolved in any detail. The models may have overestimated the flow from the river while underestimating the recharge from the outcrop area. The simulation results obtained by using the model developed herein indicate that the recharge from the river is regionally less important than the recharge from the outcrop area are represented real-istically.

Although interest may focus on flow from the river to the aquifer system, flow in the opposite direction, from the aquifer system to the river, is significant and was simulated to be 17 Mgal/d within the study area. This flow is shallow and occurs along the outcrop area far from any intense withdrawals, where ground water flows through the aquifer system on a relatively short flow path that discharges into the river. Figure 52 shows the simulated areas of flow and relative magnitude of leakage from river to aquifer for the upper, middle, and lower aquifers. The areas in which water from the river is recharging the aquifer system (fig. 52) are in the immediate vicinity of the locations of the simulated water-supply withdrawals (figs. 46-48).

<u>River-influenced zones</u>

The orientation of the recharge sites, as seen on figure 52, indicates that only the withdrawals near the river induce water to flow from the river. The flow path from the river into the aquifer system can be determined by using particle-tracking techniques. Particle tracking is a process whereby hypothetical particles are simulated as if they are being carried along by the ground-water flow system. The results of a flow simulation, in terms of head distribution and associated data, can be used as a basis for this type of analysis. The particles are tracked explicitly through a flow field by computing the directional components of velocity at a particle's current position and moving it to a new position that is determined by multiplying those velocity components by a finite time step to obtain the incremental change in the particle's location over that interval of time. As this process is repeated, a series of locational and time coordinates are produced that trace the path of a particle through the flow field as a function of time, generating flow-path lines and time-of-travel information (Pollock, 1988).

Pollock (1989) presents a computer software package, referred to as "Modpath," that can perform particle-tracking analysis as a follow-on or post-processing role to the Modular computer program used in this study. The Modpath software, however, requires that the flow velocity field be specified in a steady-state condition. This requirement is compatible with the conclusion that further analysis with the model could be accomplished through steady-state analysis, as discussed previously.

Leakage to aquifer greater than 0.1 million gallons per day 0 1 2 3 4 5 WILES Leakage to aquifer, 0.001 to 0.1 million gallons per day 0 1 2 3 4 5 KILOWETERS

Figure 52. Simulated flow between the Delaware River and the upper, middle, and lower aquifers of the Potomac-Raritan-Magothy aquifer system, 1983-88

A steady-state simulation was performed by using stress-period 10 (1983-88) withdrawals. The results of the simulation were analyzed by using the Modpath particle-tracking package. Porosities of 25 percent, typical of sand, and 40 percent, typical of clay, were used in the simulation (Freeze and Cherry, 1979). Particles were distributed on the top face of model cells that provide recharge to the aquifer system (fig. 52), simulating the point at which water enters the aquifer system from the river, and were tracked on their path into the aquifer system. The areas in which the simulated flow paths extend through each of the three aquifers are shown in figure 53. Two zones are shown, the part of the aquifer in which travel time from the river to the aquifer system is less than 10 years, and the part in which travel time is between 10 and 20 years. These zones contain flow originating from other areas, such as the outcrop area, as well as flow from the river; nevertheless, they can be considered "river-influenced" zones.

The locations of the simulated withdrawals within the river-influenced zones are also shown in figure 53. The interaction between the river and aquifers does not occur in a broad area of infiltration along the entire reach of the river adjacent to the regional cone of depression, but rather the flow paths from the river are affected by and directed toward the locations of the local, river-proximal withdrawals. Although the scale of the interaction is decidedly local rather than regional in character, the Delaware River's significance as a major recharge feature is not diminished. Withdrawals within the 20-year river-influenced zone for average 1983-88 conditions are 33 Mgal/d, about one-third of the water-supply withdrawals in the Camden area.

Future Conditions

Future water-management practices, primarily the magnitude of withdrawals, will have a profound effect on the condition of the Potomac-Raritan-Magothy aquifer system in the Camden area. The Camden ground-water flow model was used to evaluate the effects of three ground-water withdrawal scenarios on the components of the flow system.

Withdrawal Scenarios

The management of the aquifer system in the future will likely follow or be similar to one of three scenarios. One scenario is that no water-management action will be taken and that unconstrained withdrawals from the aquifer system will be allowed to meet future demands. Another scenario is that withdrawals within the Camden area will be restricted to current (mid- to late-1980's) rates and that future demand will be satisfied by water from some alternative source. In the third scenario, withdrawals from the aquifer system within the Camden area would be reduced to 65 percent of the reported 1983 withdrawals. In this scenario, both the displaced current usage and future demand would be satisfied by water from some alternative source. This third scenario is consistent with that in the "Proposed Water Supply Critical Area #2" plan defined by NJDEP in 1986 (New Jersey Department of Environmental Protection, 1986). In this report, these scenarios are referred to as A, B, and C, as follows:

- A -- Unconstrained aquifer-system withdrawals to meet future needs,
- B -- Maintain aquifer-system withdrawals at present rates, and
- C -- Reduce aquifer-system withdrawals to 65 percent of 1983 rates.

The withdrawal input data for the Camden ground-water flow model used to evaluate each of the three scenarios were developed by modifying the historical withdrawal records. For Scenario A, the unconstrained withdrawals were assumed to satisfy the future water demand in the Camden area. Camp Dresser and McKee (1984a, p. 3-46) determined that demand for water supply by public purveyors and self-supplied users would be 13.0 Mgal/d by the year 2000 and 25.9 Mgal/d by the year 2020-- increases of 12 percent

Figure 53. Simulated river-influenced zones, 1983-88, in the upper, middle, lower aquifers of the Potomac-Raritan-Magothy aquifer system.

and 24 percent, respectively, over present demand. Camp Dresser and McKee (1984a) projected that the increase in demand by self-supplied users would be minimal. They projected the demand by public purveyors to increase 14 percent by the year 2000 and 27 percent by 2020. The 27-percent increase was used as the basis of an unconstrained-growth scenario for this investigation and was applied linearly over the planning period to the year 2020 for all aquifer-system wells in the study area. For simulation purposes, the linear increase in withdrawal was proportioned over six stress periods, numbered 11 to 16. The total withdrawal rates in Scenario A for each stress period are shown in figure 54, and the model input data are listed in table 9 (at end of report).

The withdrawals in Scenario B are restricted to current (1987) rates. The model input data used to evaluate the scenario were stress period 10 withdrawal rates, the average of the period 1983-88, when relatively little change in aquifer-system withdrawals occurred. The stress-period 10 withdrawal rates were replicated for stress-periods 11 - 16, extending to the year 2020. The total withdrawal rates in Scenario B for each stress period are shown in figure 54, and the model input data are listed in table 9.

The withdrawals in Scenario C, restricted to 65 percent of reported 1983 withdrawals, were developed by reducing withdrawal rates from stress period 9 by 35 percent. This amount was attributed to stress-period 11 in the model, beginning in 1990, and was replicated for stress-periods 12 - 16, extending to the year 2020. The total withdrawal rates in Scenario C for each stress period are shown in figure 54, and model input data are listed in table 9.

General Regional Flow Conditions

The Camden ground-water-flow model was used to simulate each of the three withdrawal scenarios by using the withdrawal data described above. The results of the simulations are predicted aquifer heads. The flow budget for each scenario was determined and the hydrologic conditions resulting from each scenario were evaluated.

Potentiometric-surface maps of the simulated heads in each unit of the aquifer system in the year 2020 resulting from Scenario A withdrawals are shown in figures 55 - 57. The potentiometric surfaces of the aquifers decline through the simulated period to 2020, when the regional cone of depression extends to a maximum depth of 140 ft below sea level, about 40 ft deeper than in 1988 conditions.

Potentiometric-surface maps of the simulated heads in each unit of the aquifer system in the year 2020 resulting from Scenario B withdrawals are shown in figures 58 - 60. The potentiometric surfaces of the aquifers essentially stabilize at current levels through the period to 2020, because withdrawals have remained constant. The simulation results show that heads stabilize within several years. As discussed earlier, the time required for water levels to stabilize in the real system may be longer.

Potentiometric-surface maps of the simulated heads in each unit of the aquifer system in the year 2020 resulting from Scenario C withdrawals are shown in figures 61 - 63. The potentiometric surfaces of the aquifers recover in stress-period 11 and remain stable through the period to the year 2020. The regional cone of depression extends to a maximum depth of only about 60 ft below sea level, about 40 ft shallower than in 1988 and similar to conditions measured in the mid-1960's. Simulated hydrographs for the wells 15-297 (Shell Obs 6, upper aquifer), 05-261 (Medford 5, middle aquifer), and 07-412 (Elm Tree 2, lower aquifer) are shown in figures 64, 65, and 66, respectively. These hydrographs typify the response of water levels in each aquifer to the scenarios.

Figure 54. Simulated withdrawals for Scenarios A, B, and C.

Figure 55. Simulated potentiometric surface for Scenario A (unconstrained withdrawals) in the year 2020, in the upper aquifer of the Potomac-Raritan-Magothy aquifer system.

.

Figure 56. Simulated potentiometric surface for Scenario A (unconstrained withdrawals) in the year 2020, in the middle aquifer of the Potomac-Raritan-Magothy aquifer system.

Figure 58. Simulated potentiometric surface for Scenario B (withdrawal maintained at current levels) in the year 2020, in the upper aquifer of the Potomac-Raritan-Magothy aquifer system.

Figure 59. Simulated potentiometric surface for Scenario B (withdrawal maintained at current levels) in the year 2020, in the middle aquifer of the Potomac-Raritan-Magothy aquifer system.

Figure 60. Simulated potentiometric surface for Scenario B (withdrawal maintained at current levels) in the year 2020, in the lower aquifer of the Potomac-Raritan-Magothy aquifer system.

Figure 61. Simulated potentiometric surface for Scenario C (35 percent withdrawal reduction) in the year 2020, in the upper aquifer of the Potomac-Raritan-Magothy aquifer system.

.

Figure 62. Simulated potentiometric surface for Scenario C (35 percent withdrawal reduction) in the year 2020, in the middle aquifer of the Potomac-Raritan-Magothy aquifer system.

Figure 63. Simulated potentiometric surface for Scenario C (35 percent withdrawal reduction) in the year 2020, in the lower aquifer of the Potomac-Raritan-Magothy aquifer system.

Figure 64. Simulated hydrographs showing water levels for Scenarios A, B, and C in observation well 15-297 (Shell Obs 6) in the upper aquifer of the Potomac-Raritan-Magothy aquifer system

Figure 65. Simulated hydrographs showing water levels for Scenarios A, B, and C in observation well 05-261 (Medford 5) in the middle aquifer of the Potomac-Raritan-Magothy aquifer system.

Figure 66. Simulated hydrographs showing water levels for Scenarios A, B, and C in observation well 07-412 (Elm Tree 2) in the lower aquifer of the Potomac-Raritan-Magothy aquifer system.

The comparison of simulated potentiometric surfaces or hydrographs is not sufficient to completely evaluate the effects of the withdrawal scenarios on the potential threats to water supply in the Camden area. These threats, discussed earlier, are primarily related to water-quality problems associated with downdip saline water in the southeastern part of the study area, human-related contamination of recharge from the outcrop area, and saltwater intrusion from the Delaware River. An evaluation of the magnitude and direction of flow from the areas associated with these particular deleterious conditions can be used to assess the relative importance of these threats, whereas a focus solely on potentiometric-surface changes can not.

The part of each aquifer that lies within the study area can be divided into several subareas, or zones. The purpose of these zones is to provide a basis for determining and comparing the net flows within the aquifer system and for tabulating a budget. This approach facilitates the comparison of aquifer-system responses to withdrawal scenarios. Three zones are defined within each of the three modeled aquifer-system layers: a zone encompassing the area of withdrawals; a zone in the southeastern part of the study area, where saltwater is likely to be present in the downdip part of the aquifer system; and a zone in the northeastern part of the study area, where freshwater is present in the deep parts of the aquifer system. The locations of these zones are shown in figures 67 - 69 for the upper, middle, and lower aquifers, respectively.

By using the flow-simulation results and a zone budget post-processor software package (Harbaugh, 1990), flow components contributing water to, or withdrawing water from, the zones were determined. The budgets were determined for the endpoint conditions of each scenario, simulated as a steady-state condition. This would be applicable to real conditions that had been in effect for at least 5 years. The flow components whose values are determined for each aquifer are the net flow

Figure 68. Water-budget zones for the middle aquifer of the Potomac-Raritan-Magothy aquifer system.

from the downdip area to the southeast (indicative of a deep saltwater source), the net flow from the downdip area to the northeast (indicative of a deep freshwater source), the net flow from the aquifers above and below, the net flow from the Delaware River and its tributaries, the flow from recharge on the outcrop of each aquifer, the net lateral flow to the aquifer from outside the modeled study area, and the amount of withdrawals from wells. Flow in and out of the pumped zone of each aquifer is shown schematically in figures 70 - 72 for Scenarios A, B, and C, respectively.

The flow-budget schematic diagrams for each scenario are similar because the distribution of withdrawals for each scenario is identical. Because the magnitude of withdrawals is different for each scenario, however, some distinctions exist. Ground water in the aquifer system, as discussed earlier, generally flows downward from the overlying Englishtown aquifer system toward the lower aquifer and "inward" toward the withdrawal zone of each aquifer from external sources, such as river leakage and recharge from the outcrop. This general pattern of flow is easily discernible from the budget schematic diagrams. The main exception to this general pattern is in the middle aquifer, where net flow is toward the downdip zones, away from the area of withdrawals. This flow pattern results from the fact that the areas encompassing withdrawals in the upper and lower aquifers are more extensive than that in the middle aquifer. Ground water in the middle aquifer flows from the withdrawal zone to the downdip areas and subsequently moves vertically into the adjacent aquifers. Flow between the river and the aquifer system changes its aspect to a net outflow from aquifer to river in the middle aquifer in Scenario B and in the upper and middle aquifers in Scenario C.

The flow-budget schematic diagrams show that the most significant source of water for withdrawals in the Camden area is the vertical flow between aquifers. Simulated vertical flows range from 58.3 to 80.3 Mgal/d for Scenario A, 47.6 to 65.9 Mgal/d for Scenario B, and 30.3 to 50.1 Mgal/d for Scenario C. The next most significant source of water is recharge entering the system through the outcrops of the upper and middle aquifers. The outcrop area of the lower aquifer is too small to allow significant amounts of recharge. Flow from the Delaware River is third in magnitude; net flow from the river to the aquifers is 29.6 Mgal/d for Scenario A and 11.2 Mgal/d for Scenario B. Because withdrawal rates in Scenario C are reduced, net flow is 12.7 Mgal/d in the opposite direction, from the aquifers to the river.

A comparison, shown in table 10, of the inflow components only (rather than net flows) among the three scenarios shows that the flow from the river and from external freshwater sources are most sensitive to the changes in withdrawals. External freshwater sources of flow are the downdip, northeastern zone; the lateral zone; and the Englishtown aquifer system. While withdrawals increase from 125.7 Mgal/d in Scenario B to 159.7 Mgal/d in Scenario A (a 27-percent increase) flow from the river increases 51 percent, and flow from the external freshwater sources increases 45 percent, providing additional water to satisfy the increased withdrawals. Inflow from the downdip, southeastern aquifer zones, which are likely to contain saline water, increase only 24 percent from Scenario B to Scenario A, indicating that the flow from the downdip, southeastern zones is less sensitive to changes in withdrawals than is the flow from the river. The difference between the magnitude of the flow from the river and the magnitude of flow from the downdip, southeastern zones indicates that the flow from downdip probably is not regionally significant.

Effects of Delaware River Ship-Channel Deepening

The ship channel of the Delaware River has been dredged to a depth of about 42 ft and extends to a point near the upstream end of the study area, where the channel has been dredged to a depth of about 35 ft. A proposal has been made to deepen the channel to a depth of 45, 50, or 55 ft. Because the aquifer-system outcrop coincides with the river, the proposed dredging could affect the aquifer system in two ways. First, the hydraulic connection between the river and the aquifer system could be enlarged or enhanced. Second, the enhanced connection could allow the transport of contaminants from the river into the aquifer system and toward water-supply wells.

Figure 70. Schematic diagrams showing general flow budgets for the upper, middle, and lower aquifers of the Potomac-Raritan-Magothy aquifer system for Scenario A (unconstrained withdrawals).

Figure 71. Schematic diagrams showing general flow budgets for the upper, middle, and lower aquifers of the Potomac-Raritan-Magothy aquifer system for Scenario B (withdrawals maintained at current levels).

Figure 72. Schematic diagrams showing general flow budgets for the upper, middle, and lower aquifers of the Potomac-Raritan-Magothy aquifer system for Scenario C (35 percent withdrawal reduction).

Table 10.--Comparison of simulated Potomac-Raritan-Magothy aquifer system flow components among scenarios

Flow-syste	m]	Flow, in Mgal/d, by scenari	0
componen (as inflow)		A (unconstrained withdrawals)	B (maintain current withdrawals)	C (35% reduction in withdrawals)
Withdraw	als	159.7 (+27%)	125.7	81.5 (-35%)
Locally	Recharge from precipitation	m 50.6	50.6	50.6
available recharge	Inflow from river	43.5 (+51%)	28.8	11.6 (-60%)
As percent	Total age of withdrawal	94.2 s 59%	79.4 63%	62.2 76%
Inflow fro southeast (potentiall As percent	m downdip ern zones y saline water age of withdrawals	10.3 (+24%)) s 6%	8.3 7%	7.3 (-12%) 9%
Inflow from northeaster zones, and	m downdip rn, lateral Englishtown	55.2 (+45%)	38.0	12.0 (-68%)
As percenta	age of withdrawals	35%	30%	15%

[Mgal/d, million gallons per day;%, percent; percentage in parentheses indicates the difference from Scenario B]

The results of the analysis performed in this investigation, namely the delineation of the riverbottom materials, the determination of their hydraulic connection to the aquifer system, and the delineation of the flow paths associated with flow from the river, can be used to address these concerns and aid in understanding the potential effects, deleterious or otherwise, of the proposed dredging. The hydrostratigraphic sections shown on plates 1 and 2 indicate that, within the limitations of resolution, the hydraulic connection between the river and aquifer system would not be affected by the removal of 5 to 10 ft of channel-bottom material from the bed of the Delaware River; that is, no confining unit would be breached. The dredging would increase the effective conductance controlling flow from the river to the aquifer system, but probably only imperceptibly.

Channel deepening could affect the position of the freshwater-saltwater interface in the Delaware River. Because channel deepening would increase the volume of the river, the interface could move upstream if the freshwater flow remains the same. Normally, as discussed earlier in this report, the interface is well downstream from the river reach, where flow from the river to the aquifer system is substantial near the intense river-proximal water-supply withdrawals. Under future drought or sea-level-rise conditions, however, channel deepening could cause saltwater to encroach upstream, possibly resulting in saltwater recharge moving toward the river-proximal water-supply wells. Assessment of the potential significance of this effect is beyond the scope of this investigation. A detailed evaluation of the dynamics of saltwater movement in the Delaware River and Estuary would be necessary to answer this question fully.

The river-influenced zones (fig. 53) of the aquifer system in the Camden area, identified earlier in this report, are those parts of the aquifer system that are in good hydraulic contact with and are receiving recharge water from the Delaware River. As long as the current withdrawal conditions prevail or remain nearly constant, wells within these zones are most likely to be affected by channel deepening.

SUMMARY AND CONCLUSIONS

The Potomac-Raritan-Magothy aquifer system is the principal source of water supply in the Coastal Plain of New Jersey. The aquifers and intervening confining units consist of a wedge of gravels, sands, silts, and clays that pinches out along the Fall Line, thickening and dipping to the southeast. The aquifer system in the Camden area is oriented so that its outcrop, in places, is directly connected to the Delaware River. In the Camden area, the aquifer system can be differentiated into three aquifer units, referred to as the upper, middle, and lower aquifers, which are separated from each other by intervening confining units. The aquifer system is overlain by the geologically younger Merchantville-Woodbury confining unit and is underlain by a mica schist.

Withdrawals from the aquifer system in the Camden area totaled about 125 Mgal/d in 1987. The use of the aquifer system for water supply in the area has increased since pumpage began about 1900. The withdrawal of water for public supply has significantly affected the flow regime of the aquifer system. Prior to the development of water supplies, ground water discharged to the Delaware River from the aquifer system. The aquifer system received recharge from the relatively higher altitude parts of the aquifer system's outcrop in Middlesex and Mercer Counties and from vertical flow from overlying units. The potentiometric surfaces of the upper, middle, and lower aquifers have declined markedly as a result of the withdrawals. The maximum depths of the regional cones of depression are about 100 ft below sea level. Now, instead of discharging, the river provides induced recharge to the aquifer system in many places.

The large magnitude of the withdrawals has threatened the continued availability of an adequate supply of potable water by (1) causing the formation of deep cones of depression and continued water-level decline, (2) causing the movement of saline water from the downdip parts of the aquifer system toward water-supply wells, (3) inducing recharge of saltwater from the Delaware River, and (4) inducing infiltration of contaminants resulting from human activities on the aquifer system's outcrop.

A ground-water-flow model was developed to evaluate the ground-water flow system, its sensitivity to the four consequences of withdrawals listed above, and the effects of future withdrawals. The model uses a finite-difference approach to simulate the aquifers, the water-supply withdrawals in the Camden area, the connection between the aquifer system and the Delaware River, flow from overlying aquifers, and the appropriate boundary conditions. The initial model input data were derived from the New Jersey Coastal Plain Regional Aquifer System Analysis (RASA) model. Because of the large differences in grid size between the RASA and Camden area models, recalibration of the Camden area model was necessary. The model was calibrated to reproduce historical water-level data, which were available as long-term hydrographs from observation wells and as potentiometric-surface maps. The primary criterion was to simulate aquifer-system water levels to within 15 ft of measured values. Results of ground-water flow simulations indicate that the most significant sources of water to the aquifer system are recharge from precipitation on the outcrop and flow from overlying aquifer units. Induced flow from the Delaware River and its tributaries is estimated by simulation to be currently about 29 Mgal/d. Lateral flow from downdip and from parts of the aquifer system outside of the study area is toward the main pumping area, at about 12 Mgal/d. Of this amount, about 8 Mgal/d in inflow only (not net flow) is from the downdip, southeast direction.

Simulation results further indicate that the induced recharge of river water into the aquifer system is, perhaps contrary to some past beliefs, a local process. The recharge is directed primarily toward riverproximal wells or well fields rather than being distributed along the length of the river as a broad-scale process. Nevertheless, the volume of water introduced into the aquifer system in this way is significant. Results of particle-tracking analysis of the simulation show that about one-third of the water-supply withdrawals from the aquifer system in the Camden area are within the area influenced by induced recharge from the river and its tributaries. Up to 90 percent of the water pumped from the wells within this zone is derived from the river. The cones of depression in regional potentiometric surfaces, caused by ground-water withdrawals far from the river, draw flow predominantly from the aquifer system's outcrop on land, from intervening and overlying confining units, and from other parts of the aquifer system, but not from the river. Leakage from the aquifer system to the river, which occurred to a greater degree under unstressed conditions, still occurs in many places. This flow is primarily from the shallowest parts of the aquifer system near the river, away from high-intensity withdrawals.

In order to determine the effects of future water-supply withdrawals on ground-water flow in the aquifer system in the Camden area, three withdrawal scenarios were developed and evaluated with the ground-water flow model:

- SCENARIO A.--Withdrawals continued in an unconstrained manner. Withdrawals have increased linearly to 27 percent above the rates of the 1980's by the end of the simulation period (2020);
- SCENARIO B.--Withdrawals maintained at mid-1980's rates through the simulation period. Future demand is assumed to be satisfied by an unrelated source; and
- SCENARIO C.--Withdrawals reduced to 65 percent of 1983 rates at the beginning of the simulation period and are fixed at that rate. The amount reduced as well as the future demand are assumed to be satisfied by an unrelated source.

The distribution of withdrawals in each of the scenarios is the same. The time base of the scenarios is 30 years (1990-2020). The regional cones of depression in Scenario A extend to a maximum depth of about 140 ft below sea level in 2020, a decline of about 40 ft from present levels. Because the simulated increase in withdrawals is distributed linearly through time, the rate of decline is constant. The regional cones of depression in Scenario B remain at about present levels because the withdrawals are fixed at current levels. The regional cones of depression in Scenario C extend to a maximum depth of about 60 ft below sea level in 2020, a recovery of approximately 40 ft from present levels. Simulation results indicate that most of the recovery would take place over the initial 5-year period. With withdrawals fixed, water levels would remain virtually constant thereafter until 2020.

For each scenario, the amount of flow attributable to recharge from precipitation on the aquifer system's outcrop is the same, about 50.6 Mgal/d for the aquifer system within the modeled area. Climate and the recharge process are assumed to remain invariant under the scenarios; however, the amount of flow that can be induced from the Delaware River and its tributaries into the aquifer system does vary. Inflow from the river is about 43.5 Mgal/d for Scenario A, 28.8 Mgal/d for Scenario B, and 11.6 Mgal/d For Scenario C. Adding the fixed amount of recharge from precipitation to the induced flow from the river yields

values that can be considered to be the amount of locally available recharge to the aquifer system in the Camden area, about 94.2 Mgal/d for Scenario A, 79.4 Mgal/d for Scenario B, and 62.2 Mgal/d for Scenario C. Withdrawals from the aquifer system are substantially larger than recharge for all three scenarios. This available recharge represents 59, 63, and 76 percent of the amount withdrawn from the aquifer system for water supply for Scenarios A, B, and C, respectively.

Because the withdrawals in each scenario exceed the locally available recharge, ground water flows into the aquifer system vertically from overlying units, such as the Merchantville-Woodbury confining unit and Englishtown aquifer system, and laterally from parts of the aquifer system beyond the immediate area of pumping. Flow from these sources then satisfies the withdrawals, but the cones of depression develop, providing the gradient that causes ground water to flow from more distant sources. Inflow from the downdip, southeastern direction, which may contain saline water, is 10.3 Mgal/d in Scenario A, 8.3 Mgal/d in Scenario B, and 7.3 Mgal/d in Scenario C. These values represent 6, 7, and 9 percent of the amount withdrawn from the aquifer system for water supply in Scenarios A, B, and C, respectively.

The following conclusions pertaining to the future water-supply potential of the aquifer system can be drawn from these findings:

- (1) The Potomac-Raritan-Magothy aquifer system of New Jersey's Coastal Plain provides a copious supply of water. The use of this resource has caused a drawdown in the aquifer system's potentiometric surface to nearly 120 ft below sea level in some places, as much as 130 ft below pre-withdrawal levels. Consequently, the ground-water-flow regime in the area has changed, and the withdrawals now induce water to flow from the Delaware River into the aquifer system.
- (2) The major sources of water to the aquifer system in the Camden area under current conditions, in order of importance, are recharge from the local aquifer-system outcrop, vertical flow from adjacent confining units and aquifers, induced flow from the Delaware River and its tributaries, and lateral flow from parts of the aquifer system outside the Camden area. The relative magnitude of flow from each of these significant sources provides a useful indicator for evaluating effects of various withdrawal scenarios.
- (3) The potability of ground-water supplies from the aquifer system in the Camden area is subject to three potential problems: recharge of water containing contaminants from the outcrop area of the aquifer system, saltwater intrusion from the Delaware River during drought or sea-level-rise conditions, and saltwater originating in downdip areas southeast of the Camden area.
- (4) A continued increase in withdrawals from the aquifer system to meet future demand would most likely result in a continued decline of ground-water levels in the aquifer system. Locally available recharge to the aquifer system would account for about 59 percent of the water withdrawn. Inflow derived from downdip areas southeast of the Camden area may be saline and would account for about 6 percent of the water withdrawn.
- (5) Maintenance of current withdrawals rates would most likely result in a stabilization of water levels at approximately present levels. Stabilization could occur within 5 years. Locally available recharge to the aquifer system would account for about 63 percent of the water withdrawn. Inflow derived from downdip areas southeast of the Camden area may be saline and would account for about 7 percent of the water withdrawn.
- (6) A reduction in withdrawal rates to 65 percent of 1983 rates would most likely result in a recovery of water levels. The regional cones of depression would extend to a maximum depth of about 60 ft below sea level; this situation is comparable to mid-1960's conditions. Locally available

recharge to the aquifer system will account for about 76 percent of the water withdrawn. Inflow derived from downdip areas southeast of the Camden area may be saline and would account for about 9 percent of the water withdrawn.

- (7) The aquifer system receives substantial flow from its local outcrop in all of the scenarios. Recharge from this source may contain contaminants. Therefore, minimizing the introduction of these substances into the soils in the outcrop area would reduce any deleterious effects of this water on the water supply. Furthermore, recharge augmentation in the local aquifer-system outcrop area (for example, through use facilities such as stormwater retention and infiltration basins) would add to the available water supply.
- (8) Flow to the aquifer system from the Delaware River and its tributaries also is significant. During drought, saltwater could encroach upriver to areas where induced infiltration through the riverbed is taking place and affect a significant part of the Camden area's water supply. The Delaware River Basin Commission (DRBC) provides a certain degree of protection through its upper-basin reservoir system. The ability of the present reservoir system, maintained by the DRBC in the upper Delaware River basin, to mitigate future drought conditions, given the historical rate of sealevel rise in the area and the potential for an additional sea-level rise related to global warming, is unknown.
- (9) The saline water in the downdip parts of the aquifer system, southeast of the Camden area, will move in response to withdrawals; the local withdrawals, however, have the greatest effect. Because the proportion of flow from this source to all flow in the aquifer system is low, this factor may be unimportant on a regional scale. A redistribution of withdrawals from the aquifer system in the southeastern part of the Camden area to other parts of the area, or the use of water from other sources, may be the most effective way to safeguard water supplies from the deep saline water.
- (10)The major difference among the three withdrawal scenarios evaluated in this investigation is the relative proportion of locally available recharge-- namely, that recharge derived from precipitation on the aquifer-system outcrop within the Camden area and that infiltrating from the Delaware River and its tributaries-- to the amount of water withdrawn for water supply. That part of the water withdrawn not originating from local recharge is from overlying aquifers or from parts of the aquifer system distant from the Camden area. The simulation results show that dependence on this non-local water increases as withdrawal rates increase (about 60 percent and 75 percent of the water withdrawn in Scenarios C and A, respectively). Minimization of the dependence on water from non-local sources may constitute a viable water-management objective for the aquifer system.

REFERENCES CITED

- Ayers, M.A., and Leavesley, G.H., 1989, Assessment of the potential effects of climate change on water resources of the Delaware River Basin: Work plan for 1988-90: U.S. Geological Survey Open-File Report 88-478, 37 p.
- Back, William, 1966, Hydrochemical facies and ground-water flow patterns in the northern part of the Atlantic Coastal Plain: U.S. Geological Survey Professional Paper 498-A, 42 p.
- Barksdale, H.C., Greenman, D.W., Lang, S.M., Hilton, G.S., and Outlaw, D.E., 1958, Ground-water resources of the tri-state region adjacent to the lower Delaware River: New Jersey Department of Conservation and Economic Development, Special Report 13, 190 p.
- Barton, Cynthia, and Kozinski, Jane, 1991, Hydrogeology of the region of Greenwich Township, Gloucester County, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 90-4198, 77 p.
- Barton, G.J., and Krebs, Martha, 1990, Hydrogeologic reconnaissance of the Swope Oil Superfund site and vicinity, Camden and Burlington Counties, New Jersey: U.S. Geological Survey Open-File Report 89-402, 247 p.
- Brown, P. M., Miller, J. A., and Swain, F. M., 1972, Structural and stratigraphic framework and spatial distribution of permeability of the Atlantic Coastal Plain, North Carolina to New York: U.S. Geological Survey Professional Paper 796, 79 p.
- Camp Dresser and McKee, Inc., 1984a, Population and water demand projections: Camden Metro Study, Task 3 Report, submitted to New Jersey Department of Environmental Protection, Division of Water Supply and Watershed Management: Boston, Mass., Camp Dresser and McKee, Inc., 53 p.
- Camp Dresser and McKee, Inc., 1984b, Water supply source location and analysis: Camden Metro Study, Task 4 Report, submitted to New Jersey Department of Environmental Protection, Division of Water Supply and Watershed Management: Boston, Mass., Camp Dresser and McKee, Inc., 52 p.
- Camp Dresser and McKee, Inc., 1987, Environmental analysis: Camden Metro Study, Task 8 Report, submitted to New Jersey Department of Environmental Protection, Division of Water Supply and Watershed Management: Boston, Mass., Camp Dresser and McKee, Inc., 59 p.
- Cohen, Bernard, and McCarthy, L.T., Jr., 1962, Salinity of the Delaware Estuary: U.S. Geological Survey, Water-Supply Paper 1586-B, 47 p.
- Cushing, E.M., Kantrowitz, I.H., and Taylor, K.R., 1973, Water resources of the Delmarva Peninsula: U.S. Geological Survey Professional Paper 822, 58 p.
- Donn, W.L., Farrand, W.R., and Ewing, M., 1962, Pleistocene ice volumes and sea-level lowering: Journal of Ecology, v. 70, p. 206-214.
- Duran, P. B., 1986, Distribution of bottom sediments and effects of proposed dredging in the ship channel of the Delaware River between Northeast Philadelphia, Pennsylvania, and Wilmington, Delaware, 1984: U.S. Geological Survey Hydrologic Atlas 697, 1 sheet, scale 1:48,000.
- Duran, P.B., 1987, The use of marine electromagnetic conductivity as a tool in hydrogeological investigations: Ground Water, v. 25, no. 2, p. 160-166.
- Eckel, J.A., and Walker, R.L., 1986, Water levels in major artesian aquifers of the New Jersey Coastal Plain, 1983: U.S. Geological Survey Water-Resources Investigations Report 86-4028, 62 p.
- Ervin, E.M., Voronin, L.M., and Fusillo, T.V., 1994, Water quality of the Potomac-Raritan-Magothy aquifer system in the Coastal Plain, west-central New Jersey: U.S. Geological Survey Water-Resources Investigations Report 94-4113, 114 p.

REFERENCES CITED-Continued

- Farlekas, G.M., Nemickas, B., and Gill, H.E., 1976, Geology and ground-water resources of Camden County, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 76-76, 146 p.
- Freeze, R.A., and Cherry, J.A., 1979, Groundwater: Englewood Cliffs, New Jersey, Prentice-Hall, Inc., 604 p.
- Gill, H.E., and Farlekas, G.M., 1976, Geohydrologic maps of the Potomac-Raritan-Magothy aquifer system in the New Jersey Coastal Plain: U.S. Geological Survey Atlas HA-557, 2 sheets, scale 1:500,000.
- Greenman, D.W., Rima, D.R., Lockwood, W.N., and Meisler, Harold, 1961, Ground-water resources of the Coastal Plain area of southeastern Pennsylvania: Pennsylvania Geological Survey Bulletin, 4th series, W13, 375 p.
- Harbaugh, A.W., 1990, A computer program for calculating subregional water budgets using results from the U.S. Geological Survey modular three-dimensional finite-difference ground-water flow model: U.S. Geological Survey Open-File Report 90-392, 46 p.
- Harbaugh, A.W., Luzier, J.E., and Stellerine, Flavian, 1980, Computer-model analysis of the use of Delaware River water to supplement water from the Potomac-Raritan-Magothy aquifer system in southern New Jersey: U.S. Geological Survey Water-Resources Investigations 80-31, 41 p.
- Hardt, W. F., and Hilton, G. S., 1969, Water resources and geology of Gloucester County, New Jersey: New Jersey Department of Conservation and Economic Development Special Report 30, 130 p.
- Hays, J.P., and Pitman, W.C. III, 1973, Lithospheric plate motion, sea level changes, and climatic and ecological consequences: Nature, v. 246, p. 18-22.
- Hicks, S.D., Debaugh, H.A., and Hickman, L.E., 1983, Sea level variation for the United States, 1855-1980: Rockville, Md., National Ocean Service, 170 p.
- Hoffman, J.S., Keyes, D., and Titus, J.G., 1983, Projecting future sea level rise: Washington, D.C., Government Printing Office, 121 p.
- Hull, C.H.J., Thatcher, M.L., and Tortoriello, R.C., 1986, Salinity in the Delaware Estuary, in Hull, C.H.J., and Titus, J.G., eds., Greenhouse effect, sea level rise, and salinity in the Delaware Estuary: EPA 230/ 6-86-001, Washington, D.C., U.S. Environmental Protection Agency, p. 15-39.
- Knobel, L.L., 1985, Ground-water-quality data for the Atlantic Coastal Plain: New Jersey, Delaware, Maryland, Virginia, and North Carolina: U.S. Geological Survey Open-File Report 85-154, 84 p.
- Langmuir, Donald, 1969, Iron in ground waters of the Magothy and Raritan Formations in Camden and Burlington Counties, New Jersey: New Jersey Department of Conservation and Economic Development, Water Resources Circular No. 19, 49 p.
- Lennon, G.P., Wisniewski, G.M., and Yoshioka, G.A., 1986, Impact of increased river salinity on New Jersey aquifers, in Hull, C.H.J., and Titus, J.G., eds., Greenhouse effect, sea level rise, and salinity in the Delaware Estuary: EPA 230/6-86-001, Washington, D.C., U.S. Environmental Protection Agency, p. 40-54.
- Lewis, J. C., Hochreiter, J. J., Jr., Barton, G.J., Kozinski, Jane, and Spitz, F.J., 1991, Hydrogeology of, and ground-water quality in, the Potomac-Raritan-Magothy aquifer system in the Logan Township Region, Gloucester and Salem Counties, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 90-4142, 92 p.

١

REFERENCES CITED-Continued

- Luzier, J.E., 1980, Digital-simulation and projection of head changes in the Potomac-Raritan-Magothy aquifer system, Coastal Plain, New Jersey: U.S. Geological Survey Water-Resources Investigations 80-11, 72 p.
- Martin, M.M., 1990, Ground-water flow in the New Jersey Coastal Plain: U.S. Geological Survey Open-File Report 87-528, 182 p.
- McCabe, G.J., Jr., and Ayers, M.A., 1989, Hydrologic effects of climate change in the Delaware River basin: Water Resources Bulletin, v. 25, no. 6, p. 1231-1242.
- McDonald, M.G., and Harbaugh, A.W., 1988, A modular three-dimensional finite-difference ground-water flow model: U.S. Geological Survey Techniques of Water-Resources Investigations, chap. A1, book 6, 528 p.
- Maher, J. C., 1971, Geologic framework and petroleum potential of the Atlantic Coastal Plain and continental shelf: U.S. Geological Survey Professional Paper 659, 98 p.
- Meisler, Harold, 1980, Preliminary delineation of salty ground water in the northern Atlantic Coastal Plain: U.S. Geological Survey Open-File Report 81-71, 37 p.
- Meisler, Harold, Leahy, P.P., and Knobel, L.L., 1984, Effects of eustatic sea-level changes on saltwaterfreshwater relations in the northern Atlantic Coastal Plain: U.S. Geological Survey Water-Supply Paper 2255, 28 p.
- New Jersey Department of Environmental Protection, 1986, Procedures for implementation of Water Supply Critical Area No. 2, New Jersey Department of Environmental Protection, Division of Water Resources, Trenton, New Jersey, December, 1986, 9 p.
- Nichols, W.D., 1977a, Digital computer simulation model of the Englishtown aquifer in the northern Coastal Plain of New Jersey: U.S. Geological Survey Open-File Report 77-73, 101 p.
- Nichols, W.D., 1977b, Geohydrology of the Englishtown Formation in the northern Coastal Plain of New Jersey: U.S. Geological Survey Water-Resources Investigations 76-123, 62 p.
- Olsson, R. K., 1978, Summary of lithostratigraphy and biostratigraphy of the Atlantic Coastal Plain, Initial reports of the deep sea drilling project, v. 44: Washington, D.C., U.S. Government Printing Office, p. 941-947.
- Owens, J. P., and Minard, J. P., 1979, Upper Cenozoic sediments of the lower Delaware Valley and the northern Delmarva Peninsula, New Jersey, Pennsylvania, Delaware, and Maryland: U.S. Geological Survey Professional Paper 1067-D, 47 p.
- Owens, J. P., and Sohl, N. F., 1969, Shelf and deltaic paleoenvironments in the Cretaceous-Tertiary Formations of the New Jersey Coastal Plain, in Subitzky, Seymour, ed., Geology of selected areas in New Jersey and eastern Pennsylvania and guidebook of excursions: Geological Society of America and associated societies, Nov. 1969, Annual Meeting, Atlantic City, N.J., New Brunswick, N.J., Rutgers University Press, p. 235-278.
- Owens, J. P., and Sohl, N. F., 1977, A field guide to Cretaceous and lower Tertiary beds of the Raritan and Salisbury embayments, New Jersey, Delaware, and Maryland: American Association of Petroleum Geologists and Society of Economic Paleontologists and Mineralogists, June 1977, Annual Conference, Washington, D.C., 112 p.
- Pollock, D.W., 1989, Documentation of computer programs to compute and display pathlines using results from the U.S. Geological Survey modular three-dimensional finite-difference ground-water flow model: U.S. Geological Survey Open-File Report 89-381, 188 p.

REFERENCES CITED--Continued

- Pollock, D.W., 1988, Semianalytical computation of path lines for finite-difference models: Ground Water, v. 26, no.6, p. 743-750.
- Rhodehamel, E.C., 1970, A hydrologic analysis of the New Jersey Pine Barrens region: New Jersey Department of Environmental Protection, Water Resources Circular No. 22, 35 p.
- Rush, F. E., 1968, Geology and ground-water resources of Burlington County, New Jersey: New Jersey Department of Conservation and Economic Development, Division of Water Policy and Supply, Special Report 26, 65 p.
- Rosman, Robert, and Storck, D.A., 1995, Water levels in major artesian aquifers of the New Jersey Coastal Plain, 1988: U.S. Geological Survey Water-Resources Investigations Report (in press).
- Sloto, R.A., 1988, Simulation of ground-water flow in the lower sand unit of the Potomac-Raritan-Magothy aquifer system, Philadelphia, Pa.: U.S. Geological Survey Water-Resources Investigations Report 86-4055, 51 p.
- Smagorinsky, J., 1982, Carbon dioxide: A second assessment: Washington, D.C., NAS Press, 72 p.
- Thompson, D.G., 1932, Ground-water supplies of the Camden area, New Jersey: New Jersey Department of Conservation and Economic Development, Division of Water Policy and Supply, Bulletin 39, 80 p.
- Vowinkel, E.F., 1984, Ground-water withdrawals from the Coastal Plain of New Jersey, 1956-80: U.S. Geological Survey Open-File Report 84-226, 32 p.
- Walker, R.L., 1983, Evaluation of water levels in major aquifers of the New Jersey Coastal Plain, 1978: U.S. Geological Survey Water-Resources Investigations Report 82-4077, 56 p.
- Zapecza, O.S., Voronin, L.M., and Martin, M., 1987, Ground-water-withdrawal and water-level data used to simulate regional flow in the major Coastal Plain aquifers of New Jersey: U.S. Geological Survey Water-Resources Investigations Report 87-4038, 120 p.
- Zapecza, O. S., 1989, Hydrogeologic framework of the New Jersey Coastal Plain: U.S. Geological Survey Professional Paper 1404-B, 49 p.

Table 3. - Annual ground-water withdrawals from the Potomac-Raritan-Magothy aquifer system in the Camden area, New Jersey, 1981-87

[TWP, Township; BORO, borough; MUA, Municipal Utilities Authority; WC, Water Company; WD, Water Department; WCM, Water Commission; CC, Country Club; GC, Golf Course; Mgal/d, million gallons per day; --, no information]

	UPPER AOUIFER													
					l	Model			A	verage v	vithdraw	al, in M	gal/d	
Well Number	Permit Number	Owner	Local Identifier	Municipality	Layer	Row	Colum	n 1981	1982	1983	1984	1985	1986	1987
05-053 05-076 05-077 05-165 05-166	27-05342 31-01751 27-05716 31-05458	US PIPE HEAL, CHARLES JR BURLINGTON TWP WD EVESHAM MUA INDIAN SPRINGS G C	US PIPE 1 HEAL 1-1973 4 1	BURLINGTON CITY BURLINGTON TWP BURLINGTON TWP EVESHAM TWP EVESHAM TWP	3 3 3 3 3	34 38 45 73 74	104 98 102 72 74	0.000 .234 .008 .087 .008	0.000 .223 .023 .250 .009	0.000 .209 .067 .251 .007	0.000 .189 .088 .152 .009	0.000 .188 .088 .081 .009	0.000 .181 .086 .716 .011	0.000 .000 .104 .598 .006
05-167	31-07453	EVESHAM MUA	5	EVESHAM TWP	3	76	76	.209	.262	.462	.540	.315	.299	.381
05-229	31-08922	MAPLE SHADE WD	9	MAPLE SHADE TWP	3	48	72	.616	.619	.623	.000	.165	.244	.306
05-249	31-05282	MEDFORD TWP WD	3 / 1	MEDFORD TWP	3	79	77	.301	.420	.968	.930	.482	.556	.604
05-252	31-05301	MEDFORD WC	1(3) / 8	MEDFORD TWP	3	77	83	.000	.000	.000	.000	.494	.542	.485
05-253	31-06056	MEDFORD LEASING	1-1972	MEDFORD TWP	3	77	84	.053	.055	.057	.059	.058	.077	.067
05-275		FIRST PRESB CHURCH	1964	MOORESTOWN TWP	3	44	79	.000	.000	.002	.000	.000	.007	.000
05-285		MOUNT HOLLY WC	4	MOUNT HOLLY TWP	3	68	98	.000	.000	.000	.006	.073	.159	.344
05-289		MOUNT HOLLY WC	3	MOUNT HOLLY TWP	3	68	99	.629	.305	.339	.267	.715	.760	.417
05-310		NJ TURNPIKE AUTHORIT	YMAINT 2	MOUNT LAUREL TWP	3	56	80	.002	.002	.002	.044	.037	.023	.034
05-383		SYBRON CHEMICAL	IONAC 2	PEMBERTON TWP	3	77	104	.324	.324	.324	.000	.000	.000	.000
05-707	31-14627	EVESHAM MUA	7	EVESHAM TWP	3	70	72	.638	.467	.511	.538	.594	.164	.443
05-728		MOBILE ESTATES	FIELD	SOUTHAMPTON TWP	3	76	102	.063	.063	.051	.030	.080	.000	.000
05-755	31-06840	KING'S GRANT WC	1	EVESHAM TWP	3	78	69	.053	.064	.111	.160	.216	.283	.326
05-757	31-07453	EVESHAM MUA	6	EVESHAM TWP	3	74	77	.361	.636	.626	.305	.402	.541	.529
05-766	31-15450	LENAPE REGIONAL H S	CHEROKEE 1	EVESHAM TWP	3	74	72	.005	.003	.003	.003	.003	.000	.000
05-795	31-09595	MT LAUREL MUA	5	EVESHAM TWP	3	75	74	.544	.447	.575	.650	.552	.471	.572
05-824	31-20373	EVESHAM MUA	8	EVESHAM TWP	3	72	73	.000	.000	.000	.075	.569	.726	.507
07-003	31-02492	OWENS CORNING	CORNING 1	BARRINGTON BORO	3	57	52	.333	.223	.204	.550	.234	.215	.122
07-004	31-05360	WEYERHAEUSER CO	1	BARRINGTON BORO	3	56	52	.000	.000	.042	.005	.004	.005	.004
07-015	31-06208	BERLIN WD	11	BERLIN BORO	3	81	53	.000	.486	.587	.492	.125	.268	.444
07-018	31-02079	BERLIN WD	9	BERLIN BORO	3	80	55	.000	.000	.164	.366	.651	.540	.390
07-019	31-05173	BERLIN WD	10	BERLIN BORO	3	80	55	1.198	.747	.406	.089	.181	.241	.171
07-120	31-02946	HUSSMAN REFRIDG	HUSSMAN	CHERRY HILL TWP	3	60	59	.066	.037	.039	.042	.028	.032	.024
07-133	31-05217	NJ/AMERICAN WC	OLD ORCH 36	CHERRY HILL TWP	3	64	69	.000	.000	.000	.547	1.127	.769	.722
07-148	31-04742	NJ/AMERICAN WC	KINGSTON 28	CHERRY HILL TWP	3	54	67	.000	.000	.000	.015	.000	.000	.000
07-151 07-158 07-160 07-245 07-248	51-00094 51-00005 31-04650	GARDEN STATE RACE GARDEN STATE RACE RADIO CORP OF AMERIC CAMDEN COUNTY GLOU TWP BD OF ED	RACE TRACK CHRY HLL INN 1 ARCA 1 LAKELAND 1 LEWIS SCH	CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP GLOUCESTER TWP GLOUCESTER TWP	3 3 3 3 3	43 40 41 68 71	62 65 65 38 42	.000 .000 .001 .255 .000	.000 .000 .001 .137 .001	.000 .000 .002 .147 .003	.000 .000 .002 .123 .002	.066 .000 .001 .106 .000	.031 .000 .002 .102 .005	.049 .000 .002 .102 .000
07-249	31-02703	GARDEN STATE WC	BLKWD DIV 3	GLOUCESTER TWP	3	68	40	.251	.232	.614	.558	.628	.503	.434
07-250	31-08176	GARDEN STATE WC	BLKWD DIV 7	GLOUCESTER TWP	3	70	39	.697	.947	.553	.636	.630	.699	.983
07-252	31-05581	GARDEN STATE WC	BLKWD DIV 6	GLOUCESTER TWP	3	71	44	1.084	.976	1.042	.860	.691	.945	.770
07-256	31-05580	GLOUCESTER MUA	TREAT PLANT	GLOUCESTER TWP	3	64	39	.096	.066	.120	.030	.016	.006	.001
07-272	31-05041	NJ/AMERICAN WC	OTTERBROOK 34	GLOUCESTER TWP	3	60	47	.000	.000	.000	1.017	I.458	1.329	1.310

.

Table 3. -- <u>Annual ground-water withdrawals from the Potomac-Raritan-Magothy aquifer system in the Camden area, New Jersey, 1981-87</u> -- continued.

	UPPER AQUIFER (continued) Model Average withdrawal, in MonUd													
Wall	Dormit		Leas]	Model			A	verage v	vithdraw	<u>al. in M</u>	gal/d	
Number	Number	Owner	Identifier	Municipality	Layer	Row	Colum	n 1981	1982	1983	1984	1985	1986	1987
07-274	31-05226	NJ/AMERICAN WC	OTTERBROOK 39	GLOUCESTER TWP	3	59	47	0.000	0.000	0.000	1.308	0.980	1.405	1.103
07-275	31-03375	NJ/AMERICAN WC	HADDON 20	BARRINGTON BORO	3	53	53	.000	.000	.000	.000	.094	.558	1.158
07-279	31-04798	NJ/AMERICAN WC	HADDON 30	HADDON HEIGHTS BORC	3	52	53	.538	.892	.982	.331	.420	.750	.026
07-280	51-00009	NJ/AMERICAN WC	HADDON 12	HADDON HEIGHTS BORC	3	52	53	.000	.000	.000	.151	.160	.040	.001
07-282	51-00008	NJ/AMERICAN WC	HADDON 11	HADDON HEIGHTS BORC	3	52	53	.000	.000	.000	.008	.011	.000	.000
07-285	31-03308	NJ/AMERICAN WC	EGGBERT 18	HADDON HEIGHTS BORO	3	47	51	.101	.054	.274	.206	.047	.077	.043
07-293	31-04986	HADDON TWP BD OF ED	HS 1	HADDON TWP	3	43	56	.001	.001	.001	.000	.000	.000	.019
07-299	21-02570	HADDONFIELD WD	LAYNE 2/ 1	HADDONFIELD BORO	3	53	58	.408	.337	.279	.072	.000	.384	.542
07-310	31-01363	NJ/AMERICAN WC	LAUREL 13	LAUREL SPRINGS BORO	3	70	51	.000	.000	.000	.007	.094	.095	.027
07-316	31-05100	NJ/AMERICAN WC	MAGNOLIA 33	MAGNOLIA BORO	3	59	52	.000	.000	.000	.994	.955	.533	.456
07-392	31-04521	PINE HILL MUA	l	PINE HILL BORO	3	78	47	.286	.330	.385	.136	.000	.114	.066
07-398	31-06646	PINE HILL MUA	2-1972	PINE HILL BORO	3	77	49	.396	.348	.421	.675	.810	.718	.728
07-404	31-03307	NJ/AMERICAN WC	RUNNEMEDE 19	RUNNEMEDE BORO	3	57	47	.000	.000	.000	.000	.142	.301	.466
07-407	31-05193	TRAP ROCK INDUSTRIES	3	RUNNEMEDE BORO	3	52	47	.000	.000	.000	.011	.005	.000	.000
07-410	31-02360	NJ/AMERICAN WC	SOMERDALE 14	SOMERDALE BORO	3	66	53	.007	.047	.098	.025	.033	.064	.055
07-411	31-05248	TAVISTOCK CLUB	CC 1	TAVISTOCK BORO	3	58	57	.000	.000	.000	.001	.007	.009	.003
07-422	31-03306	NJ/AMERICAN WC	ASHLAND 17	VOORHEES TWP	3	66	57	.000	.000	.000	1.003	.408	.298	.364
07-426	31-03872	NJ/AMERICAN WC	VOORHEES 21	VOORHEES TWP	3	67	59	.011	.049	.146	.134	1.013	1.591	1.226
07-521	31-12301	CLEMENTON WD	10	CLEMENTON BORO	3	76	49	.681	.697	.449	.521	.087	.463	.395
15-001	31-02889	CLAYTON WD	3	CLAYTON BORO	3	83	16	.517	.529	.533	.521	.573	.636	.554
15-003 15-006 15-008 15-009 15-011	31-06676 31-05174 31-05514 31-02118	CLAYTON WD WOODBURY WD WOODBURY WD DEPTFORD TWP MUA DEPTFORD TWP MUA	4-1973 SEWELL IA SEWELL 2A 5 2	CLAYTON BORO DEPTFORD TWP DEPTFORD TWP DEPTFORD TWP DEPTFORD TWP	3 3 3 3 3 3	81 63 63 65 54	17 27 28 37 30	.000 .614 .000 .662 .223	.000 .232 .000 .776 .233	.000 .334 .000 .612 .240	.049 .895 .000 .476 .247	.007 1.023 .000 .469 .235	.003 .950 .000 .494 .209	.036 .658 .000 .491 .320
15-016	31-02416	DEPTFORD TWP MUA	1	DEPTFORD TWP	3	52	31	.212	.238	.260	.256	.204	.274	.113
15-028	30-00432	E GREENWICH WD	2	EAST GREENWICH TWP	3	40	20	.327	.349	.385	.203	.200	.277	.423
15-059	31-04112	OWENS ILLINOIS	OWENS 1	GLASSBORO BORO	3	77	18	.244	.214	.268	.317	.286	.227	.140
15-060	31-02358	GLASSBORO WD	3	GLASSBORO BORO	3	75	18	.592	.478	.766	.582	1.428	1.550	1.552
15-062	51-00042	GLASSBORO WD	2	GLASSBORO BORO	3	76	21	.000	.000	.000	.166	.000	.000	.000
15-063 15-130 15-131 15-183 15-187	31-04176 30-00210 	GLASSBORO WD SOUTH JERSEY WC CLEARVIEW BD OF ED PITMAN COUNTRY CLUB INVERSAND CO	4 3 HS I CC 1 #2	GLASSBORO BORO HARRISON TWP HARRISON TWP MANTUA TWP MANTUA TWP	3 3 3 3 3	74 58 57 67 66	22 13 16 21 27	.234 .331 .003 .004 .142	.000 .349 .003 .004 .142	.000 .170 .003 .004 .142	.226 .174 .054 .006 .094	.000 .166 .057 .006 .124	.000 .171 .054 .007 .157	.000 .150 .054 .008 .000
15-194	31-05309	MANTUA TWP MUA	4	MANTUA TWP	3	52	25	.439	.520	.515	.487	.502	.557	.578
15-227	31-04061	PITMAN WD	P3	PITMAN BORO	3	69	23	1.030	.993	1.006	.962	.908	.914	.856
15-239		DEL MONTE CORP	8	SWEDESBORO BORO	3	36	7	.000	.000	.000	.000	.000	.001	.001
15-261	31-03913	WASHINGTON TWP MUA	1	WASHINGTON TWP	3	76	37	2.075	2.337	2.654	2.434	2.461	3.117	3.231
15-275	31-00170	WENONAH WD	2	WENONAH BORO	3	56	29	.207	.234	.250	.194	.182	.280	.285

Table 3. -- <u>Annual ground-water withdrawals from the Potomac-Raritan-Magothy aquifer system in the Camden area. New Jersey, 1981-87</u> -- continued.

	UPPER AQUIFER (continued) Model Average withdrawal in Mgal/d													
						/lode			A	verage v	vithdraw	al, in M	gal/d	-
Well Number	Permit Number	Owner	Local Identifier	Municipality	Layer	Row	Colum	n 1981	1982	1983	1984	1985	1986	1987
15-276 15-281 15-284 15-295 15-299	31-04567 31-03021 30-00901 31-06200 	W DEPTFORD TWP WD W DEPTFORD TWP WD HUNTSMAN POLYPROP WESTWOOD GC POLYREZ CO	4 3 SHELL 4 1-1973 1	WEST DEPTFORD TWP WEST DEPTFORD TWP WEST DEPTFORD TWP WEST DEPTFORD TWP WEST DEPTFORD TWP	3 3 3 3 3 3	49 44 35 43 41	28 30 25 31 32	0.488 .643 .664 .011 .148	0.518 .909 .448 .011 .245	0.401 .448 .428 .011 .310	0.334 .609 .188 .011 .000	0.647 .817 .034 .012 .000	0.004 .211 .216 .019 .000	0.000 .358 .225 .011 .000
15-300 15-330 15-332 15-355 15-361	31-03864 31-06356 30-01426 31-07709	POLYREZ CO WOODBRY HEIGHTS WOODBURY WD E GREENWICH WD GLASSBORO WD	2 1 HELEN AVE PARKING LOT 3 3 5	WEST DEPTFORD TWP WOODBURY HTS BORO WOODBURY CITY EAST GREENWICH TWP GLASSBORO BORO	3 3 3 3 3	41 51 43 40 77	32 33 34 23 18	.000 .201 .000 .000 .510	.000 .276 .000 .000 .872	.000 .352 .000 .000 .684	.000 .278 .008 .170 .446	.000 .296 .000 .197 .000	.240 .308 .000 .198 .000	.000 .304 .000 .000 .000
15-367 15-394 15-437 15-548 15-814	30-00649 30-01094 31-17980 30-02504 30-02336	GANGEMI, VICENT PMC CANNING CO POLYREZ CO CHEMICAL LEAMAN MOBIL OIL COMPANY	1 SOUTH 1-1966 1R CLDW RW-12	HARRISON TWP WOOLWICH TWP WOODBURY CITY LOGAN TWP GREENWICH TWP	3 3 3 3 3	64 33 41 17 21	10 6 33 10 22	.056 .013 .000 .000 .000	.004 .017 .000 .000 .139	.084 .018 .000 .000 .152	.012 .015 .276 .000 .134	.003 .013 .275 .000 .111	.002 .011 .214 .014 .105	.007 .011 .040 .000 .000
15-815 15-816 15-817 15-818 15-819	30-02335 30-02338 30-02341 30-02339 30-02334	MOBIL OIL COMPANY MOBIL OIL COMPANY MOBIL OIL COMPANY MOBIL OIL COMPANY MOBIL OIL COMPANY	RW-11 RW-17 RW-16 RW-15 RW-14	GREENWICH TWP GREENWICH TWP GREENWICH TWP GREENWICH TWP GREENWICH TWP	3 3 3 3 3	20 18 18 23 22	22 22 22 22 22 22	.000 .000 .000 .000 .000	.139 .004 .004 .004 .000	.152 .004 .004 .004 .000	.134 .004 .004 .004 .134	.111 .003 .003 .003 .111	.105 .003 .003 .003 .105	.000 .000 .000 .000 .000
15-820 15-821 15-822 15-823 15-824	 	MOBIL OIL COMPANY MOBIL OIL COMPANY MOBIL OIL COMPANY MOBIL OIL COMPANY MOBIL OIL COMPANY	RW-2 RW-3 RW-4 RW-5 RW-6	GREENWICH TWP GREENWICH TWP GREENWICH TWP GREENWICH TWP GREENWICH TWP	3 3 3 3 3 3	20 19 20 21 21	23 24 23 24 24	.000 .000 .000 .000 .000	.139 .139 .139 .139 .139 .139	.152 .152 .152 .152 .152	.134 .134 .134 .134 .134	.111 .111 .111 .111 .111	.105 .105 .105 .105 .105	1.340 .000 .000 .000 .000
15-825 15-826 15-827 15-828 15-832	 30-02340	MOBIL OIL COMPANY MOBIL OIL COMPANY MOBIL OIL COMPANY MOBIL OIL COMPANY MOBIL OIL COMPANY	RW-7 RW-8 RW-9 RW-18 RW-13	GREENWICH TWP GREENWICH TWP GREENWICH TWP GREENWICH TWP GREENWICH TWP	3 3 3 3 3	21 22 20 18 19	23 23 22 21 23	.000 .000 .000 .000 .000	.139 .139 .139 .004 .139	.152 .152 .152 .004 .152	.134 .134 .134 .004 .134	.111 .111 .111 .003 .111	.105 .105 .105 .003 .105	.000 .000 .000 .000 .000
15-836 15-839	 30-03430	HERCULES CHEMICAL BP OIL CO	PW-8 RW-3	GREENWICH TWP PAULSBORO BORO	3 3	19 23	17 26	.000 .000	.000 .000	.000. 000.	.000. 000.	.000 000.	.001 .047	.001 .000

UPPER AQUIFER TOTALS

21.14 23.26 24.91 27.28 28.80 31.62 29.70

.

113

Table 3. -- <u>Annual ground-water withdrawals from the Potomac-Raritan-Magothy aquifer system in the Camden area, New Jersey, 1981-87</u> -- continued.

•

												<u> </u>		
				MIDDLE AQUI	ER.									
Well	Permit		Local		ſ	Mode	L		A	verage v	vithdraw	al. in M	gal/d	<u> </u>
Number	Number	Owner	Identifier	Municipality	Layer	Rov	v Column	n 1981	1982	1983	1984	1985	1986	1987
05-039	27-00356	NJ/AMERICAN WC	DVWC 15	BEVERLY CITY	4	22	94	0.128	0.208	0.292	0.207	0.000	0.000	0.000
05-040	27-01528	NJ/AMERICAN WC	DVWC 16	BEVERLY CITY	4	22	94	.000	.000	.000	.238	.230	.475	.949
05-074	27-05877	KELLER FARLR	S FRK I	BURLINGTON TWP	4	45	101	.076	.097	.056	.046	.091	.028	.107
05-079	27-05727	BURLINGTON TWP WD	2-1973	BURLINGTON TWP	4	46	102	.390	.672	.519	.131	.123	.225	.015
05-080	27-00196	HEISLER, ALBERT	I	BURLINGTON TWP	4	32	96	001	000	000	000	001	001	000
05-081	27-02664	HEISLER, EDGAR B	HEISLER 1	BURLINGTON TWP	4	32	96	.001	.000	.000	.012	.001	.000	.000
05-082		MURPHY, ALBERT	FOX HILL FARM	BURLINGTON TWP	4	34	97	.016	.013	.014	.011	.016	.000	.000
05-086	27-04380	TENNECO CHEMICALS	5	BURLINGTON TWP	4	31	98	.249	.082	.058	.063	.000	.000	.000
05-089	27-05458	TENNECO CHEMICALS	7	BURLINGTON TWP	4	31	98	.977	.960	.277	.706	.430	.548	.564
05-091	27-04379	TENNECO CHEMICALS	4	BURLINGTON TWP	4	30	98	.646	.743	.765	.756	.467	.546	.360
05-092	27-03815	TENNECO CHEMICALS	1	BURLINGTON TWP	4	30	98	.392	.000	.000	.000	.000	.000	.000
05-094	27-03817	TENNECO CHEMICALS	3	BURLINGTON TWP	4	30	98	.386	.000	.000	.000	.000	.000	.000
05-097	27-03568	HERCULES POWDER	3	BURLINGTON TWP	4	35	105	.000	.135 044	.180	.000	.207	.293	.310
06.100			•				104					.000	.000	.000
05-100		NI/AMERICAN WC		CINNAMINSON TWP	4	35	106	.226	.359	.063	.161	.000	.000	.000
05-120	31-04697	NI/AMERICAN WC	RIVERTON 14	CINNAMINSON TWP	Å	35	70	.270	.302	.070	1 093	.020	.740	.279
05-128	31-04733	NJ/AMERICAN WC	DVWC 26	CINNAMINSON TWP	4	35	79	.119	.095	.148	1.005	.903	183	171
05-135	27-00238	HOEGANAES IRON	HOEGANAES	CINNAMINSON TWP	4	25	81	.040	.050	.067	.058	.042	.038	.036
05-140	27-04480	CHANT, HARRY R	CHANT I	DELANCO TWP	4	26	89	.002	.027	.033	.000	.000	000	000
05-144	27-04680	NJ/AMÉRICAN WC	DVWC 24	DELRAN TWP	4	30	83	.416	.588	.350	.145	.074	.434	.417
05-145	27-02821	HOLY CROSS H S	HIGH SCHOOL	DELRAN TWP	4	30	84	.043	.021	.021	.014	.003	.003	.005
05-147	27-05202	NJ/AMERICAN WC	FAIRVIEW ST	DELRAN TWP	4	31	85	.748	.253	.385	.178	.318	.512	.405
05-155	27-00853	CRAMP, MARTIN C	CRAMPI	EDGEWATER PARK TWP	4	35	91	.005	.004	.012	.002	.000	.007	.013
05-156	27-04659	JAMAH CORP	CAR WASH I	EDGEWATER PARK TWP	4	32	93	.002	.004	.010	.003	.004	.004	.004
05-159	27-00179	NJ/AMERICAN WC	DVWC 21	EDGEWATER PARK TWP	4	31	94	.794	.780	.720	.474	.000	.000	.000
05-160	27-04030	NI/AMERICAN WC	DVWC 32	EDGEWATED DARK TWP	4	31	94	.000	.000	.000	.000	.786	.745	.827
05-232	31-06020	MAPLE SHADE WD	8	MAPLE SHADE TWP	4	42	73	.000	.578	.000	.019	.030	.039 859	.085
										.000	.000		.055	
05-266	51-00041	MOORESTUWN TWP WD	5 FIFLD CLUB 1	MOORESTOWN TWP	4	48	75	.673	.833	1.074	.831	.538	1.109	.738
05-275	31-03806	MOORESTOWNTWOWD		MOORESTOWN TWP	4	43	80 94	.010	.019	.019	.000	.000	800.	.010
05-290	31-06674	MOUNT HOLLY WC	6	MOUNT HOLLY TWP	4	68	00	326	.511	.363	.390	340	-044	.034
05-292	27-06032	MOUNT HOLLY WC	7	WESTAMPTON TWP	4	63	<u>98</u>	.549	.348	.460	.217	.246	.283	.709
05-297	31-01610	RUDDEROW, J E	SPRING VALLEY	MOUNT LAUREL TWP	4	65	78	002	000	007	034	052	071	000
05-382	32-02387	SYBRON CHEMICAL	IONAC CHEM 4	PEMBERTON TWP	4	žž	104	.332	.332	.332	.337	358	653	640
05-385	32-03778	SYBRON CHEMICAL	IONAC CHEM 5	PEMBERTON TWP	4	77	104	.672	.672	.672	.000	.000	.000	.000
05-634		MOUNT HOLLY WC	5	WESTAMPTON TWP	4	62	99	.700	.884	.727	.967	1.060	1.036	.680
05-635		INDEL INDUCT	l	WESTAMPTON TWP	4	56	95	.056	.019	.063	.063	.036	.068	.045

Table 3. — <u>Annual ground-water withdrawals from the Potomac-Raritan-Magothy aquifer system in the Camden area. New Jersey. 1981-87</u> -- continued.

.

.

	MIDDLE AQUIFER (continued) Madel Average withdrawel in Maal/d													
					N	<u>Model</u>			A	verage v	vithdraw	al <u>, in M</u>	gal/d	
Well Number	Permit Number	Owner	Local Identifier	Municipality	Layer	Row	Column	n 1981	1982	1983	1984	1985	1986	1987
05-649 05-653 05-658 05-661 05-667	27-03066 27-02941 27-02919 27-01615 27-02723	WILLINGBORO MUA WILLINGBORO MUA WILLINGBORO MUA WILLINGBORO MUA WILLINGBORO MUA	6 4 7 1 5	WILLINGBORO TWP WILLINGBORO TWP WILLINGBORO TWP WILLINGBORO TWP WILLINGBORO TWP	4 4 4 4 4	44 36 41 35 36	92 90 93 92 95	0.000 .661 .827 .689 .329	0.017 .610 .853 .846 .163	0.042 .568 .795 .942 .434	0.000 .594 .805 .807 .384	0.000 .552 .767 .892 .388	0.088 .748 .000 1.275 .526	0.026 .674 .678 .880 .351
05-706 05-717 05-749 05-751 05-758	27-06045 27-06754 31-07140 31-07139 27-07612	LIQUID CARBONIC WILLINGBORO MUA RAMBLEWOOD CC RAMBLEWOOD CC TENNECO CHEMICALS	l 9 3 TEE 2 TEE 10	BURLINGTON CITY WILLINGBORO TWP MOUNT LAUREL TWP MOUNT LAUREL TWP BURLINGTON TWP	4 4 4 4	36 41 63 59 30	106 92 75 75 98	.090 1.068 .004 .000 .000	.088 .975 .004 .003 .000	.097 .908 .004 .004 .000	.082 .235 .000 .000 .000	.078 .873 .000 .000 .460	.010 1.167 .000 .000 .487	.000 1.001 .000 .000 .523
05-761 07-043 07-058 07-124 07-134	27-06855 31-00290 31-03689 31-07020 31-05219	TENNECO CHEMICALS MAFCO W JERSEY HOSPITAL NJ/AMERICAN WC NJ/AMERICAN WC	9 2 HOSP I BROWNING 45 OLD ORCHARD 37	BURLINGTON TWP CAMDEN CITY CAMDEN CITY CHERRY HILL TWP CHERRY HILL TWP	4 4 4 4	28 25 26 61 64	97 50 54 61 69	.096 .188 .001 .000 4.403	.609 .198 .001 .000 4.331	.747 .131 .001 .000 4.145	.540 .134 .000 .534 1.415	.362 .135 .000 .294 1.559	.381 .135 .000 .471 1.676	.441 .143 .000 .372 1.956
07-135 07-142 07-146 07-147 07-304	31-05218 31-04098 31-04669 51-00007 31-05108	NJ/AMERICAN WC NJ/AMERICAN WC NJ/AMERICAN WC NJ/AMERICAN WC HADDONFIELD WD	OLD ORCHARD 38 ELLISBURG 23 KINGSTON 27 KINGSTON 25 LAKE ST WELL	CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP HADDONFIELD BORO	4 4 4 4	64 50 54 54 49	69 62 67 67 59	.000 .000 .000 .189 .028	.000 .000 .000 .410 .179	.000 .000 .000 .662 .268	1.798 .060 .084 .192 .033	1.502 .021 .001 .005 .000	1.551 .240 .145 .220 .226	1.436 .218 .134 .155 .142
07-315 07-329 07-423 15-024 15-069	31-04743 31-04836 31-05513 30-00757	NJ/AMERICAN WC MCHVIL PNSK WCM NJ/AMERICAN WC DEPTFORD TWP MUA GREENWICH TWP WD	MAGNOLIA 16 BROWNING 2A/ 1 ASHLAND TER 32 4 3(NEW 4)	MAGNOLIA BORO PENNSAUKEN TWP VOORHEES TWP DEPTFORD TWP GREENWICH TWP	4 4 4 4	59 30 65 46 23	52 61 57 42 18	2.461 .801 2.068 .316 .149	2.205 .873 1.986 .346 .175	2.069 1.085 1.874 .422 .188	.947 1.311 1.029 .540 .607	.863 .974 .545 .469 .219	.417 1.108 .299 .424 .277	.397 1.059 .387 .195 .239
15-072 15-076 15-079 15-081 15-092	30-00037 30-01224 30-01145 30-00907 30-00317	E I DUPONT HERCULES CHEMICAL E I DUPONT E I DUPONT HERCULES CHEMICAL	REPAUNO 3 4 1970 REPAUNO 6 REPAUNO 5 GIBBSTOWN TH 6	GREENWICH TWP GREENWICH TWP GREENWICH TWP GREENWICH TWP GREENWICH TWP	4 4 4 4	16 18 16 17 18	16 17 17 17 18	.000 .058 .205 .022 .000	.000 .009 .272 .040 .000	.000 .075 .318 .000 .000	.000 .126 .288 .000 .000	.391 .097 .000 .000 .007	.979 .103 .000 .000 .006	.829 .107 .000 .000 .005
15-094 15-098 15-137 15-144 15-158	 30-01371 30-01370 30-00873	MOBIL OIL COMPANY MOBIL OIL COMPANY PURELAND WATER CO PURELAND WATER CO MONSANTO CHEMICAL	44 45 2(3-1973) 1-1973 BRIDGEPORT W2	GREENWICH TWP GREENWICH TWP LOGAN TWP LOGAN TWP LOGAN TWP	4 4 4 4	23 22 25 20 7	22 21 4 4 3	.000 .000 .334 .092 .529	.000 .000 .412 .126 .770	.361 .361 .563 .072 .723	.361 .361 .380 .213 .636	.200 .200 .315 .047 .591	.311 .311 .404 .057 .522	.000 .000 .358 .049 .426
15-159 15-166 15-167 15-210 15-212	30-00872 30-00410 30-01170 30-01348 30-00069	MONSANTO CHEMICAL PENNS GROVE WSC MONSANTO CHEMICAL PAULSBORO WD PAULSBORO WD	BRIDGEPORT E1 BRIDGEPORT 2 I 6-1973 4	LOGAN TWP LOGAN TWP LOGAN TWP PAULSBORO BORO PAULSBORO BORO	4 4 4 4	7 13 8 30 27	3 8 3 22 21	.567 .034 .331 .699 .031	.502 .041 .202 .735 .050	.415 .041 .371 .729 .144	.342 .042 .326 .472 .119	.422 .040 .428 .539 .118	.543 .033 .200 .570 .191	.545 .053 .186 .820 .051

Table 3. -- <u>Annual ground-water withdrawals from the Potomac-Raritan-Magothy aquifer system in the Camden area, New Jersey, 1981-87</u> -- continued.

				MIDDLE AQUIFER (continu	ed)								
Wall	Dormit		Local			Mode				verage v	<u>withdray</u>	val, in M	gal/d	
Number	Number	Owner	Identifier	Municipality	Layer	Rov	v Colun	ın 1981	1982	1983	1984	1985	1986	1987
15-213	30-00602	PAULSBORO WD	5	PAULSBORO BORO	4	28	23	0.110	0.126	0.125	0.329	0.208	0.230	0.070
15-236	30-01177	SWEDESBORO BORO WE) 3	SWEDESBORO BORO	4	38	5	.249	.271	.264	.258	.251	.282	.252
15-280	30-00899	CREENWICH TWO WD	SHELL Z	WEST DEPTFORD TWP	4	34	24	.045	.042	.042	.032	.024	.031	.026
15-347	30-01545	GREENWICH TWP WD	5 (2-A) 6	GREENWICH TWP	4	18	17	.198	.357	.313	.048	.125	.097	.094
10-040	30-01770	GREENWICH TWI WD	0	ORCEN WICH I WP	4	20	19	.344	.257	.244	.072	.398	.441	.422
15-374	31-13385	DEPTFORD TWP MUA	6	DEPTFORD TWP	4	57	35	.842	.854	.922	.527	.480	.232	203
15-431	33-07973	WOODBURY WD	RED BANK 6	WOODBURY CITY	4	4 4	37	.358	.702	.708	.389	.251	.509	.509
15-435	31-17911	W DEPTFORD TWP WD	8	WEST DEPTFORD TWP	4	46	27	.000	.000	.392	.400	.228	1.476	.931
15-616		USGS-SHIVELER	MIDDLE WELL	LOGAN TWP	4	26	8	.019	.019	.019	.018	.019	.019	.019
15-692	30-03594	EIDUPONT	INTERCEPTOR 46	GREENWICH TWP	4	16	17	.000	.000	.000	. 0 00.	.000	.448	.000
15-833		HERCULES CHEMICAL	PW-10	GREENWICH TWP	4	19	18	000	× 000	000	000	000	004	020
15-834		HERCULES CHEMICAL	PW-9	GREENWICH TWP	4	iś	18	000	000	.000	.000	.000	.000	.039
15-835		HERCULES CHEMICAL	PW-8B	GREENWICH TWP	4	19	ĩ.	.000	.000	.000	.000	.000	021	0040
15-837		HERCULES CHEMICAL	PW-7B	GREENWICH TWP	4	19	18	.000	.000	.000	.000	.008	.031	009
15-838		HERCULES CHEMICAL	PW-5B	GREENWICH TWP	4	19	18	.000	.000	.000	.000	.014	.010	.028
			MIDDLE AQUIFER 1	TOTALS				30.887	32.081	33.507	27.175	25.608	31.161	27.687
				LOWER AQUIE	ER									
05-123	31-05321	NI/AMERICAN WC	DVWC 28	CINNAMINSON TWP	5	21	75	0147	0.104	0.260	0.476	0.240	0.440	0.167
05-124	31-05437	NJ/AMERICAN WC	STEPHENS DR	CINNAMINSON TWP	5	31	75	0.147	0.100	0.200	10425	0.240	0.400	0.157
05-125	31-03835	NJ/AMERICAN WC	DVWC 10	CINNAMINSON TWP	5	31	77	000	000	.515	.590	.301	.370	.078
05-129	27-04844	RIVERTON CLUB	CC 2	CINNAMINSON TWP	5	27	76	.067	035	055	054	.000	.000	.000
05-130	31-04576	NJ/AMERICAN WC	RIVERTON 13	CINNAMINSON TWP	5	24	76	.758	.662	.181	.031	.000	.090	.193
05 121	31 04964	NUAMEDICAN WC	DVWC 27	CINDLA MINICON THUR	~		-	202						
05-131	27_00731	RIVERTON CLUB	CC	CININAMINSON TWP	Ş	24	/0	.302	.134	.002	.054	.000	.000	.789
05-143	27-04747	NI/AMERICAN WC	DVWC 23	DELBANTWP	25	20	62	.022	.028	.034	.000	.000	.000	.000
05-146	27-03080	NJ/AMERICAN WC	DVWC 19	DELIGAN TWP	5	26	83	.021	514	.962	.829	.080	./33	1.099
05-228	31-08923	MAPLE SHADE WD	10	MAPLE SHADE TWP	รี	48	72	.616	.619	.623	1.899	.080	.303	.577
06 373		MOODFETONALTING WE	-		_									
05-272	21 06715	CAMPELL SOUP	/ CAMPDELL 2	MOORESTOWN TWP	5	37	76	.564	.786	.715	.694	.795	.906`	.909
05-277	31-03/13	MTIALIDELL SUUP	CAMPBELL 3	MOUNT LAUDEL TWD	Ş	30	/6	.200	.181	.349	.267	.323	.336	.297
05-303	27_04533	RIVERSIDE PUBLIC SCH	SCHOOL 1	PIVERSING TWO	5	27	13	.000	.000	.155	.000	.000	.000	.000
05-395	27-04851	NJ/AMERICAN WC	DVWC 29	RIVERSIDE TWP	5	26	85 86	.584	.001	.001	309	.000	100.	.001
				· · · · · · · · · · · · · · · · · · ·	-		~~						.000	.000
05-732	27-06673	BURLINGTON TWP WD	4	BURLINGTON TWP	5	46	102	.615	.318	.493	.897	.847	.977	.992
05-746	31-12925	MAPLE SHADE WD	11	MAPLE SHADE TWP	5	42	73	.616	.619	.623	.000	1.197	1.200	l.17Ī
05-/60	27-06834	TENNECU CHEMICALS	8	BURLINGTON TWP	5	28	97	.427	.924	.979	.848	.670	.869	.696
05-819	51-19212		0	MOUNT LAUREL TWP	5	57	75	.000	.000	.000	.335	.314	.528	.585
03-822		MI LAUKEL MUA	د	MOUNT LAUREL TWP	5	59	77	.078	.000	.000	.261	.379	1.463	1.129

Table 3. – <u>Annual ground-water withdrawals from the Potomac-Raritan-Magothy aquifer system in the Camden area. New Jersey. 1981-87</u> -- continued.

.

				LOWER AQUIFER (co	ontinu	ed)				-				
117.11	D		Local		N	Model			A	verage v	vithdraw	<u>al, in M</u>	gal/d	
Number	Number	Owner	Identifier	Municipality	Layer	Row	Colum	n 1981	1982	1983	1984	1985	1986	1987
05-823 07-008 07-012 07-057 07-088	 31-04969 31-02687 31-04620 	MT LAUREL MUA BELLMAWR BORO WD BELLMAWR BORO WD OUR LADY HOSP CONCORD CHEMICAL	4 4 3 STAND BY WELL I	MOUNT LAUREL TWP BELLMAWR BORO BELLMAWR BORO CAMDEN CITY CAMDEN CITY	5 5 5 5 5	60 48 42 28 23	78 46 45 55 58	1.162 .407 .743 .000 .000	1.298 .835 .446 .000 .000	1.367 .854 .145 .000 .000	1,119 .891 .000 .001 .000	0.984 .069 .117 .001 .003	0.229 .001 .122 .001 .000	0.769 .000 .000 .000 .000
07-098 07-099 07-107 07-111 07-122	31-04847 31-01696 31-04780 31-03456 31-07021	NJ/AMERICAN WC H KOHNSTAMM CO NJ/AMERICAN WC NJ/AMERICAN WC NJ/AMERICAN WC	CAMDEN DIV 52 3 CAMDEN DIV 51 CAMDEN DIV 50 BROWNING 44	CAMDEN CITY CAMDEN CITY CAMDEN CITY CAMDEN CITY CHERRY HILL TWP	5 5 5 5 5	22 22 22 21 61	60 61 61 61 61	4.230 .165 .000 .000 .000	1.266 .122 1.505 .411 .000	.876 .095 .519 .040 .000	.782 .185 .176 .004 1.306	.701 .085 .234 .000 .828	.878 .111 .539 .000 1.191	.955 .084 .506 .000 .779
07-123 07-144 07-157 07-163 07-172	31-07019 31-00684 31-05033 31-04051 31-04799	NJ/AMERICAN WC NJ/AMERICAN WC NJ/AMERICAN WC NJ/AMERICAN WC COLLINGSWOOD WD	BROWNING 46 ELLISBURG 13 COLUMBIA 31 COLUMBIA 22 6(A)	CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP COLLINGSWOOD BORO	5 5 5 5	61 50 45 44 36	61 63 67 68 53	2.013 .000 .000 .000 .000	2.985 .000 .000 .105 .000	3.662 .000 .000 .335 .000	1.874 .045 .024 .001 .440	1.792 .039 .006 .001 .492	1.895 .149 .113 .134 :604	1.773 .188 .141 .095 .431
07-175 07-177 07-178 07-179 07-183	31-00079 51-00030 31-04054 51-00031 31-05951	COLLINGSWOOD WD COLLINGSWOOD WD COLLINGSWOOD WD COLLINGSWOOD WD NJ/AMERICAN WC	IR 4 3 5 GIBBSBORO 43	COLLINGSWOOD BORO COLLINGSWOOD BORO COLLINGSWOOD BORO COLLINGSWOOD BORO GIBBSBORO BORO	5 5 5 5 5	34 34 34 34 72	57 57 57 58 55	.000 .000 2.357 .000 .000	.000 .000 2.340 .000 .000	.000 .000 2.477 .000 .000	.070 .299 1.388 .663 1.768	.193 .569 .282 1.173 1.867	.035 .226 1.146 .985 1.597	.123 .544 .857 .908 1.352
07-188 07-189 07-220 07-273 07-278	31-05950 31-05949 31-04306 31-04756 31-02434	NJ/AMERICAN WC NJ/AMERICAN WC GLOUCESTER CITY WD NJ/AMERICAN WC NJ/AMERICAN WC	GIBBSBORO 42 GIBBSBORO 41 40 OTTERBROOK 29 HADDON 15	GIBBSBORO BORO GIBBSBORO BORO GLOUCESTER CITY GLOUCESTER TWP HADDON HEIGHTS BORO	5 5 5 0 5	71 71 34 59 52	56 56 48 47 53	3.971 .000 1.990 3.893 .000	4.058 .000 1.969 3.496 .000	3.960 .000 2.317 3.579 .000	1.812 1.275 1.883 .653 .437	1.869 1.176 1.651 .398 .357	1.612 1.263 1.552 .380 .724	1.645 1.645 1.470 .609 .099
07-281 07-284 07-288 07-289 07-291	31-01124 31-05054 31-02146 31-00432 31-05243	NJ/AMERICAN WC NJ/AMERICAN WC HADDON TWP WD HADDON TWP WD HADDON TWP WD	HADDON 14 EGGBERT 35 3 2 1-R	HADDON HEIGHTS BORC HADDON HEIGHTS BORC HADDON TWP HADDON TWP HADDON TWP) 5) 5 5 5 5	52 47 45 45 45	53 51 56 56 57	.000 .000 .196 .191 .463	.000 .000 .339 .270 .487	.000 .000 .591 .235 .244	.169 .285 .600 .404 .151	.089 .335 .651 .400 .026	.373 .205 .386 .207 .677	1.167 .106 .111 .299 .492
07-292 07-294 07-302 07-320 07-332	31-04855 31-05138 31-02130 31-04642 31-04641	HADDON TWP WD DY-DEE SERVICE HADDONFIELD WD MCHVIL PNSK WCM MCHVIL PNSK WCM	4 REPLACEMENT RULON WOODBINE I MARION 2	HADDON TWP HADDON TWP HADDONFIELD BORO MERCHANTVILLE BORO PENNSAUKEN TWP	5 5 5 5 5	44 55 31 33	56 59 58 64 66	.435 .000 .213 1.392 1.206	.293 .007 .308 .724 1.259	.401 .033 .302 .531 1.219	.000 .037 1.147 1.204 1.311	.221 .040 1.341 1.183 1.287	.281 .034 .281 .681 1.231	.274 .034 .362 .451 1.177
07-342 07-349 07-367 07-372 07-379	31-05228 31-00010 31-05110 31-04251	MCHVIL PNSK WCM MCHVIL PNSK WCM CAMDEN CITY WD MCHVIL PNSK WCM CAMDEN CITY WD	DELA GARDEN 1A PARK AVE 1 PUCHACK 3 NATIONAL HWY 1 MORRIS 10	PENNSAUKEN TWP PENNSAUKEN TWP PENNSAUKEN TWP PENNSAUKEN TWP PENNSAUKEN TWP	5 5 5 5 5	22 32 22 25 19	64 70 68 72 70	.115 1.811 7.800 1.264 18.000	.041 2.036 7.800 1.185 18.000	.195 2.223 7.800 1.393 18.000	.106 2.125 7.735 1.346 18.045	.104 2.088 7.826 1.322 18.262	.185 2.216 5.211 1.416 12.160	.177 2.119 5.339 1.354 12.458

Table 3. -- <u>Annual ground-water withdrawals from the Potomac-Raritan-Magothy aquifer system in the Camden area, New Jersey, 1981-87</u> -- continued.

				LOWER AOUIFER (c	ontinu	ed)								
	- ·				<u>N</u>	Model				verage	withdray	val. jn M	lgal/d	<u> </u>
Well Number	Permit Number	Owner	Local Identifier	Municipality	Layer	Row	Colum	ın 1981	1982	1983	1984	1985	1986	1987
07-520	31-04325	BROOKLAWN BORO WD	3	BROOKLAWN BORO	5	36	45	.250	.332	.329	.256	.270	.347	.288
07-523	31-12315	BELLMAWR BORO WD		BELLMAWR BORO	5	48	46	0.000	0.000	0.000	0.158	0.891	0.958	0.647
07-525	31-09094	NI/AMERICAN WC	6/ / 5.4	CAMDEN CITY	2	22	58	.419	.371	.603	.000	.000	.636	.438
07-560	31-14563	MCHVIL PNSK WCM	WOODBINE 2	MERCHANTVILLE BORO	5	31	62 64	.000	.000	.155	.000	.000	1.092	.960 .451
07-597	31-20270	NI/AMERICAN WC	55	CAMDEN CITY	5	22	60	000	000	010	222	041	150	007
07-601	31-19218	BELLMAWR BORO WD	6	BELLMAWR BORO	Š	44	46	000	.000	364	.233	370	.038	.087
15-109		MOBIL OIL COMPANY	41	GREENWICH TWP	5	22	23	2 387	1 679	323	314	258	430	040
15-118	30-00198	MOBIL OIL COMPANY	47	GREENWICH TWP	5	21	24	.000	.000	.208	280	267	454	
15-207	31-02555	NATIONAL PK WD	2	NATIONAL PARK BORO	5	29	35	.302	.328	.339	.318	.315	.322	.311
15-220	30-00281	ESSEX CHEMICAL CO	OLIN I	PAULSBORO BORO	5	24	27	.290	.636	.711	.235	.313	.544	.000
15-282		W DEPTFORD TWP WD	5 KINGS HIWAY	WEST DEPTFORD TWP	5	42	28	.518	.185	.235	.270	.218	.295	.084
15-283	30-00900	HUNTSMAN POLYPROP.	SHELL 3	WEST DEPTFORD TWP	5	35	25	.562	.466	.312	.377	.323	.049	.095
15-285	30-00898	HUNTSMAN POLYPROP.	SHELL	WEST DEPTFORD TWP	5	34	24	.055	.075	.112	.276	.480	.540	.488
15-304	30-01173	PENNWALI CORP	418	WEST DEPTFORD TWP	5	30	28	.000	.000	.000	.000	.111	.386	.425
15-312	-	W DEPTFORD TWP WD	6 RED BANK AVE	WEST DEPTFORD TWP	5	37	36	.613	.129	.033	.136	.002	.169	.218
15-313	31-04231	W DEPTFORD TWP WD	2	WEST DEPTFORD TWP	5	34	37	.000	.000	.000	.000	.000	.000	.000
15-314	31-00029	COASTAL OIL	EAGLE POINT 6	WEST DEPTFORD TWP	5	33	38	.074	1.101	.787	.979	.571	.395	.435
15-317	31-06834	COASTAL OIL	EAGLE POINT 7	WEST DEPTFORD TWP	5	32	38	.453	.082	1.088	.686	.404	.418	.592
15-318	31-00009	COASTAL OIL	EAGLE POINT 2	WEST DEPTFORD TWP	5	33	39	.580	.404	.616	.372	1.022	.428	.000
15-319	31-00002	COASTAL OIL	EAGLE POINT 4	WEST DEPTFORD TWP	5	32	39	.952	.561	.284	.090	.352	.782	753
15-320	31-00007	COASTAL OIL	EAGLE POINT 1	WEST DEPTFORD TWP	5	33	40	.327	.083	.058	.521	.372	.627	.756
15-321	31-00028	COASTAL OIL	EAGLE POINT 5	WEST DEPTFORD TWP	5	34	41	.485	.275	.265	.522	.432	.400	.042
15-322	31-00008	COASTAL OIL	EAGLE POINT 3	WEST DEPTFORD TWP	5	32	40	.518	.042	.182	.057	.245	.191	.808
15-326		WESTVILLE WD	5	WESTVILLE BORO	5	39	43	.000	.000	.000	.000	.000	.111	.156
15-327	31-03418	WESTVILLE WD	4	WESTVILLE BORO	5	38	43	.680	.649	.706	.689	.727	.291	.315
15-331	31-04259	WOODBURY WD	RAILROAD 5	WOODBURY CITY	5	45	34	.102	.062	.179	.187	.283	.195	.195
15-373	31-17452	W DEPTFORD TWP WD	7	WEST DEPTFORD TWP	5	38	38	.000	.634	.726	.389	.573	.234	.667
15-411	30-01639	AIR PRODUCTS	NO-1-1978	GREENWICH TWP	5	17	25	.229	.191	.220	.180	.141	.035	.049
15-434	31-1/923	WESTVILLE WD	0	WESTVILLE BORO	5	38 ~	43	.000	.000	.000	.000	.000	.245	.165
15-439	30-01175	ESSEX CHEMICAL CO	2 2 NORTH WELL	PAULSBORO BORO	5	23	26	.000	.000	.000	.445	.253	.009	.252
13-072	50-01040	AIK PRUDULTS	2-NOKTH WELL	UKEENWICH I WP	3	23	23	.000	.000	.000	.000	.000	.060	.046
			LOWER AQUIFER TO	TALS			_	44.17	42.57	45.03	69.48	67.59	61.51	60.81
			AQUIFER SYSTEM T	OTALS			-	96.19	97.91	103.5	123.93	122.0	124.3	118.2

Table 4.--Water levels in the Potomac-Raritan-Magothy aquifer system in the Camden area. New Jersey

3

[All altitudes are in feet above sea level; TWP, Township; BORO, Borough MUA, Municipal Utilities Authority; WC, Water Company; WD, Water Department; WCM, Water Commission; CC, Country Club; GC, Golf Course; TSA, Township Sewer Authority; --, no information]

		1984	1986	1988				
Well number	Owner	Well name	Site altitude	Date Altitude	Date Altitude	Date Altitude	Date Altitude	Date Altitude
05-060 05-076 05-077 05-165 05-167	BURLINGTON CITY WD HEAL, CHARLES J BURLINGTON TWP WD EVESHAM MUA EVESHAM MUA	BCWD 2 HEAL 1-1973 EMUA 4 EMUA 5	21 50 60 110 50	11/07 -3 1)/14 -75 1)/14 -70	10/31 -4 11/07 -81 11/07 -79	11/08 -3 11/16 -91	9/05 4 8/23 -6 8/27 -87 8/26 -89	11/02 4 11/03 -6 10/31 -13 11/28 -89 11/02 -84
05-211 05-229 05-249 05-251 05-252	LISEHORA, MARY MAPLE SHADE WD MEDFORD TWP WD MEDFORD WC MEDFORD WC	S J GROVE I MSWD 9 MTWD3/MTWD1 MWC 4(1968) MWC 1(3)/MWC 8	80 40 55 49 48	11/07 -5 11/09 -47 11/02 -65 	10/27 -5 11/03 -57 11/03 -75 11/02 -71 11/02 -73	11/07 -5 11/17 -50 11/21 -85 	9/05 -8 8/25 -59 8/27 -86 	11/04 -9 11/04 -56 11/07 -84 12/12 -77 10/26 -69
05-253 05-258 05-285 05-289 05-310	MEDFORD LEASING US GEOL SURVEY MOUNT HOLLY WC MOUNT HOLLY WC NJ TURNPIKE AUTHORITY	I-1972 MEDFORD I MHWC 4 MHWC 3 MAINT 2	32 71 16 19 40	11/06 -52	11/02 -72 11/01 -37 11/01 -34 10/26 -48	1/09 -65	8/22 -67 	10/26 -68 11/07 -66 12/50 -42 12/50 -41 12/19 -50
05-313 05-315 05-317 05-318 05-383	HAINES, WM JR LARCHMONT FARMS NJ TURNPIKE AUTHORITY NJ TURNPIKE AUTHORITY SYBRON CHEMICAL	FARM WELL 2 FARM WELL 1 4N-1 4N-2 IONAC CHEM 2	25 55 45 45 30	11/16 -46 11/17 -39 	12/29 -51 11/04 -45 11/03 -20	11/13 -51 	8/25 -49 	11/04 -49 12/01 -45 12/01 -43 11/80 -38
05-438 05-446 05-707 05-728 05-729	THE GOLF FARM INTERSTATE S-P EVESHAM MUA MOBILE ESTATES MAPLE SHADE WD	SPRINGFIELD TWP INTERSTATE 1 EMUA 7 FIELD PUMP MSWD 2	41 75 100 55 30	11/07 -22 11/07 -14 	10/28 -23 10/27 -15 11/07 -86 10/31 -31	11/06 -24 11/06 -14 11/16 -80	8/21 -30 8/21 -19 8/27 -101	11/02 -18 11/03 -94 10/31 -37 12/12 -26
05-745 05-747 05-748 05-755 05-757	BC COUNTRY CLUB DITTMAR RCA KING'S GRANT WC EVESHAM MUA	CLUB IR 1949 RANCOCAS I KGWC 1 EMUA 6	102 80 80 90 50	11/14 -16 11/24 -39 11/08 -35 	10/31 -17 10/31 -46 11/08 -39 11/04 -79	11/06 -17 11/15 -46 11/13 -40 11/21 -78	8/21 -23 8/25 -50 8/25 -45 9/03 -88	11/07 -21 11/01 -53 11/09 -45 10/31 -91 11/02 -87
05-795 05-820 05-821 05-824 07-003	MT LAUREL MUA KING'S GRANT WC FEDERAL LAND BANK EVESHAM MUA OWENS CORNING	MLWC 5 KGWC 2 I EMUA 8 CORNING I	60 90 65 85 70	11/14 -79 	11/07 -96 11/04 -78 11/02 -21 	11/16 -84 11/30 -82	8/26 -104 8/20 -24 8/27 -99 9/04 -93	11/02 -97 11/14 -80 11/02 -25 11/02 -128 11/17 -96
07-013 07-015 07-018 07-019 07-030	BELLMAWR BORO WD BERLIN WD BERLIN WD BERLIN WD SOUTH JERSEY PORT	BBWD I BWD 11 BWD 9 BWD 10 NY SHIP 5A	31 150 145 145 11	11/01 -78 11/16 -75	11/09 -46 11/07 -89 	11/14 -42 11/27 -86 11/28 -19 2/14 -83 11/20 -21	9/04 -46 8/29 -99 8/28 -104 8/28 -119 8/28 -17	11/09 -44 11/17 -97 11/15 -95 11/15 -97

	UPPER AOUIFER (continued)												
Well			Site	1978	1983	1984	1986	1988					
number	Owner	Well name	altitude	Date Altitude	Date Altitude	Date Altitude	Date Altitude	Date Altitude					
07-115 07-117 07-120 07-131 07-133	WOODCREST CT CL NJ/AMERICAN WC HUSSMAN REFRIDG NJ/AMERICAN WC NI/AMERICAN WC	CLUB 1 HUTTON HILL 1 HUSSMAN OLD ORCHARD B OLD ORCHARD 36	70 158 67 71 80	11/17 -76 11/12 -83 11/08 -74	11/09 -84 12/09 -79 11/10 -90 11/16 -79	11/21 -81 11/16 -80 11/14 -77 11/14 -77	9/03 -99 8/22 -99 9/03 -92 8/20 -100	10/31 -101 11/19 -84 11/09 -84 11/03 -83					
07-143 07-148 07-149 07-151 07-162	NJ/AMERICAN WC NJ/AMERICAN WC NJ NATIONAL GD GARDEN STATE RACE NJ/AMERICAN WC	ELLISBURG 16 KINGSTON 28 1 RACE TRACK COLUMBIA 24	40 44 15 30 34	11/09 -61 11/08 -63 11/15 -52 	11/16 -65 11/10 -66 11/16 -54 11/09 -57 11/10 -50	11/14 -63 11/14 -63 11/19 -53 11/14 -48	8/22 -72 8/20 -69 	11/08 -7/3 11/08 -66 11/08 -59 11/18 -57 11/03 -52					
07-193 07-242 07-244 07-249 07-250	CRESCENT TRAILER PARK SOCIETY DIVINE CAMDEN COUNTY GARDEN STATE WC GARDEN STATE WC	TRAILER PK 1 SAVIOR LAKELAND 3 BLACKWOD DIV 3 BLACKWOD DIV 7	20 107 50 65 60	11/09 -39 11/08 -70 	11/14 -40 12/20 -76 11/02 -74 	11/15 -37 11/16 -73 11/13 -70	8/25 -38 9/04 -86 	11/08 -37 11/16 -82 11/10 -79 11/09 -86 11/09 -89					
07-252 07-272 07-274 07-275 07-279	GARDEN STATE WC NJ/AMERICAN WC NJ/AMERICAN WC NJ/AMERICAN WC NJ/AMERICAN WC	BLACKWOD DIV 6 OTTERBROOK 34 OTTERBROOK 39 HADDON 20 HADDON 30	75 60 60 60 65	11/09 -73 11/08 -81 11/09 -77 11/09 -76	11/15 -84 11/07 -87 11/07 -78 11/07 -72	11/14 -84 11/14 -86 11/13 -71	9/26 -84 8/21 -89 8/21 -84 8/21 -82	11/09 -81 11/07 -80 11/07 -81 11/14 -79 11/14 -77					
07-282 07-285 07-293 07-297 07-299	NJ/AMERICAN WC NJ/AMERICAN WC HADDON TWP BD OF ED HADDONFIELD WD HADDONFIELD WD	HADDON 11 EGGBERT 18 HADDON TWP HSI HWD 4 LAYNE 2/LAYNE 1	84 24 15 18 65	11/09 -63 11/15 -56 11/08 -80	11/07 -75 11/07 -64 11/10 -57 	11/09 -70 11/14 -61 11/14 -57 11/15 -80	8/21 -82 8/26 -61 9/03 -98 9/03 -91	11/10 -77 11/08 -64 11/10 -57 12/12 -79 11/10 -85					
07-310 07-311 07-316 07-318 07-322	NJ/AMERICAN WC NJ/AMERICAN WC NJ/AMERICAN WC OWENS CORNING NJ/AMERICAN WC	LAUREL 13 LAUREL 15 MAGNOLIA 33 CORNING 2 OAKLYN TEST	77 75 75 67 33	11/08 -76 11/08 -80 11/07 -52	11/16 -83 11/16 -86 11/09 -87 11/09 -92 11/07 -53	11/13 -81 11/13 -83 11/13 -78 11/16 -79 11/13 -50	8/21 -107 8/21 -110 8/21 -92 9/04 -90 8/22 -54	11/14 -85 11/10 -91 11/07 -83 11/17 -87 11/04 -50					
07-392 07-398 07-404 07-410 07-411	PINE HILL MUA PINE HILL MUA NJ/AMERICAN WC NJ/AMERICAN WC TAVISTOCK CLUB	PHMUA 1 PHMUA 2-1972 RUNNEMEDE 19 SOMERDALE 14 COUNTRY CLUB 1	150 200 67 95 30	11/07 -71 11/08 -81 11/13 -78 11/08 -90 11/12 -77	11/01 -88 11/01 -96 11/07 -83 11/09 -95 11/09 -81	11/20 -84 11/20 -89 11/13 -77 11/13 -89 11/15 -76	9/02 -92 9/02 -102 8/21 -85 8/21 -106 8/26 -96	11/14 -96 11/14 -97 11/15 -82 11/14 -94 11/09 -84					
07-422 07-426 07-477 07-521 07-573	NJ/AMERICAN WC NJ/AMERICAN WC US GEOL SURVEY CLEMENTON WD US GEOL SURVEY	ASHLAND 17 VOORHEES 21 NEW BROOKLYN 2 CWD 10 COAST GUARD 2	68 129 111 180 11	11/13 -87 11/13 -84 11/16 -64 	11/09 -91 11/09 -87 11/08 -73 12/02 -9	11/13 -80 12/07 -69 11/27 -8	8/21 -109 8/21 -178 8/21 -81 8/19 -6	11/02 -107 11/10 -92 11/18 -77 11/10 -103 11/18 -9					

Table 4.--Water levels in the Potomac-Raritan-Magothy aquifer system in the Camden area, New Jersey-continued.

•

٠

•

			UPPER AOI	JIFER (continued 1978	L) 1983	1984	1986	1988
Well number	Owner	Well name	Site altitude	Date Altitude	Date Altitude	Date Altitude	Date Altitude	Date Altitude
07-600 15-001 15-003 15-006 15-008	LAKELAND HOSPITAL CLAYTON WD CLAYTON WD WOODBURY WD WOODBURY WD	LAKELAND H 4 CWD 3 4-1973 SEWELL 1A SEWELL 2A	40 33 40 20 21	11/21 -62 11/14 -52 11/14 -50	11/02 -75 11/14 -69 11/08 -56 11/08 -53	11/13 -78 11/19 -68 11/19 -65 11/19 -52 11/19 -55	9/29 -83 8/28 -77 8/26 -36 9/03 -63	11/10 -82 11/15 -77 11/15 -71 11/10 -59 11/10 -61
15-009 15-011 15-028 15-060 15-062	DEPTFORD TWP MUA DEPTFORD TWP MUA E GREENWICH WD GLASSBORO WD GLASSBORO WD	DTMUA 5 DTMUA 2 EGWD 2 GWD 3 GWD 2	78 58 70 150 145	11/09 -59 11/09 -47 11/08 -21 11/20 -60 11/20 -66	11/03 -64 11/03 -53 11/01 -23 11/09 -70 11/09 -72	11/13 -46 11/16 -28 11/16 -63	9/23 -70 9/23 -53 8/21 -27 8/26 -74 8/26 -81	10/20 -68 11/10 -49 11/07 -23 11/10 -66 11/28 -79
15-063 15-127 15-129 15-147 15-187	GLASSBORO WD LEONARD, WM SOUTH JERSEY WC SHOEMAKER, R A INVERSAND CO	GWD 4 5 SJWC 1 1	150 140 35 18 2	11/20 -59 11/22 -46 11/22 -25 11/20 -4	11/09 -65 11/14 -49 11/14 -30 11/18 5	11/16 -64 11/15 -31 11/16 5	8/26 -54 8/28 -34 	11/28 -64 11/10 -50 11/10 -31 11/03 3 11/08 -64
15-191 15-192 15-194 15-226 15-227	MANTUA TWP MUA MANTUA TWP MUA MANTUA TWP MUA PITMAN WD PITMAN WD	MTMUA 2 MTMUA 5 MTMUA 4 PWD P2 PWD P3	72 80 10 130 99	11/09 -60 11/08 -30 11/09 -48 12/06 -67 12/06 -60	11/08 -63 11/07 -43 11/07 -53 11/14 -70 11/14 -64	11/14 -49 11/14 -38 11/15 -47 11/15 -69 11/15 -63	8/20 -66 8/20 -53 8/20 -81 8/20 -75	11/09 -70 11/09 -38 11/09 -51 11/14 -82 11/14 -71
15-240 15-248 15-253 15-260 15-261	DEL MONTE CORP WASHINGTON TMUA WASHINGTON TMUA WASHINGTON TMUA WASHINGTON TMUA	9 WTMUA 5 6(FRIES MLS 1) 8(BELS LK WC2) WTMUA I	32 125 152 130 100	11/15 -22 11/21 -63 11/21 -65 11/08 -72	11/18 -19 11/08 -68 11/08 -76 11/08 -75 11/08 -81	11/14 -18 11/15 -80 11/15 -80 11/15 -75 11/15 -77	8/29 -22 8/21 -91 8/21 -88 8/21 -93	11/01 -21 11/08 -80 11/08 -81 11/08 -82 11/17 -85
15-268 15-274 15-275 15-276 15-281	WASHINGTON TMUA WENONAH WD WENONAH WD W DEPTFORD TWD W DEPTFORD TWD	WTMUA 4 WWD 1 WWD 2 WDTWD 4 WDTWD 3	77 80 50 60 61	11/21 -72 11/15 -51 11/15 -39 11/15 -35	11/08 -79 11/03 -53 11/03 -44 11/03 -40	11/15 -76 11/16 -61 11/17 -49 11/20 -39 11/20 -36	8/21 -95 9/05 -68 	11/08 -78 11/14 -62 11/14 -46 11/14 -37
15-297 15-303 15-330 15-332 15-339	SHELL CHEMICAL CO PENNWALT CORP WOODBRY HGTS BORO WOODBURY WD GRASSO, J S	SHELL OBS 6 TEST WELL 1 1 HELEN AVE PARKING LOT 3 1	21 10 40 50 90	11/08 -11 12/13 -6 11/16 -44 11/14 -31 11/13 -19	10/31 -11 11/04 -8 11/07 -50 10/31 -45 11/17 -19	11/16 -10 11/19 -7 11/20 -45 11/19 -41 11/16 -18	8/28 -13 9/02 -8 9/02 -55 9/03 -69	11/15 -11 11/10 -9 11/08 -49 11/10 -38 11/09 -20
15-342 15-345 15-346 15-355 15-361	DEL MONTE CORP MUSUMECI, PETER TOMARCHIO, ALFRED E GREENWICH WD GLASSBORO WD	10 1 1 EGWD 3 GWD 5	60 62 80 42 140	11/16 -12 11/08 -28	11/18 -21 11/14 -12 11/08 -24 11/01 -30	11/16 -20 11/14 -11 11/21 -21 11/14 -27	8/29 -14 9/05 -34 8/21 -32	11/02 -21 11/03 -12 11/14 -29 11/07 -28 11/15 -78

Table 4.--<u>Water levels in the Potomac-Raritan-Magothy aquifer system in the Camden area, New Jersey</u>--continued.

			UPPER AOI	UIFER (continued	D				
Well				1978	1983	1984	1986	1988	
number	Owner	Well name	altitude	Date Altitude	Date Altitude	Date Altitude	Date Altitude	Date Altitude	
15-379	MANTUA TWP MUA	MTMUA 6	145				<u> </u>	11/09 -40	
15-392	NJ TURNPIKE AUTHORITY	1964-S-1	105				9/15 -28		
15-433	WASHINGTON TMUA	WIMUA 9	135		11/15 -69	11/15 -81	8/21 -91	11/08 -78	
15-511	CHEMICAL LEAMAN	ČL2	10		11/16 3	11/09 3	9/02 2	11/02 1	
15-554	US EPA REGION I	5.74	٥		11/16 3	11/14 1			
15-560	US EPA REGION I	S-11A	11		11/16 2	11/14 1		11/21 1	
15-564	US EPA-GAVENTA	S-9			11/10 8			11/15 3	
15-585	ROLLINS ENVIRON	DP5	8			11/09 2		11/07 .1	
15-591	ROLLINS ENVIRON	25	3	+-			8/25 -8		
15-617	US GEOL SURVEY	SHIVELER UPPER	31	••			8/22 -9	11/14 -7	
15-627	LOGAN TWP-PUREL	MW 103 D	7				8/25 -4		
15-677	EXXON CO	MW 8	28				8/25 2	11/08 -1	
15-699	MOBIL OIL CO	29	9				8/27 3		
15-700	MOBIL OIL CO	40	2				8/27 -4		
15-707	US GEOL SURVEY	GAVENTA W TAB	7					11/15 2	
15-709	ESSEX CHEMICAL	OBS 2	10				8/27 -2		
15-710	BP OIL CO	BL-1	5				8/27 0		
15-728	US GEOL SURVEY	STEFKA 4 OBS	4					11/15 -7	
15-741	US GEOL SURVEY	MANTUA SHALLOW	82				9/05 -47	11/16 -46	
15-773	US GEOL SURVEY	NATIONAL PARK	10					11/15 -7	
15-777	US GEOL SURVEY	NATIONAL PARK	15					11/15 0	
15-779	US GEOL SURVEY	NATIONAL PK	11					11/15 -5	
15-843	BP OIL CO	P-13	20					11/08 1	
15-1000	RATANGELINI IN	ANGELINI	75	÷ -				11/16 -71	
15-1012	PHILLIPS, NELSO	MILLSTREAM FARM	40					11/14 -43	
15-1013	SCHULTES, RICHARD	SCHULTES 1	105			- -		11/18 -65	
15-1031		MATLACK TRUCKIN	47					··	
33-075	BUT SCOUTS OF A	CMT (AUBURN)	15			11/16 -11		11/14 -13	
			MIDDL	<u>E AOUIFER</u>					
05-040	NJ/AMERICAN WC	DVWC 16	18		10/26 8	11/14 6	8/25 5	11/03 6	
05-052	BURLINGTON C WD	BCWD 1 1943	10			11/07 0		11/02 8	
05-063	WILLINGBORO MUA	WILLINGBORO 1 O	45			11/07 -16	8/21 -21	11/02 -21 -	
05-070	BURLINGTON TWP WD	TEST I	60		11/01 -11	11/07 -11	8/22 -14	10/31 -16	
03-080	HEISLEK, ALBEKT	I	46				8/27 -14	11/01 -12	
05-084	MASONIC HOME	MASONIC 1	60	11/12 -11	11/01 -10	11/06 -9	8/21 -5	10/31 -16	
05-086	TENNECO CHEMICALS	TENNECO 5	18			11/14 -6		10/31 -3	
05-087	TENNECO CHEMICALS	TENNECO 5-OBS	14		12/29 -8	11/14 -13	8/23 -6	10/31 -13	
05-089	TENNECO CHEMICALS	TENNECO 7	10		12/29 -7		8/20 -10		
02-090	TENNECU CHEMICALS	TENNECO 6-OBS	15		12/29 -3	11/14 -8	8/20 -7	10/31 -9	

Table 4.--Water levels in the Potomac-Raritan-Magothy aquifer system in the Camden area. New Jersey-continued.

-

MIDDLE AOUIFER (continued)								
Wall			Site	1978	1983	1984	1986	1988
number	Owner	Well name	altitude	Date Altitude	Date Altitude	Date Altitude	Date Altitude	Date Altitude
05-098 05-101 05-106 05-109 05-110	HERCULES POWDER HERCULES POWDER OXIDENTAL CHEMICAL NATIONAL GYPSUM NATIONAL GYPSUM	HERCULES 3 HERCULES 3 OBS HOOKER 2R/SUPPL NAT GYP 2 NAT GYP 3	27 19 20 22 22	11/13 3 11/13 2 11/17 -4 11/17 3	11/04 1 11/04 2 11/04 -4 11/04 -3 11/04 4	11/06 1 11/06 2 11/06 -19 11/08 -2	9/21 2 8/22 2 8/21 -7 8/22 4	11/03 0 11/03 2 11/04 -22 11/03 -5
05-126 05-127 05-134 05-135 05-136	NJ/AMERICAN WC NJ/AMERICAN WC CINNAMINSON TSA HOEGANAES IRON TAYLOR, H G	DVWC 12-POMONA RIVERTON 14 TEST WELL 68 1 HOEGANAES TAYLOR 3	73 35 11 35 16	11/09 -8 11/09 -13 11/09 2 11/07 7	10/27 -17 10/27 -17 10/21 2 10/24 5 10/21 13	11/14 -12 11/14 -17 11/15 2 11/16 6 11/16 13	8/27 -17 8/27 -21 	11/03 -16 11/03 -20
05-137 05-138 05-140 05-145 05-147	TAYLOR, H G TAYLOR, H G CHANT, HARRY R HOLY CROSS HIGH SCHOOL NJ/AMERICAN WC	TAYLOR 2 TAYLOR 1 CHANT 1 HIGH SCHOOL FAIRVIEW ST	14 15 25 70 83	11/06 11 11/06 2 11/15 2 11/15 0	10/21 11 10/21 12 10/28 6 10/27 1 10/26 1	11/16 11 11/16 11 11/15 6 11/15 2 11/14 1	8/22 11 8/22 12 8/25 4 8/22 -2 8/27 1	11/03 11 11/03 11 11/01 4 11/01 -3 11/03 -2
05-150 05-160 05-161 05-180 05-187	AMICO SAND NJ/AMERICAN WC NJ/AMERICAN WC WORKMAN, JAMES FLORENCE TWP WD	AMICO DVWC 22 DVWC 32 WORKMAN I FTWD 4	15 45 40 41 30	11/15 15	10/28 5 10/26 17 10/26 5 12/29 9	11/15 5 11/14 4 11/08 9	8/27 5 8/25 -12 8/27 3 8/22 7 8/21 -6	10/31 4 11/03 4 11/03 -2 11/08 8
05-188 05-190 05-217 05-232 05-261	FLORENCE TWP WD FLORENCE TWP WD INDUSTRIAL PARK MAPLE SHADE WD US GEOL SURVEY	FTWD 3 FTWD 1 TURNPIKE JCTN MSWD 8 MEDFORD 5	30 30 60 20 73	11/07 2 10/26 -5 11/09 -29 11/07 -48	11/04 0 11/04 3 11/03 -35 9/30 -58	11/08 -2 3/07 -5 11/19 -53	8/21 -9 	11/04 -3 11/04 3 11/04 -33 11/07 -61
05-264 05-265 05-266 05-268 05-273	MOORESTOWN TWD MOORESTOWN TWD MOORESTOWN TWD MARLAC ELECTRONICS MOORESTOWN F C	MTWD 5 MTWD 6 MTWD 3 LAYNE 1 FIELD CLUB 1	38 42 40 70 70	11/13 -40 11/13 -38 11/13 -42 11/15 -30 11/16 -27	11/01 -50 11/01 -47 11/01 -52 11/03 -35 12/20 -29	11/13 -44 11/13 -43 11/13 -46 11/15 -32 11/13 -30	8/26 -52 8/26 -50 8/26 -54 8/25 -38 8/27 -33	11/03 -48 11/03 -47 11/03 -52 11/01 -39 11/01 -32
05-276 05-283 05-284 05-290 05-297	CAMPBELL SOUP MOORESTOWN TWD MOORESTOWN TWD MOUNT HOLLY WC RUDDEROW, J E	CAMPBELL 2 MTWD 8 MTWD 4 MHWC 6 SPRING VALLEY	41 65 59 15 48	11/24 -27 11/24 -26	11/01 -35 11/01 -32 11/01 -57		8/29 -40 8/29 -41	12/06 -30 12/19 -34 12/19 -31 12/50 -63 11/01 -71
05-304 05-382 05-385 05-393 05-440	MT LAUREL MUA SYBRON CHEMICAL SYBRON CHEMICAL RIVERSIDE INDUSTRIES RHODIA CORP	MLWC 2 IONIC CHEM 4 IONAC CHEM 5 FTC 39 RHODIA 1	20 30 30 15 72	11/15 -54 	11/02 -63 11/03 -52 11/03 -52 10/28 2	11/14 -71 	8/27 -34 	11/02 -64 11/80 -63 11/80 -61 10/31 1 10/27 -37
	•					•		

Table 4.--Water levels in the Potomac-Raritan-Magothy aquifer system in the Camden area, New Jersey--continued.

7

-

	MIDDLE AQUIFER (continued)												
Well			Site	1978	1983	1984	1986	1988					
number	Owner	Well name	altitude	Date Altitude	Date Altitude	Date Altitude	Date Altitude	Date Altitude					
05-448 05-634 05-649 05-651 05-653	STATE OF NJ MOUNT HOLLY WC WILLINGBORO MUA WILLINGBORO MUA WILLINGBORO MUA	1-REST AREA MHWC 5 WMUA 6 WMUA 9(OLD 3) WMUA 4	· 36 55 33 28 28	11/09 -15 11/15 -20 11/15 -11	10/27 -5 11/03 -58 10/27 -22 10/27 -19 10/27 -11	11/15 -27	8/21 -10 8/21 -31 8/21 -21 8/21 -20	11/07 -10 12/50 -60 11/02 -32 11/02 -29					
05-658 05-661 05-667 05-668 05-749	WILLINGBORO MUA WILLINGBORO MUA WILLINGBORO MUA WILLINGBORO MUA RAMBLEWOOD CC	WMUA 7 WMUA 1 WMUA 5 WMUA DCB 28 3 TEE	19 10 39 43 75	11/09 -13 11/09 -10 11/09 -11 11/09 -6 11/16 -60	10/27 -19 10/27 -16 10/27 -16 10/27 -9 11/02 -69	11/15 -23 11/15 -11 11/15 -18 	8/21 -25 8/21 -17 8/21 -16 8/21 -11 8/25 -76	11/02 -22 11/02 -17 11/02 -11 10/31 -75					
05-751 05-782 05-801 05-804 05-805	RAMBLEWOOD CC RIVERSIDE TWP TEXACO CO TAYLOR, JOSEPH CINNAMINSON TSA	2 TEE SEWERAGE 1 OW 10 I I	20 10 20 10 11	11/17 -55 	11/02 -64 10/26 0 10/21 2	11/15 -61 11/15 I 11/15 Z	8/25 -70 8/22 -2 8/22 4 8/25 l	10/31 -69 11/01 0 10/31 -1 10/31 -1					
05-807 05-812 05-814 05-1091 07-039	HOEGANAES IRON HOEGANAES IRON HOEGANAES IRON WILLINGBORO MUA CAMDEN CITY WD	L1 L6 I2 WMUA 11 CITY 7N	12 8 18 28 21	 	10/24 4 10/24 5 10/24 8 	11/16 5 11/16 4 11/16 8 	8/22 4 9/23 4 8/22 8 	10/31 3 10/31 4 10/31 10 11/02 -16 11/04 -28					
07-040 07-046 07-048 07-061 07-124	CAMDEN CITY WD CAMDEN CITY WD CAMDEN CITY WD CAMDEN CITY WD NJ/AMERICAN WC	CITY 7 CITY 11 CITY 6N CITY 4 BROWNING 45	21 13 14 41 77	11/12 -34 11/12 -31 11/12 -26 11/12 -37 11/09 -77	11/21 -31 11/21 -27 11/23 -26 11/21 -33 11/10 -84	11/25 -27 11/26 -23 11/28 -20 11/26 -29 11/15 -72	9/03 -27 9/03 -24 9/03 -21 9/03 -31 8/20 -99	11/15 8 11/03 -20 11/04 -29 11/04 -92					
07-132 07-134 07-135 07-142 07-146	NJ/AMERICAN WC NJ/AMERICAN WC NJ/AMERICAN WC NJ/AMERICAN WC NJ/AMERICAN WC	OLD ORCHARD C OLD ORCHARD 37 OLD ORCHARD 38 ELLISBURG 23 KINGSTON 27	71 68 72 32 40	11/08 -82 	11/16 -81 	11/14 -77 	8/20 -118 8/22 -73	11/03 -81 11/08 -73 11/08 -73 11/09 -66 11/80 -70					
07-147 07-186 07-195 07-304 07-315	NJ/AMERICAN WC NJ/AMERICAN WC G & W NATURAL R HADDONFIELD WD NJ/AMERICAN WC	KINGSTON 25 GIBBSBORO OB 3 5-DEEP LAKE ST WELL MAGNOLIA 16	44 70 10 50 78	11/08 -65 11/13 -77 7/12 -54 11/08 -89	11/10 -68 11/10 -84 11/08 -56 11/16 -89	11/14 -65 11/15 -82 11/21 -36 11/20 -68 11/13 -81	8/20 -91 8/20 -98 9/03 -78 8/21 -120	11/08 -67 11/02 -88 11/10 -72 11/07 -87					
07-329 07-338 07-413 07-423 07-476	MCHVIL PNSK WCM US GEOL SURVEY NJ/AMERICAN WC NJ/AMERICAN WC US GEOL SURVEY	BROWNING 2A/BRO PETTY I EAST 3 ELM TREE 3 ASHLAND TER 32 NEW BROOKLYN 1	16 5 149 70 111	11/14 -36 11/16 -69 11/16 -46	11/03 -31 11/03 -19 11/09 -78 11/08 -53	11/19 -32 11/16 -76 11/13 -96 12/07 -52	8/26 -39 8/20 -89 8/21 -108 9/05 -55	1/09 -34 1/80 -19 1/18 -82 1/02 -83 1/18 -57					

Table 4.--Water levels in the Potomac-Raritan-Magothy aquifer system in the Camden area. New Jersey--continued.

.

	MIDDLE AOUIFER (continued)										
Well	Oumer	Well name	Site altitude	Date Altitude	Date Altitude	Date Altitude	Date Altitude	Date Altitude			
07-564 15-024 15-069 15-076 15-084	NJ DEP DEPTFORD TWP MUA GREENWICH TWD HERCULES CHEMICAL HERCULES CHEMICAL	HARRISON 4 DTMUA 4 GTWD 3(NEW 4) 4 1970 GIBBSTOWN 2	15 40 10 15 12	11/09 -48 11/14 -9 	12/02 -12 11/03 -50 11/15 -9 11/15 0	11/26 -10 11/13 -43 11/14 -8	9/05 -13 9/23 -47 9/03 -12	11/04 -12 11/10 -46 11/01 -10 11/01 -1 11/01 -9			
15-094 15-096 15-097 15-098 15-134	MOBIL OIL CO HERCULES CHEMICAL HERCULES CHEMICAL MOBIL OIL CO PURELAND WC	MOBIL 44 GIBBSTOWN OB 2 GIBBSTOWN TH8/T MOBIL 45 TEST WELL 2	7 14 6 3 18	11/14 -6 	11/21 -31 11/15 -6 11/15 -1 		8/26 -3	11/30 -14 11/01 -7 11/10 -1 			
15-135 15-137 15-140 15-143 15-144	SHELL OIL CO PURELAND WC PURELAND WC PURELAND WC PURELAND WC	OBS WELL 8A PURE 2(3-1973) TEST WELL 4 LANDTECT TW-6C 1-1973	7 29 6 19 8	 11/16 11/16 3	11/16 4 11/16 -6 11/16 1 11/16 2 11/17 -2	11/16 -2 	9/03 -4 	11/07 3 11/09 -8 11/09 0 11/07 1 11/09 -3			
15-146 15-161 15-166 15-167 15-170	PURELAND WC MONSANTO CHEMICAL PENNS GROVE WSC MONSANTO CHEMICAL VINE CONCRETE CO	LANDTECT TW-9 OBI(TW5-OBC) BRIDGEPORT 2 MONSANTO 1 REPAUP 1	5 8 5 10 11	11/16 2	11/16 -2 11/15 -9 11/17 1 	11/07 -5 11/16 		11/80 -3 11/08 -7 11/01 2 11/08 -12 11/16 4			
15-212 15-213 15-236 15-238 15-242	PAULSBORO WD PAULSBORO WD SWEDESBORO BWD SWEDESBORO BWD DEL MONTE CORP	PWD 4 PWD 5 SBWD 3 SBWD 2 6	25 10 75 30 25	11/15 -22 11/15 -10 	1/02 -22 11/02 -10 13/08 -20 11/08 -21 11/18 -21	11/14 -11 11/14 -9 11/14 -20	8/25 -19 8/25 -11 	11/07 -22 11/07 -10 11/10 -22 11/10 -24 11/01 -21			
15-279 15-347 15-348 15-354 15-359	SHELL CHEMICALCO GREENWICH TWD GREENWICH TWD ROLLINS ENVIRONMENTAL E I DUPONT	SHELL OBS 7 GTWD 5 (2-A) GTWD 6 DP 2 C POWER 22	17 20 20 13 5	11/08 -23 11/14 0 11/14 -9 	11/04 -24 11/15 -2 11/16 -10 11/17 7 11/15 2	11/27 -24 11/14 -9 	× 8/28 -27 9/03 -4 9/03 -12 	11/10 -26 11/01 -2 11/01 -11 11/20 6 11/20 0			
15-374 15-387 15-395 15-415 15-431	DEPTFORD TMUA ROLLINS ENVIRONMENTAL REPAUPO FIRE CO W DEPTFORD TWD WOODBURY WD	DTMUA 6 DP 1 30-1972 TEST 8-79 RED BANK 6	50 10 20 40 30		11/03 -65 11/17 6 11/18 -4 11/03 -42 10/31 -46	11/13 -60 	9/23 -67 8/26 5 8/25 -12 9/03 -51	11/10 -63 11/01 9 11/01 -13 11/14 -39			
15-435 15-490 15-492 15-494 15-540	W DEPTFORD TWD ROLLINS ENVIRONMENTAL ROLLINS ENVIRONMENTAL ROLLINS ENVIRONMENTAL US EPA	WDTWD 8 MA-31 MA-3D MA-3S EPA 108	40 3 3 3 7		11/03 -43 11/17 1 11/17 3 11/17 2	11/20 -39 	8/21 -48 	11/14 -38 11/20 0 11/20 -1 11/20 0 11/15 2			

.

Table 4.--Water levels in the Potomac-Raritan-Magothy aquifer system in the Camden area. New Jersey--continued.

	MIDDLE AQUIFER (continued)											
Well			Site	1978	1983	1984	1986	1988				
number	Owner	Well name	altitude	Date Altitude								
15-549	CHEMICAL LEAMAN	DWI	7		11/16 5	11/09 5						
15-550	CHEMICAL LEAMAN	DW2	10		11/16 3	11/09 2		11/23 2				
12-222	US EPA REGION I	S-2B	11		11/16 2			11/21 3				
15 561	US EPA REGION I	S-2C	11		11/16 1			11/21 1				
15-501	US EFA REGION I	5-118	11		11/16 6			11/21 6				
15-562	US EPA REGION I	S-11C	11		 –			11/21 5				
12-209	PUKELAND WC	PWC 3	32			11/07 -12		11/09 -12				
15-500	KULLING ENVIKUNMENTAL		12			11/09 2		11/02 2				
15-620		GAVENTA MIDDLE	31			÷		11/14 -8				
15-620	US GEOL SURVET	UAVENTA MIDDLE	/					11/14 2				
15-647	HERCULES CHEMICAL	MW 19B	12				8/26 -5					
15-652	HERCULES CHEMICAL	MW 12	1				8/26 -4					
13-034	HERCULES CHEMICAL	MW 14	2		··		8/26 -3					
15-037	E I DUPONT	OBS 38	9				8/28 -8					
13-000	ETDUPONT	OB2 33	8	+-			8/28 0					
15-661	E I DUPONT	OBS 31	8				8/28 .5					
15-665	HERCULES CHEMICAL	MW 20C	14				8/26 -6					
15-667	HERCULES CHEMICAL	MW 20	14				8/26 -5					
10-008	HERCULES CHEMICAL	MW 10C	8				8/27 0					
13-0/9	MUBIL UIL CO	W-5D	10				8/27 -4	11/03 -3				
15-681	MOBIL OIL CO	W-7D	9				8/27 0	11/03 1				
15-682	MOBIL OIL CO	W-8D	11				8/27 .9	11/03 -3				
15-683	MOBIL OIL CO	W-9D	11				8/27 -8					
12-082	EXXON CO	MW 7	30					11/08 6				
12-089	EIDUPONI	DUPONT 93	10					11/02 2				
15-692	E I DUPONT	INTERCEPTOR 46	5				8/28 -3					
15-693	E I DUPONT	42	5				8/28 -2					
15-09/	PENNS GROVE WC	BRIDGEPORT BACK	8				8/29 i	11/01 4				
15-/15	US GEOL SURVEY	STEFKA Z OBS	6					11/15 -8				
13-727	US GEOL SURVEY	STEFKA	3					11/15 -8				
15-771	US GEOL SURVEY	NATIONAL PARK	10					LI/15 -6				
15-774	US GEOL SURVEY	NATIONAL PARK	10					11/15 -1				
15-776	US GEOL SURVEY	NATIONAL PARK	15				•• ••	11/15 -4				
15-780	US GEOL SURVEY	NATIONAL PK	10			···	+ -	1/15 1				
12-998	US GEOL SURVEY	CLAYTON I	141					11/15 -109				
15-1039	MOBIL OIL CO	MOBIL 48 DWTA	7			-		11/03 11				
33-080	AIR REDUCTION	AIRCO I	15			11/07 0		11/02 6				
Ph-012	U S NAVY		9			11/20 -7	9/03 -7	11/08 -7				
							<i></i>	1///0 -/				

-

.

Table 4.--Water levels in the Potomac-Raritan-Magothy aquifer system in the Camden area, New Jersey--continued.

•

337-41		Well name	LOWER Site altitude	<u>R AQUIFER</u> 1978	1983	1984	1986	1988
number	Owner	Well name	altitude	Date Altitude	Date Altitude	Date Altitude	Date Altitude	Date Altitude
05-123 05-125 05-130 05-131 05-143	NJ/AMERICAN WC NJ/AMERICAN WC NJ/AMERICAN WC NJ/AMERICAN WC NJ/AMERICAN WC	DVWC 28 DVWC 10 RIVERTON 13 DVWC 27 DVWC 23	25 79 70 75 36	11/09 -10 11/09 -11 11/09 -4 	10/27 -12 10/27 -15 10/26 -3	11/14 -12 11/14 -13 11/14 -12 	8/27 -16 8/29 -16 8/29 -10 8/29 -7	11/03 -16 11/03 -16 11/03 -14 11/04 -10 11/03 -7
05-146 05-228 05-262 05-272 05-274	NJ/AMERICAN WC MAPLE SHADE WD US GEOL SURVEY MOORESTOWN TWD CAMPBELL SOUP	DVWC 19 MSWD 10 MEDFORD 4 MTWD 7 CAMPBELL 1	25 40 72 40 40	11/15 3 11/08 -47 11/06 -48 11/24 -16 11/24 -20	10/26 2 11/03 -51 9/30 -58 11/01 -22 11/01 -26	11/14 2 12/12 -52 11/16 -37 11/15 -26	8/27 0 8/25 -57 8/29 -33 9/29 -26	11/03 0 12/14 -60 11/07 -60 12/19 -34 12/06 -29
05-645 05-648 05-717 05-732 05-746	WILLINGBORO MUA WILLINGBORO MUA WILLINGBORO MUA BURLINGTON TWP WD MAPLE SHADE WD	WILLINGBORO 2 O WMUA 3-OBS WMUA 9 4 MSWD 11	40 34 30 80 20	11/07 -31 11/09 -20 	11/01 10/27 -23 11/03 -34	11/01 -35 11/15 -24 11/14 -34	8/21 -40 8/21 -29 	11/07 -41 11/02 -29 11/02 -27 10/31 -14 11/18 -36
05-819 05-822 05-823 05-1075 07-012	MT LAUREL MUA MT LAUREL MUA MT LAUREL MUA MT LAUREL MUA BELLMAWR BORO WD	MLMUA 6 MLMUA 3 MLMUA 4 ELBO LANE 7 BBWD 3	20 35 35 40 35	11/16 -48 12/01 -53	11/02 -59 11/02 -57 11/02 -62 11/07 -56	11/14 -64 11/14 -58	8/27 -68 9/03 -55	11/20 -68 11/20 -74 11/02 -75 11/02 -83 11/09 -48
07-029 07-047 07-064 07-068 07-078	NY SHIPBUILDING CAMDEN SEWAGE AUTHORITY CAMDEN CITY WD CAMDEN CITY WD CAMDEN CITY WD	9 SEWAGE PLANT I CITY 17 CITY 13 CITY 5N	12 9 34 30 22	11/09 -16 11/12 -36 11/12 -26	11/28 -14 11/21 -39 11/21 -35 11/21 -21	11/15 -12	8/25 -15 8/25 -13 9/03 -33 9/03 -20	11/18 -12 11/50 -32 11/05 -28 11/04 -19
07-079 07-083 07-090 07-094 07-098	CAMDEN CITY WD CAMDEN CITY WD CAMDEN CITY WD CAMDEN CITY WD NJ/AMERICAN WC	CITY 12 CITY 1A CITY 10 CITY 16 CAMDEN DIV 52	23 10 10 23 18	11/12 -17 11/09 -33 11/09 -31 11/08 -32	11/21 -13 11/21 -25 11/21 -24 11/21 -26	11/28 -11 11/28 -22 11/28 -20 11/28 -23	9/03 -13 9/03 -23 9/03 -22 9/03 -25	11/04 -11 11/04 -22 11/04 -21 11/04 -24 11/04 -26
07-107 07-108 07-111 07-112 07-121	NJ/AMERICAN WC NJ/AMERICAN WC NJ/AMERICAN WC NJ/AMERICAN WC NJ/AMERICAN WC	CAMDEN DIV 51 CAMDEN DIV 10 CAMDEN DIV 50 CAMDEN DIV 48 BROWING T-1	20 11 9 10 80	11/09 -34	1/10 -29 	1/10 -35 1/10 -29 11/15 -30 11/15 -27 11/15 -140	8/22 -30 8/22 -29 8/22 -35 8/20 -107	11/04 -30 11/04 -26 11/04 -34 11/04 -103
07-122 07-123 07-130 07-144 07-157	, NJ/AMERICAN WC NJ/AMERICAN WC NJ/AMERICAN WC NJ/AMERICAN WC NJ/AMERICAN WC	BROWNING 44 BROWNING 46 OLD ORCHARD A ELLISBURG 13 COLUMBIA 31	80 81 71 39 45	11/08 -84 11/08 -67 11/09 -60	11/10 -93 11/10 -75 11/16 -64	11/14 -74 11/14 -64 11/14 -52	8/20 -109 8/20 -86 8/22 -56	11/04 -100 11/04 -101 11/03 -80 11/09 -67 11/09 -55

Table 4.--Water levels in the Potomac-Raritan-Magothy aquifer system in the Camden area, New Jersey-continued.

	LOWER AQUIFER (continued)												
Well			Site	1978	1983	1984	1986	1988					
number	Owner	Well name	altitude	Date Altitude	Date Altitude	Date Altitude	Date Altitude	Date Altitude					
07-163	NJ/AMERICAN WC	COLUMBIA 22	39	11/09 -46	11/10 -51	11/14 -56	8/22 -53						
07-172	COLLINGSWOOD WD	CWD 6(A)	10		11/03 -45			11/70 -33					
07-175	COLLINGSWOOD WD	CWD IR	25	11/07 -41	11/03 -40	11/14 -39		11/07 -37					
07-176	COLLINGSWOOD WD	CWD 2R	12			11/14 -54	8/26 -50	11/70 -47					
07-178	COLLINGSWOOD WD	CWD 3	15	11/07 -44	11/03 -41	11/14 -55	8/26 -51	11/07 41					
07-179	COLLINGSWOOD WD	CWD 5	10	11/07 -46	11/03 -44		8/26 -50	11/07 -40					
07-185	NJ/AMERICAN WC	GIBBSBORO OB 1	70	11/13 -77	11/10 -92	11/15 -131	8/20 -116	[]/0] -98					
07-188	NJ/AMERICAN WC	GIBBSBORO 42	/0	11/13 -76	11/10 -84	11/15 -124	8/20 -132	11/01 -86					
07.104		01000000042	05					11/02 -89					
07-194		4-DEEP	8	7/12 -55	11/08 -55	11/21 -33							
07-190	G & W NATURAL R		6		11/08 -59	11/21 -39							
07-201	AMSPEC CHEMICAL	AMSPEC 1	8 5		11/08 -60	11/21 -36							
07-204	AMSPEC CHEMICAL	AMSPEC 4	S		11/08 -57	11/26 -39	8/20 -41	11/15 -40					
07 205	CORCONIS FOOD	3	-		11/06 -33	11/20 -38	8/20 -39	11/15 -39					
07-205	CORSON'S FOOD	3	7	÷	11/10 -50	11/20 -39	8/20 -38	11/18 -37					
07-207	CORSON'S FOOD	IFRSEV AVE 1	9		11/10 -47	11/20 -35	8/20 -37	11/18 -35					
07-220	GLOUCESTER CITY WD	GCWD 40	10		11/10 -47	11/26 -34	8/20 -40	11/18 -36					
07-221	US GEOL SURVEY	COAST GUARD I	ii	11/22 -38	12/02 -35	1/20 -41	9/04 -46 819 -31	11/23 -49 -					
07-222	GLOUCESTER CITY WD	GCWD 41	10				0/04 20						
07-273	NJ/AMERICAN WC	OTTERBROOK 29	60	11/08 -72	11/07 -71	11/13 -76	8/21 _02	11/02 77					
07-2/8	NJ/AMERICAN WC	HADDON 15	65	11/09 -72	11/07 -76		8/21 -86	11/09 _87					
07-281	NJ/AMERICAN WC	HADDON 14	76	11/09 -72	11/07 -76	11/09 -74	8/21 -85	11/09 -79					
07-205	NJ/AMERICAN WC	EUDERI	24	11/09 -63	11/07 -64	11/14 -81	8/22 -70	11/02 -64					
07-290	HADDON TWP WD	HTWD 1	56		11/10 -66			11/18 -74					
07-292		HTWD 4	45	11/09 -63	11/10 -64	11/15 -62	8/26 -76	11/18 -67					
07-320	MCHVII PNSK WCM	WOODBINE I	25	11/08 -72	11/04 -79	11/20 -78	9/03 -92	11/10 -85					
07-332	MCHVIL PNSK WCM	MARION 2	65	11/14 -57	11/04 -40		8/26 -45	11/09 -38					
07 336			05	11/14 -42	11/04 -45	11/19 -45	8/26 -52	11/09 -45					
07-335	MURVIL PNSK WCM	MARION 1	61		11/04 -35			11/09 -35					
07-341	MCHVIL PNSK WCM	DELA GARDEN 2	5		11/03 -19	11/26 -17	8/25 -18	12/13 -19					
07-343	US GEOL SURVEY	PETTY I WEST I	39	11/14 -28	11/03 -27	11/19 -26	8/26 -26	11/09 -25					
07-348	MCHVIL PNSK WCM	PARK AVE 3	25	11/14 -34	11/03 -35	11/19 .35	8/25 -18	11/08 -19					
07-354	GENERAL FOODS	DETTV IS ODS	12		1000 000	(1/1) - (0/20 -39	11/09 -34					
07-359	CAMDEN CITY WD	PUCHACK 5	12		11/04 2	11/26 1	8/25 1	11/08 1					
07-367	CAMDEN CITY WD	PUCHACK 3	10	11/19 -20	12/06 -26	11/28 -25	8/28 -30	11/04 -17					
07-368	CAMDEN CITY WD	DELAIR 1	iŏ		12/06 -33			11/04 -30					
07-370	CAMDEN CITY WD	DELAIR 3	8		12/06 +17			11/50 -17					
								11/30 -13					

Table 4.--Water levels in the Potomac-Raritan-Magothy aquifer system in the Camden area, New Jersey--continued.

			LOWER AO	UIFER (continue	1)	1984	1986	1988
Well number	Owner	Well name	Site altitude	Date Altitude	Date Altitude	Date Altitude	Date Altitude	Date Altitude
07-372 07-373 07-375 07-377 07-379	MCHVIL PNSK WCM CAMDEN CITY WD CAMDEN CITY WD CAMDEN CITY WD CAMDEN CITY WD	NATIONAL HWY 1 MORRIS 6 MORRIS 8 MORRIS 7 MORRIS 10	40 14 10 10 16	 11/19 -16	11/17 -25 11/17 -22 11/17 -12	11/26 -12 11/28 -10	8/28 -13	11/08 -51 11/50 -17 11/50 -18 11/05 -12
07-382 07-390 07-412 07-523 07-527	CAMDEN CITY WD CAMDEN CITY WD NJ/AMERICAN WC BELLMAWR BORO WD CAMDEN CITY WD	MORRIS 4A MORRIS 1 ELM TREE 2 BELLMAWR BORO PARKSIDE 18	8 9 149 75 40	11/19 -12 11/19 -6 11/16 -63 12/01 -62 11/12 -37	11/17 -11 11/17 -5 11/09 -72 11/07 -64 11/21 -37	11/28 -3 11/16 -73 11/14 -70 11/28 -33	8/28 -9 8/28 -5 8/20 -80 9/04 -70	11/05 -13 11/05 -8 11/18 -78 11/09 -67 11/05 -31
07-528 07-533 07-535 07-537 07-538	CAMDEN CITY WD CADILLAC PET FO CAMDEN CITY WD CAMDEN CITY WD CAMDEN CITY WD	PUCHACK 7 l TW-1-79 TW-4-79 TW-5-79	20 8 10 10 10	11/19 -23	12/06 -28 	11/28 -29 1/30 -14 11/28 -24 11/28 -39	8/28 -33 8/28 -23 8/28 -30 8/28 -35	11/04 -32
07-539 07-540 07-541 07-547 07-548	CAMDEN CITY WD CAMDEN CITY WD CAMDEN CITY WD NJ/AMERICAN WC BRENAMAN, JE	TW-6-79 TW-7-79 TW-8-79 54 1	10 10 20 35 10		11/17 -37 11/21 -34 11/04 -5	11/28 -29 11/26 -30 1/10 -33	8/28 -29 9/05 -36 8/22 -33	11/50 -31 11/04 -31 11/04 -32 12/13 -21
07-560 07-563 07-596 07-597 07-674	MCHVIL PNSK WCM NJ DEP BROOKLAWN BORO WD NJ/AMERICAN WC HADDON TWP WD	WOODBINE 2 HARRISON 3 BBWD 4 55 HTWD 2A	50 15 10 11 60		11/30 -16 11/14 -52	11/19 -48 11/26 -13 1/10 -31	9/05 -15 8/21 -31	11/04 -15 11/23 -51 11/04 -30 11/18 -68
15-109 15-139 15-175 15-220 15-282	MOBIL OIL CO PURELAND WC AM DREDGING CO ESSEX CHEMICAL W DEPTFORD TWP WD	MOBIL 41 TEST WELL 3 RACCOON IS T 1 OLIN 1 5 KINGS HIWAY	20 7 8 10 55	11/16 -9 11/15 0 	11/21 -9 11/16 -9 11/17 1 11/09 -7 	11/14 -10 11/07 -10 11/16 0 11/15 -8	9/03 -12 8/20 -37	11/09 -10 11/16 -1 11/07 -7 11/14 -34
15-285 15-296 15-308 15-309 15-311	SHELL CHEMICAL CO SHELL CHEMICAL CO PENNWALT CORP PENNWALT CORP PENNWALT CORP	SHELL 1 SHELL OBS 5 TEST WELL 8 TEST WELL 5 TEST WELL 7	12 21 10 10 10	11/08 -16 12/13 -14 12/13 -13 12/13 -10	10/31 -16 11/04 -15 11/04 -13 11/04 -10	11/27 -17 11/19 -14 11/19 -13 11/19 -9	8/28 -35 8/28 -19 9/02 -11	11/15 -18 11/10 -19 11/10 -17 11/10 -13
15-312 15-313 15-316 15-318 15-320	W DEPTFORD TWP WD W DEPTFORD TWP WD TEXAS OIL CO TEXAS OIL CO TEXAS OIL CO	6 RED BANK AVE WDTWD 2 EAGLE PT OBS I EAGLE POINT 2 EAGLE POINT I	20 23 32 17 20	11/15 -53 12/13 -67	10/25 -55 10/25 -50 10/25 -54 10/25 -51 10/25 -52	11/20 -54 11/14 -55 11/14 -53 11/14 -59	··· ·· ·· ·· ·· ·· ·· ··	11/14 -56 11/08 -58 11/08 -54 11/08 -56

•

Table 4.--Water levels in the Potomac-Raritan-Magothy aquifer system in the Camden area, New Jersey--continued.

	LOWER AQUIFER (continued)											
Well			Site	1978 -	1983	1984	1986	1988				
number	Owner	Well name	altitude	Date Altitude	Date Altitude	Date Altitude	Date Altitude	Date Altitude				
15-321	TEXAS OIL CO	EAGLE POINT 5	13		10/25 -57	11/14 -65						
13-322	COASTAL OIL CO	EAGLE POINT 3	20			11/14 -68		1000 -01				
15-325	WESTVILLEWD	EAGLE PI OBS 3	21	8/15 -52	9/29 -43	11/14 -40	9/05 -35	11/16 -44				
15-327	WESTVILLEWD		12	11/16 -47	11/03 -48	11/16 -46		11/15 -48				
()-527	WESTVILLE WD	W WD 4	16		11/03 -59			11/15 -51				
15-331	WOODBURY WD	RAILROAD 5	35	11/14 -44	10/31 -47	11/19 -45		, 11/1053				
13-349	PURELAND WC	LANDTECT 2	6	11/16 -6	11/16 -6	11/16 -5		11/08 -9				
15 272	W DEPTEORD TWD	LANDIECTI	20	11/16 -8	11/16 -9	11/07 -9		11/07 -9				
15-373	W DEPTROKD I WD	WDTWD7	28				8/21 -58					
13-396	FETTIT, LOUIS	419	1					11/03 -2				
15-430	TEXAS OIL CO	EAGLE POINT 6A	15	·	10/25 -49	11/14 -63		11/09 53				
15-434	WESTVILLE WD	WWD 6	15		11/03 -60	11/16 -72		11/06 -33				
15-438	GLOUCESTER MUA	GCMUA 1	10			** **	9/03 .10	11/13 -49				
12-233	NATIONAL PARK WD	NPWD 6	22		11/07 -33	11/14 -31	8/21 -35	11/14 -16				
12-090	MOBIL OIL CO	W-3D	8		**		8/27 -14					
15-711	MOBIL OIL CO	W-8C	12				977 0					
15-712	US GEOL SURVEY	STEFKA I OBS	7				8/2/ -8	11/03 -5				
15-738	MOBIL OIL CO	W-4C	5	·				11/15 -10				
15-742	US GEOL SURVEY	MANTUA DEEP	84	÷			0/05 20	11/05 -9				
15-770	US GEOL SURVEY	NATIONAL PARK	10	~ ~				11/15 -25				
15-999	US GEOL SURVEY	CLAYTON 2 DEEP	142									
15-1004	US GEOL SURVEY	CEDAR LAKE DEEP	80					11/15 -58				
15-1061	MOBIL OIL CO	W-4D	4	+-				11/15 -118				
33-086	B F GOODRICH CO	4 (PW-3)	13		11/18 -12	11/07 -37		11/03 -3				
33-187	US GEOL SURVEY	POINT AIRY OBS	73		<u> </u>	12/06 -25	8/27 -29	11/09 -11				
Ph-001	U S NAVY		11				0/07 0	11/00				
Ph-006	U S NAVY		10				9/03 -8	11/08 -8				
Ph-019	USNAVY		9				9/03 -7	11/15 -4/				
Ph-063	ROOSEVELT PARK		6				0/09 5	11/08 -22				
Ph-086	U S NAVAL HOSPITAL		8				9/16 -2					
Ph-124	PRES. CATERERS		33			19/13 1	-					
Ph-127	DISCNT PLYWOOD		25		- -	12/15 -1	9/04 3					
Ph-417	PUBLICKER INDUSTRIES		Š			11/12 12	9/22 -1					
Ph-430	CROWN PAPER BOARD		14			11/13 -13						
Ph-750	S A F AMERICA	-	10	**		12/13 -0	9/04 -1 9/22 -9					
Ph-780	UNITED NESCO CONTAINERS		11				9/16 -3					

-

Table 4.--Water levels in the Potomac-Raritan-Magothy aquifer system in the Camden area. New Jersey-continued.

-

Table 5.-Well-location and -construction data

[WSCH, Wissahickon Schist; MRPA, Potomac-Raritan-Magothy aquifer system (undifferentiated); MRPAL, lower aquifer of the Potomac-Raritan-Magothy aquifer system; MRPAM, middle aquifer of the Potomac-Raritan-Magothy aquifer system; PNPN, Piney Point aquifer; QRNR, Quaternary the Potomac-Raritan-Magothy aquifer system; SNPAU, upper aquifer of the Potomac-Raritan-Magothy aquifer system; PNPN, Piney Point aquifer; QRNR, Quaternary sands; n/a, not applicable; --, missing information; DMS, degrees, minutes, seconds; TWP, Township; BORO, Borough; MUA, Municipal Utilities Authority; WD, Water Department; WC, Water Company; WCM, Water Commission; CC, Country Club; GC, Golf Club; TSA, Township Sewer Authority; (G), information from Greenman and others (1961); (P), information from Paulachok and others (1984)]

Well Number	Owner	Local Identifier	Municipality	Lati- tude (DMS)	Longi- tude (DMS)	Land- Surface Elevation (ft)	Aquifer	Depth of Well (ft)	Depth to Well Opening (ft)	Bottom of Well Opening (ft)	N.J. Well Permit Number
05-039 05-040 05-052 05-053 05-060	NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO BURLINGTON CITY WD US PIPE BURLINGTON CITY WD	DVWC 15 DVWC 16 BCWD 1 1943 US PIPE 1 BCWD 2	BEVERLY CITY BEVERLY CITY BURLINGTON CITY BURLINGTON CITY BURLINGTON CITY	400404 400405 400455 400514 400538	745520 745517 745121 745020 745053	12. 18. 10. 15. 21.	MRPAM MRPAM MRPAM MRPAU MRPAU	57. 51. 78. 42. 49.	47. 39. 57. 15. 33.	57. 51. 78. 42. 49.	27-00356 27-01528 47-00002 27-05342 27-00600
05-062 05-063 05-064 05-070 05-074	BURLINGTON CITY WD WILLINGBORO MUA FIRST NATIONAL BANK BURLINGTON TWP WD BURLINGTON TWP WD	BCWD 4 WMUA 1 BANK 2 TEST 1 3	BURLINGTON CITY BURLINGTON TWP BURLINGTON TWP BURLINGTON TWP BURLINGTON TWP	400541 400213 400234 400313 400313	745043 745108 745307 745004 745004	18. 45.45 35. 60. 50.	MRPAM MRPAM MRPAM MRPAM MRPAM	43. 294. 209. 200. 270.	27. 284. 189. 140.	43. 294. 209. 200. 	27-00738
05-075 05-076 05-077 05-079 05-080	KELLER, EARL B HEAL, CHARLES JR BURLINGTON TWP WD BURLINGTON TWP WD HEISLER, ALBERT	EBK 1 HEAL 1-1973 2-1973 1	BURLINGTON TWP BURLINGTON TWP BURLINGTON TWP BURLINGTON TWP BURLINGTON TWP	400320 400324 400326 400327 400331	744938 745152 744942 744934 745316	75. 50. 60. 80. 46.	MRPAM MRPAU MRPAU MRPAM MRPAM	202. 80. 165. 224. 252.	59. 123. 212.	80. 165. 252.	31-01751 27-05716 27-05727 27-00196
05-081 05-082 05-084 05-086 05-087	HEISLER, EDGAR B MURPHY, ALBERT MASONIC HOME TENNECO CHEMICALS TENNECO CHEMICALS	HEISLER 1 FOX HILL MASONIC 1 TENNECO 5 TENNECO 5-OBS	BURLINGTON TWP BURLINGTON TWP BURLINGTON TWP BURLINGTON TWP BURLINGTON TWP	400331 400338 400342 400404 400407	745317 745245 744948 745301 745246	30. 35. 60. 18. 14.40	MRPAM MRPAM MRPAM MRPAM MRPAM	215. 82. 194. 132. 60.	185. 64. 174. 102. 50.	215. 82. 194. 132. 60.	27-02664 27-04380 27-03694
05-089 05-090 05-091 05-092 05-094	TENNECO CHEMICALS TENNECO CHEMICALS TENNECO CHEMICALS TENNECO CHEMICALS TENNECO CHEMICALS	TENNECO 7 T 6-OBS TENNECO 4 TENNECO 1 TENNECO 3	BURLINGTON TWP BURLINGTON TWP BURLINGTON TWP BURLINGTON TWP BURLINGTON TWP	400409 400409 400418 400418 400417	745247 745309 745250 745247 745257	10. 15. 14. 10. 7.	MRPAM MRPAM MRPAM MRPAM MRPAM	130. 65. 112. 120. 122.	100. 55. 82. 87. 97.	130. 65. 112. 117. 122.	27-05458 27-03695 27-04379 27-03815 27-03817
05-097 05-098 05-100 05-101 05-106	HERCULES POWDER HERCULES POWDER HERCULES POWDER HERCULES POWDER OXIDENTAL CHEM CO	HERCULES 1 HERCULES 3 HERCULES 2 HERCULES 3 OBS 2R/SUPPLY 2	BURLINGTON TWP BURLINGTON TWP BURLINGTON TWP BURLINGTON TWP BURLINGTON TWP	400524 400525 400535 400543 400617	744951 744938 744941 744948 744920	22. 27.40 22. 19.24 20.	MRPAM MRPAM MRPAM MRPAM MRPAM	146. 136. 146. 104. 146.	105. 111. 105. 94. 126.	135. 136. 135. 104. 146.	47-00007 27-03568 27-05263

Well Number	Owner	Local Identifier	Municipality	Lati- tude (DMS)	Longi- tude (DMS)	Land- Surface Elevation (ft)	Aquifer	Depth of Well (ft)	Depth to Well Opening (ft)	Bottom of Well Opening (ft)	N.J. Well Permit Number
05-109 05-110 05-123 05-124 05-125	NATIONAL GYPSUM NATIONAL GYPSUM NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO	NAT GYP 2 NAT GYP 3 DVWC 28 STEPHENS DR DVWC 10	BURLINGTON TWP BURLINGTON TWP CINNAMINSON TWP CINNAMINSON TWP CINNAMINSON TWP	400632 400632 395904 395906 395929	744904 744904 750009 750006 745922	22. 22. 25. 30. 79.	MRPAM MRPAM MRPAL MRPAL MRPAL	123. 142. 262. 270. 281.	113. 122. 226. 221. 239.	123. 142. 261. 267. 281.	27-01773 27-04436 31-05321 31-05437 31-03835
05-126 05-127 05-128 05-129 05-130	NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO RIVERTON CLUB NJ/AMERICAN WATER CO	DVWC 12 RIVERTON 14 DVWC 26 COUNTRY CLUB 2 RIVERTON 13	CINNAMINSON TWP CINNAMINSON TWP CINNAMINSON TWP CINNAMINSON TWP CINNAMINSON TWP	395929 395938 395938 395945 400002	745922 745810 745810 750011 750044	73. 35. 35. 60. 70.	MRPAM MRPAM MRPA MRPAL MRPAL	196. 229. 225. 174. 198.	157. 179. 167.	196. 229. 	31-04276 31-04697 31-04733 27-04844 31-04576
05-131 05-132 05-134 05-135 05-136	NJ/AMERICAN WATER CO RIVERTON CLUB CINNAMINSON TSA HOEGANAES IRON TAYLOR, H G	DVWC 27 COUNTRY CLUB TEST WELL 68 I HOEGANAES TAYLOR 3	CINNAMINSON TWP CINNAMINSON TWP CINNAMINSON TWP CINNAMINSON TWP CINNAMINSON TWP	400002 400012 400100 400104 400146	750044 750013 750035 745859 745932	75. 30. 10.85 35. 16.	MRPAL MRPAL MRPAM MRPAM MRPAM	176. 111. 100. 134. 25.	145. 91. 24. 119.	176. 111. 100. 134.	31-04864 27-00731 27-00238 27-03907
05-137 05-138 05-140 05-143 05-144	TAYLOR, H G TAYLOR, H G CHANT, HARRY R NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO	TAYLOR 2 TAYLOR 1 CHANT 1 DVWC 23 DVWC 24	CINNAMINSON TWP CINNAMINSON TWP DELANCO TWP DELRAN TWP DELRAN TWP	400147 400148 400244 400105 400105	745934 745936 745607 745734 745734	14. 15. 25. 36. 30.	MRPAM MRPAM MRPAM MRPAL MRPAM	25. 25. 155. 176. 135.	 140. 105.		27-03906 27-03905 27-04480 27-04247 27-04680
05-145 05-146 05-147 05-150 05-155	HOLY CROSS HIGH SCHOOL NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO AMICO SAND CRAMP, MARTIN C	HIGH SCHOOL DVWC 19 FAIRVIEW ST AMICO CRAMP 1	DELRAN TWP DELRAN TWP DELRAN TWP DELRAN TWP EDGEWATER PARK TWP	400110 400122 400126 400207 400208	745713 745807 745647 745831 745434	70. 25. 83. 15. 40.	MRPAM MRPAL MRPAM MRPAM MRPA	174. 130. 235. 37. 176.	154. 89. 180. 27.	174. 130. 235. 37.	27-02821 27-03080 27-05202 27-02375
05-156 05-159 05-160 05-161 05-165	JAMAH CORP NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO EVESHAM MUA	CAR WASH I DVWC 2I DVWC 22 DVWC 32 EMUA 4	EDGEWATER PARK TWP EDGEWATER PARK TWP EDGEWATER PARK TWP EDGEWATER PARK TWP EVESHAM TWP	400249 400313 400315 400318 395233	745418 745407 745408 745438 745438 745418	35. 43. 45. 40. 110.	MRPAL MRPAM MRPAM MRPAM MRPAU	138. 135. 123. 167. 500.	123. 110. 102. 135. 464.	138. 135. 123. 167.	27-04659 27-00179 27-04050 27-05315
05-166 05-167 05-180 05-187 05-188	INDIAN SPRINGS GOLF C EVESHAM MUA WORKMAN, JAMES FLORENCE TWP WD FLORENCE TWP WD	ISGC 1 EMUA 5 WORKMAN 1 FTWD 4 FTWD 3	EVESHAM TWP EVESHAM TWP FLORENCE TWP FLORENCE TWP FLORENCE TWP	395246 395247 400532 400703 400704	745326 745157 744833 744832 744838	60. 50. 41. 30. 30.	MRPAU MRPAU MRPAM MRPAM MRPAM	400. 555. 194. 134. 138.	443. 170. 119. 123.	466. 194. 134. 138.	- 11-07453 17-00204 17-00023 17-00022
05-190 05-211 05-217 05-228 05-229	FLORENCE TWP WD LISEHORA, MARY INDUSTRIAL PARK MAPLE SHADE WD MAPLE SHADE WD	FTWD I S J GROVE I TURNPIKE JCTN MSWD I0 MSWD 9	FLORENCE TWP MANSFIELD TWP MANSFIELD TWP MAPLE SHADE TWP MAPLE SHADE TWP	400712 400438 400632 395630 395630	744842 744519 744234 745855 745855	30. 80. 60. 40. 40.	MRPAM MRPAU MRPAM MRPAL MRPAU	119. 220. 315. 500. 200.	99. 293. 440.	119. 4 329. 2 500. 3	7-00005 - 8-03192 1-08923

Table 5.--<u>Well-location and -construction data</u> -- continued.

Well Number	Owner	Local Identifier	Municipality	Lati- tude (DMS)	Longi- tude (DMS)	Land- Surface Elevation (ft)	Aquifer	Depth of Well (ft)	Depth to Well Opening (ft)	Bottom of Well Opening (ft)	N.J. Well Permit Number
05-232 05-249 05-251 05-252 05-253	MAPLE SHADE WD MEDFORD TWP WD MEDFORD WC MEDFORD WC MEDFORD LEASE	MSWD 8 MTWD3/MTWD1 MWC 4(1968) MWC 1(3)/MWC 8 1-1972	MAPLE SHADE TWP MEDFORD TWP MEDFORD TWP MEDFORD TWP MEDFORD TWP	395727 395209 395316 395413 395422	745915 745043 744946 744922 744858	20. 55. 49. 48. 31.50	MRPAM MRPAU MRPAU MRPAU MRPAU	270. 544. 536. 536. 471.	210. 523. 506. 506. 447.	270. 541. 536. 536. 471.	31-06020 31-05282 31-027502 31-05301 31-06056
05-258 05-259 05-261 05-262 05-264	US GEOLOGICAL SURVEY US GEOLOGICAL SURVEY US GEOLOGICAL SURVEY US GEOLOGICAL SURVEY MOORESTOWN TWP WD	MEDFORD 1 MEDFORD 2 MEDFORD 5 MEDFORD 4 MTWD 5	MEDFORD TWP MEDFORD TWP MEDFORD TWP MEDFORD TWP MOORESTOWN TWP	395524 395524 395525 395524 395524 395704	745025 745025 745025 745025 745812	70.77 72.92 72.60 72.32 38.	MRPAU EGLS MRPAM MRPAL MRPAM	410. 263. 750. 1,145. 288.	400. 253. 740. 1.125. 1 248.	410. 263. 750. 1,145. 288.	31-04627 31-04663
05-265 05-266 05-268 05-272 05-273	MOORESTOWN TWP WD MOORESTOWN TWP WD MARLAC ELECTRONICS MOORESTOWN TWP WD MOORESTOWN F C	MTWD 6 MTWD 3 LAYNE 1 MTWD 7 FIELD CLUB 1	MOORESTOWN TWP MOORESTOWN TWP MOORESTOWN TWP MOORESTOWN TWP MOORESTOWN TWP	395702 395703 395751 395834 395835	745808 745811 745832 745910 745643	42. 40. 70. 40. 70.	MRPAM MRPAM MRPAM MRPAL MRPAM	288. 299. 288. 375. 302.	248. 269. 335. 274.	288. 299. 375. 302.	31-04727 51-00041 31-04770
05-274 05-275 05-276 05-277 05-283	CAMPBELL SOUP FIRST PRESB CHURCH CAMPBELL SOUP CAMPBELL SOUP MOORESTOWN TWP WD	CAMPBELL 1 1964 CAMPBELL 2 CAMPBELL 3 MTWD 8	MOORESTOWN MOORESTOWN TWP MOORESTOWN TWP MOORESTOWN TWP MOORESTOWN TWP	395841 395840 395840 395841 395933	745905 745700 745903 745905 745456	40. 70. 41. 40. 65.	MRPAL MRPA MRPAM MRPAL MRPAM	262. 200. 266. 369. 332.	241. 232. 339. 282.	262. 263. 369. 332.	31-03674 31-03673 31-05715 31-05387
05-284 05-285 05-289 05-290 05-292	MOORESTOWN TWP WD MOUNT HOLLY WC MOUNT HOLLY WC MOUNT HOLLY WC MOUNT HOLLY WC	MTWD 4 MHWC 4 MHWC 3 MHWC 6 MHWC 7	MOORESTOWN TWP MOUNT HOLLY TWP MOUNT HOLLY TWP MOUNT HOLLY TWP WESTAMPTON TWP	395936 395924 395935 395936 400019	745452 744702 744651 744655 744815	59. 16. 19. 15. 60.	MRPAM MRPAU MRPAU MRPAM MRPAM	338. 342. 346. 600. 524.	298. 307. 316. 545. 413.	338. 342. 346. 600. 524.	31-03806 31-04637 31-06674 27-06032
05-297 05-303 05-304 05-310 05-313	RUDDEROW, J E MT LAUREL MUA MT LAUREL MUA NJ TURNPIKE AUTHORITY HAINES, WM JR	SPRING VALLEY MLWC 1 MLWC 2 MAINT 2 FARM WELL 2	MOUNT LAUREL TWP MOUNT LAUREL TWP MOUNT LAUREL TWP MOUNT LAUREL TWP MOUNT LAUREL TWP	395525 395607 395608 395728 395830	745416 745648 745644 745504 745302	48. 20. 20. 40. 25.	MRPAM MRPAL MRPAM MRPAU MRPAU	457. 589. 399. 160. 238.	441. 558. 362. 120.	457. 589. 399. 160.	31-01610 31-04347 31-04793
05-315 05-317 05-318 05-348 05-382	LARCHMONT FARMS NJ TURNPIKE AUTHORITY NJ TURNPIKE AUTHORITY NJ/AMERICAN WATER CO SYBRON CHEMICAL INC	FARM WELL 1 4N-1 4N-2 8-RPL 2&7 IONAC CHEM 4	MOUNT LAUREL TWP MOUNT LAUREL TWP MOUNT LAUREL TWP PALMYRA BORO PEMBERTON TWP	395845 395850 395850 400038 395839	745240 745318 745318 750139 744242	55. 45. 45. 10. 30.	MRPAU MRPAU MRPAU MRPAL MRPAM	238. 222. 230. 84. 829.	200. 192. 62. 773.	238. 222. 84. 824.	31-00212 27-01583 32-02387
05-383 05-385 05-392 05-393 05-395	SYBRON CHEMICAL INC SYBRON CHEMICAL INC RIVERSIDE PUBLIC SCH RIVERSIDE INDUSTRIAL NJ/AMERICAN WATER CO	IONAC CHEM 2 IONAC CHEM 5 SCHOOL 1 FTC 39 DVWC 29	PEMBERTON TWP PEMBERTON TWP RIVERSIDE TWP RIVERSIDE TWP RIVERSIDE TWP	395839 395839 400158 400212 400210	744249 744249 745710 745748 745658	30. 30. 20. 15. 25.	MRPAU MRPAM MRPAM MRPAM MRPAL	521. 828. 100. 67. 120.	490. 747. 90. 54. 97.	521. 823. 100. 67. 120.	32-00380 32-03778 27-04533 27-04851

Table 5.--Well-location and -construction data -- continued.

Well Number	Owner	- Local Identifier	Municipality	Lati- tude (DMS)	Longi- tude (DMS)	Land- Surface Elevation (ft)	Aquifer	L Depth of Well (ft)	Depth to Well Opening (ft)	Bottom of Well Opening (ft)	N.J. Well Permit Number
05-438 05-440 05-446 05-448 05-634	THE GOLF FARM RHODIA CORP INTERSTATE S-P STATE OF NJ MOUNT HOLLY WC	SPRINGFIELD RHODIA I OBS INTERSTATE I I-REST AREA MHWC 5	SPRINGFIELD TWP SPRINGFIELD TWP SPRINGFIELD TWP SPRINGFIELD TWP WESTAMPTON TWP	400218 400242 400328 400355 400041	744604 744223 744636 744809 744809	41. 71.65 75. 36. 55.	MRPAU MRPAM MRPAU MRPAM MRPAM	230. 615. 248. 220. 516.	220. 603. 220. 200.	230. 613. 245. 220.	8-05128 7-05644
05-635 05-645 05-648 05-649 05-651	INDEL WILLINGBORO MUA WILLINGBORO MUA WILLINGBORO MUA WILLINGBORO MUA	INDUCT 1 WMUA 2 WMUA 3-OBS WMUA 6 WMUA 9	WESTAMPTON TWP WILLINGBORO TWP WILLINGBORO TWP WILLINGBORO TWP WILLINGBORO TWP	400041 400010 400103 400122 400139	745049 745216 745409 745308 745325	60. 40.30 34. 39. 28.	MRPAM MRPAL MRPAL MRPAM MRPAM	444. 441. 316. 363. 304.	411. 431. 306. 	443 441 316 2 304 2	- - 7-03066
05-653 05-658 05-661 05-667 05-668	WILLINGBORO MUA WILLINGBORO MUA WILLINGBORO MUA WILLINGBORO MUA WILLINGBORO MUA	WMUA 4 WMUA 7 WMUA 1 WMUA 5 DCB 28	WILLINGBORO TWP WILLINGBORO TWP WILLINGBORO TWP WILLINGBORO TWP WILLINGBORO TWP	400152 400201 400225 400250 400308	745435 745308 745402 745321 745325	28. 19. 10. 39. 43.	MRPAM MRPAM MRPAM MRPAM MRPAM	280. 255. 199. 256. 242	177. 179. 147. 230. 222	280. 2 255. 2 199. 2 256. 2	7-02941 7-02919 7-01615 7-02723
05-706 05-707 05-717 05-728 05-729	LIQUID CARBONIC EVESHAM MUA WILLINGBORO MUA MOBILE ESTATES MAPLE SHADE WD	l EMUA 7 WMUA 9 FIELD PUMP MSWD 2	BURLINGTON CITY EVESHAM TWP WILLINGBORO TWP SOUTHAMPTON TWP MAPLE SHADE TWP	400536 395315 400139 395819 395725	744916 745503 745325 744341 745914	30. 100. 30. 55. 30.	MRPAM MRPAU MRPAL MRPAU MRPAU	140. 441. 295. 500. 121.	120. 405. 205. 485. 91	140. 2 441. 3 295. 2 500. 121 3	7-01089 7-06045 1-14627 7-06754
05-732 05-745 05-746 05-747 05-748	BURLINGTON TWP WD BC COUNTRY CLUB MAPLE SHADE WD DITTMAR RADIO CORP OF AMERICA	4 CLUB IR MSWD 11 1949 RANCOCAS 1	BURLINGTON TWP WESTAMPTON TWP MAPLE SHADE TWP MOUNT LAUREL TWP MOORESTOWN TWP	400327 400157 395727 395921 395848	744934 744819 745915 745243 745407	80. 102. 20. 80. 80.	MRPAL MRPAU MRPAL MRPAU MRPAU	366. 290. 450. 257. 170	315. 260. 389.	366. 2 290. 2 450. 3	7-06673 7-05937 1-12925
05-749 05-751 05-755 05-757 05-758	RAMBLEWOOD CC RAMBLEWOOD CC KING'S GRANT WC EVESHAM MUA TENNECO CHEMICALS	3 TEE 2 TEE KGWC I EMUA 6 TENNECO 10	MOUNT LAUREL TWP MOUNT LAUREL TWP EVESHAM TWP EVESHAM TWP BURLINGTON TWP	395508 395546 395049 395326 400418	745539 745622 745338 745223 745255	75. 20. 90. 50. 10.	MRPAM MRPAM MRPAU MRPAU MRPAM	425. 325. 593. 550.	 546. 458.	3 3 593. 3 550. 3	-07140 -07139 -06840 -07453
05-760 05-761 05-766 05-782 05-790	TENNECO CHEMICALS TENNECO CHEMICALS LENAPE REGIONAL H S RIVERSIDE TWP TENNECO CHEMICALS	TENNECO 8 TENNECO 9 CHEROKEE 1 SEWERAGE 1 NO 5-1961	BURLINGTON TWP BURLINGTON TWP EVESHAM TWP RIVERSIDE TWP BURLINGTON TWP	400417 400417 395227 400224 400433	745327 745322 745401 745815 745247	18. 18. 110. 10. 5.	MRPAL MRPAM MRPAU MRPAM MRPAM	90. 105. 512. 47. 60.	50. 70. 492. 35. 50	90. 21 105. 21 512. 31 47. 27	2-06854 2-06855 -15450 2-01433
05-795 05-801 05-804 05-805 05-807	MT LAUREL MUA TEXACO CO TAYLOR, JOSEPH CINNAMINSON TSA HOEGANAES IRON	MLWC 5 OW 10 I L LI	EVESHAM TWP PALMYRA BORO CINNAMINSON TWP CINNAMINSON TWP CINNAMINSON TWP	395239 400020 400145 400100 400110	745308 750114 745936 750035 745947	60. 20. 10. 10.85 12.19	MRPAU MRPAM MRPAM MRPAM MRPAM	463. 25. 47. 25.	416. 5. 37. 5.	463. 31 25. 27 47. 27 25. 31	-09595 -06877 -07380 -18740

.

Table 5.--Well-location and -construction data -- continued.
Well Number	Owner	Local Identifier	Municipality	Lati- tude (DMS)	Longi- tude (DMS)	Land- Surface Elevation (ft)	Aquifer	Depth of Well (ft)	Depth to Well Opening (ft)	Bottom of Well Opening (ft)	N.J. Well Permit Number
05-811 05-812 05-814 05-819 05-820	HOEGANAES IRON HOEGANAES IRON HOEGANAES IRON MT LAUREL MUA KING'S GRANT WC	L5 L6 I2 MLMUA 6 KGWC 2	CINNAMINSON TWP CINNAMINSON TWP CINNAMINSON TWP MOUNT LAUREL TWP EVESHAM TWP	400117 400123 400121 395608 395049	750003 750004 745923 745649 745334	23.61 8.41 18. 20. 90.	MRPAM MRPAM MRPAM MRPAL MRPAU	33. 23. 25. 590. 591.	13. 3. 5. 499. 545.	33. 23. 25. 590. 591.	31-18736 31-18737 31-18744 31-19212 31-06841
05-821 05-822 05-823 05-824 05-1075	FEDERAL LAND BANK MT LAUREL MUA MT LAUREL MUA EVESHAM MUA MT LAUREL MUA	l MLMUA 3 MLMUA 4 EMUA 8 ELBO LANE 7	WESTAMPTON TWP MOUNT LAUREL TWP MOUNT LAUREL TWP EVESHAM TWP MOORESTOWN TWP	400033 395620 395615 395304 395632	745131 745529 745512 745412 745555	65. 35. 35. 85. 40.	MRPAU MRPAL MRPAL MRPAU MRPAL	219. 643. 640. 435. 620.	214. 592. 590. 375. 528.	218. 642. 640. 435. 644.	27-07360 31-20373 31-26130
05-1091 07-003 07-004 07-008 07-012	WILLINGBORO MUN OWENS CORNING WEYERHAEUSER CO BELLMAWR BORO WD BELLMAWR BORO WD	WMUA 11 CORNING 1 I BBWD 4 BBWD 3	WILLINGBORO TWP BARRINGTON BORO BARRINGTON BORO BELLMAWR BORO BELLMAWR BORO	400151 395146 395200 395146 395221	745432 750254 750252 750542 750637	28. 60. 50. 75. 35.	MRPAM MRPAU MRPAU MRPAL MRPAL	246. 315. 283. 557. 359.	197. 285. 253. 380. 331.	243. 315. 285. 557. 359.	27-09561 31-02492 31-05360 31-04969 31-02687
07-013 07-015 07-018 07-019 07-029	BELLMAWR BORO WD BERLIN WD BERLIN WD BERLIN WD NY SHIPBUILDING	BBWD 1 BWD 11 BWD 9 BWD 10 9	BELLMAWR BORO BERLIN BORO BERLIN BORO BERLIN BORO CAMDEN CITY	395221 394648 394738 394738 394738 395435	750636 745622 745614 745614 750720	31. 150. 145. 145. 12.	MRPAU MRPAU MRPAU MRPAU MRPAL	160. 745. 713. 713. 220.	111. 675. 650. 645. 189.	160. 745. 713. 713. 220.	51-00032 31-06208 31-02079 31-05173 31-03905
07-030 07-037 07-039 07-040 07-043	SO JERSEY PORT COMM NY SHIPBUILDING CAMDEN CITY WD CAMDEN CITY WD MAFCO	NY SHIP 5A 3 CITY 7N CITY 7 2	CAMDEN CITY CAMDEN CITY CAMDEN CITY CAMDEN CITY CAMDEN CITY	395447 395449 395457 395457 395507	750711 750716 750640 750641 750729	11.41 12. 21. 21. 12.	MRPAU MRPAL MRPAM MRPAM MRPAM	104. 224. 163. 160. 103.	87. 190. 123. 126. 82.	104. 224. 163. 165. 103.	 31-00290
07-046 07-047 07-048 07-057 07-058	CAMDEN CITY WD CAMDEN SEWAGE AUTH CAMDEN CITY WD OUR LADY HOSPITAL WEST JERSEY HOSPITAL	CITY 11 PLANT 1 CITY 6N STAND BY WELL 1	CAMDEN CITY CAMDEN CITY CAMDEN CITY CAMDEN CITY CAMDEN CITY	395512 395524 395527 395539 395539	750640 750729 750646 750541 750630	13. 9. 14. 30. 30.	MRPAM MRPAL MRPAM MRPAL MRPAM	154. 193. 136. 258. 140.	124. 163. 111. 237. 119.	154. 193. 135. 258. 140.	 31-00013 31-04620 31-03689
07-060 07-061 07-064 07-065 07-068	CAMDEN CITY WD CAMDEN CITY WD CAMDEN CITY WD CAMDEN CITY WD CAMDEN CITY WD	CITY 8A CITY 4 CITY 17 CITY 2B CITY 13	CAMDEN CITY CAMDEN CITY CAMDEN CITY CAMDEN CITY CAMDEN CITY	395540 395541 395546 395550 395557	750742 750622 750533 750729 750535	6. 41. 34. 8. 30.	MRPAL MRPAM MRPAL MRPAL MRPAL	124. 156. 265. 132. 225.	131. 230. 111. 185.	 156. 265. 132. 225.	31-00944 31-01250 31-00941 31-00904
07-074 07-078 07-079 07-083 07-088	PUBLIC SERVICE CO CAMDEN CITY WD CAMDEN CITY WD CAMDEN CITY WD CONCORD CHEMICALS	PSEGC 8 CITY 5N CITY 12 CITY 1A I	CAMDEN CITY CAMDEN CITY CAMDEN CITY CAMDEN CITY CAMDEN CITY	395603 395616 395617 395638 395641	750736 750632 750710 750622 750546	4. 22. 23. 10. 10.	MRPAL MRPAL MRPAL MRPAL MRPA	149. 169. 166. 170. 197.	126. 134. 136. 135.	149. 169. 166. 170.	

.

Table 5.-<u>Well-location and -construction data</u> -- continued.

- -

Well Number	Owner	Local Identifier	Municipality	Lati- tude (DMS)	Longi- tude (DMS)	Land- Surface Elevation (ft)	Aquifer	Depth of Well (ft)	Depth to Well Opening (ft)	Bottom of Well Opening (ft)	N.J. Well Permit Number
07-090 07-094 07-098 07-099 07-107	CAMDEN CITY WD CAMDEN CITY WD NJ/AMERICAN WATER CO H KOHNSTAMM CO NJ/AMERICAN WATER CO	CITY 10 CITY 16 CAMDEN DIV 52 3 CAMDEN DIV 51	CAMDEN CITY CAMDEN CITY CAMDEN CITY CAMDEN CITY CAMDEN CITY	395652 395706 395715 395716 395720	750607 750553 750519 750507 750513	10. 23. 18. 30. 20.	MRPAL MRPAL MRPAL MRPAL MRPAL	158. 179. 200. 136. 192.	126. 149. 147. 116. 141.	158. 179. 198. 136. 192.	31-01249 31-04847 31-01696 31-04780
07-108 07-111 07-112 07-115 07-117	NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO WOODCREST CT CL NJ/AMERICAN WATER CO	DIV 10 CAMDEN DIV 50 CAMDEN DIV 48 CLUB I HUTTON HILLI	CAMDEN CITY CAMDEN CITY CAMDEN CITY CHERRY HILL TWP CHERRY HILL TWP	395719 395726 395728 395149 395229	750518 750518 750520 745909 745712	11. 9. 10. 70. 157.61	MRPAL MRPAL MRPAL MRPAU MRPAU	150. 170. 164. 420. 562.	115. 139. 122. 400. 552.	150. 170. 164. 420.	
07-120 07-121 07-122 07-123 07-124	HUSSMAN REFRIDG NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO	HUSSMAN BROWING T-I BROWNING 44 BROWNING 46 BROWNING 45	CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP	395237 395252 395252 395252 395252 395252	750031 745943 745943 745943 745943 745943	67. 80. 80. 81.40 77.	MRPAU MRPAL MRPAL MRPAL MRPAM	306. 730. 741. 735. 626.	276. 672. 684. 664. 483.	306. 729. 741. 735.	31-02946
07-130 07-131 07-132 07-133 07-134	NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO	OLD ORCHARD A OLD ORCHARD B OLD ORCHARD C OLD ORCHARD 36 OLD ORCHARD 37	CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP	395353 395353 395353 395353 395353 395353	745708 745708 745708 745708 745708 745708	71. 71. 71. 80. 68.	MRPAL MRPAU MRPAM MRPAU MRPAM	748. 342. 500. 349. 488.	743. 299. 454	748.	61-05020 61-05096 61-05095 61-05217
07-135 07-142 07-143 07-144 07-146	NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO	OLD ORCHARD 38 ELLISBURG 23 ELLISBURG 16 ELLISBURG 13 KINGSTON 27	CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP	395353 395438 395441 395442 395455	745708 750107 750104 750103 745924	72. 32. 40. 39. 40.	MRPAM MRPAM MRPAU MRPAL MRPAM	493. 375. 220. 527. 417	443. 321. 187. 491.	493. 378. 220. 527.	1-05218 1-04098 1-03305 1-00684
07-147 07-148 07-149 07-151 07-157	NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO NJ NATIONAL GD GARDEN STATE RACEWAY NJ/AMERICAN WATER CO	KINGSTON 25 KINGSTON 28 I RACE TRACK COLUMBIA 31	CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP	395455 395455 395503 395514 395600	745929 745929 750221 750213 750031	44. 44. 15. 30. 45.	MRPAM MRPAU MRPAU MRPAU MRPAU	367. 207. 111. 158. 427	309. 175. 96.	367. 5 207. 3 111 427 - 2	1-00007 1-04742
07-158 07-160 07-162 07-163 07-171	GARDEN STATE RACEWAY RADIO CORP OF AMERICA NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO COLLINGSWOOD WD	CHRY HLL INN I I COLUMBIA 24 COLUMBIA 22 CWD 7(B)	CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP COLLINGSWOOD BORO	395606 395602 395608 395609 395609 395426	750148 750132 750025 750028 750514	80. 85. 34. 39. 10.	MRPAU MRPAU MRPAU MRPAL MRPAL	179. 167. 453. 313.	154. 220. 112. 371. 224.	179 167. 3 453. 3	1-04274 1-04251 1-04797
07-172 07-175 07-176 07-177 07-178	COLLINGSWOOD WD COLLINGSWOOD WD COLLINGSWOOD WD COLLINGSWOOD WD COLLINGSWOOD WD	CWD 6(A) CWD 1R CWD 2R CWD 4 CWD 3	COLLINGSWOOD BORO COLLINGSWOOD BORO COLLINGSWOOD BORO COLLINGSWOOD BORO COLLINGSWOOD BORO	395426 395521 395519 395521 395522	750514 750439 750432 750435 750432	10. 25. 12. 9. 15.	MRPAL MRPAL MRPAL MRPAL MRPAL	312. 306. 278. 304. 287.	218. 266. 248. 274. 257.	312. 3 306. 3 278. 3 304. 5 287. 3	1-04799 1-00079 1-04053 1-00030 1-04054

Table 5.-<u>Well-location and -construction data</u> -- continued.

Table 5 Well-location and -construction data continued.	
---	--

	Owner	Local Identifier	Municipality	Lati- tude (DMS)	Longi- tude (DMS)	Land- Surface Elevation (ft)	Aquifer	Depth of Well (ft)	Depth to Well Opening (ft)	Bottom of Well Opening (ft)	N.J. Well Permit Number
07-179 07-183 07-184 07-185 07-186	COLLINGSWOOD WD NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO	CWD 5 NJWC 43 GIBBSBORO OB 1 GIBBSBORO OB 2 GIBBSBORO OB 3	COLLINGSWOOD BORO GIBBSBORO BORO GIBBSBORO BORO GIBBSBORO BORO GIBBSBORO BORO	395526 394945 394950 394950 394950 394950	750424 745855 745855 745855 745855 745855	10. 70. 70. 70. 70.	MRPAL MRPAL MRPAL MRPAL MRPAM	278. 1,010. 1,090. 950. 680.	248. 923. 1,080. 940.	278. 1,010. 1,090. 950.	51-00031 31-05951 31-05315
07-188 07-189 07-193 07-194 07-195	NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO CRSCENT TRLR PK G & W NATURAL RESOURC G & W NATURAL RESOURC	GIBBSBORO 42 GIBBSBORO 41 TRAILER PK 1 E4-DEEP E5-DEEP	GIBBSBORO BORO GIBBSBORO BORO GLOUCESTER CITY GLOUCESTER CITY GLOUCESTER CITY	395002 395003 395256 395308 395308	745851 745851 750633 750744 750749	65. 65. 20. 8. 10.	MRPAL MRPAL MRPAU MRPAL MRPAM	998. 1,100. 73. 279. 175.	934. 1,020. 59. 249.	986. 1100. 71. 279.	31-05950 31-05949 31-00560 31-03402 31-04454
07-196 07-197 07-198 07-201 07-202	G & W NATURAL RESOURC G & W NATURAL RESOURC G & W NATURAL RESOURC AMSPEC CHEMICAL AMSPEC CHEMICAL	E2-DEEP E3-DEEP E1R-1973 AMSPEC 1 HARSHAW 3	GLOUCESTER CITY GLOUCESTER CITY GLOUCESTER CITY GLOUCESTER CITY GLOUCESTER CITY	395308 395313 395314 395318 395321	750757 750804 750748 750755 750747	6. 8. 8. 5. 8.	MRPAL MRPAL MRPAL MRPAL MRPAL	275. 255. 260. 266. 265.	245. 223. 235. 246. 245.	275. 253. 260. 266. 265.	31-01210 31-03401 31-06642 31-00019 31-00673
07-204 07-205 07-206 07-207 07-220	AMSPEC CHEMICAL HINDE AND DAUCH CORSON'S FOOD INC CORSON'S FOOD INC GLOUCESTER CITY WD	AMSPEC 4 3 2 JERSEY AVE 1 GCWD 40	GLOUCESTER CITY GLOUCESTER CITY GLOUCESTER CITY GLOUCESTER CITY GLOUCESTER CITY	395322 395324 395329 395332 395332 395349	750757 750736 750732 750734 750651	5. 7. 9. 9. 10.	MRPAL MRPAL MRPAL MRPAL MRPAL	260. 250. 261. 261. 262.	235. 230. 231. 230. 221.	260. 250. 251. 250. 261.	31-00761 31-04306
07-221 07-222 07-242 07-244 07-245	US GEOLOGICAL SURVEY GLOUCESTER CITY WD SOCIETY DIVINE CAMDEN COUNTY CAMDEN COUNTY	USCG 1 GCWD 41 SAVIOR LAKELAND 3 LAKELAND 1	GLOUCESTER CITY GLOUCESTER CITY GLOUCESTER TWP GLOUCESTER TWP GLOUCESTER TWP	395356 395359 394712 394715 394717	750738 750654 750220 750419 750420	11.10 10. 107. 50. 50.	MRPAL MRPAL MRPAU MRPAU MRPAU	170. 266. 512. 490. 420.	162. 226. 492. 	170. 266. 512. 	31-04903 51-00005
07-248 07-249 07-250 07-252 07-256	GLOU TWP BOARD OF ED GARDEN STATE WC GARDEN STATE WC GARDEN STATE WC GLOUCESTER MUA	LEWIS SCHOOL BLACKWOD DIV 3 BLACKWOD DIV 7 BLACKWOD DIV 6 TREAT PLANT	GLOUCESTER TWP GLOUCESTER TWP GLOUCESTER TWP GLOUCESTER TWP GLOUCESTER TWP	394739 394754 394718 394759 394820	750227 750343 750336 750158 750445	117. 65. 60. 75. 20.	MRPAU MRPAU MRPAU MRPAU MRPA	475. 447. 479. 480. 358.	455. 426. 437. 407. 	475. 447. 479. 477.	31-04650 31-02703 31-08176 31-05581 31-05580
07-272 07-273 07-274 07-275 07-278	NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO	OTTERBROOK 34 OTTERBROOK 29 OTTERBROOK 39 HADDON 20 HADDON 15	GLOUCESTER TWP GLOUCESTER TWP GLOUCESTER TWP BARRINGTON BORO HADDON HEIGHTS BORO	395028 395030 395030 395231 395238	750344 750347 750347 750312 750316	60. 60. 60. 60. 65.	MRPAU MRPAL MRPAU MRPAU MRPAL	377. 712. 349. 275. 594.	612. 269. 236. 452.	712. 349. 267. 594.	31-05041 31-04756 31-05226 31-03375 31-02434
07-279 07-280 07-281 07-282 07-283	NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO	HADDON 30 HADDON 12 HADDON 14 HADDON 11 EGBERT	HADDON HEIGHTS BORO HADDON HEIGHTS BORO HADDON HEIGHTS BORO HADDON HEIGHTS BORO HADDON HEIGHTS BORO	395238 395240 395242 395243 395246	750317 750318 750323 750320 750434	65. 66. 76. 84. 23.66	MRPAU MRPA MRPAL MRPAU MRPAL	275. 267. 598. 272. 455.	224. 506. 212. 445.	275. 598. 272. 455.	31-04798 51-00009 31-01124 51-00008 31-04282

.

•

Well Number	Owner	Local Identifier	Municipality	Lati- tude (DMS)	Longi- tude (DMS)	Land- Surface Elevation (ft)	Aquifer	Depth of Well (ft)	Depth to - Well Opening (ft)	Bottom of Well Opening (ft)	N:J. Well Permit Number
07-284 07-285 07-288 07-289 07-290	NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO HADDON TWP WD HADDON TWP WD HADDON TWP WD	EGGBERT 35 EGGBERT 18 HTWD 3 HTWD 2 HTWD 1	HADDON HEIGHTS BORO HADDON HEIGHTS BORO HADDON TWP HADDON TWP HADDON TWP	395247 395248 395359 395403 395406	750432 750433 750322 750322 750317	22. 24. 61. 60. 56.	MRPA MRPAU MRPAL MRPAL MRPAL	484. 191. 469. 470. 468	144. 432. 439. 436	191. 469. 470. 468	31-05054 31-03308 31-02146 31-00432
07-291 07-292 07-293 07-294 07-297	HADDON TWP WD HADDON TWP WD HADDON TWP BOARD OF E DY-DEE SERVICE HADDONFIELD WD	HTWD 1-R HTWD 4 DHADDON HS1 REPLACEMENT HWD 4	HADDON TWP HADDON TWP HADDON TWP HADDON TWP HADDONFIELD BORO	395406 395406 395416 395436 395317	750317 750332 750336 750252 750141	56. 45. 15. 50. 18.	MRPA MRPAL MRPAU MRPAL MRPAU	480. 448. 165. 451. 240	417. 142. 431.	448. 162. 451.	31-05243 31-04855 31-04986 31-05138
07-299 07-302 07-304 07-310 07-311	HADDONFIELD WD HADDONFIELD WD HADDONFIELD WD NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO	LAYNE 2/LAYNE 1 RULON LAKE ST WELL LAUREL 13 LAUREL 15	HADDONFIELD BORO HADDONFIELD BORO HADDONFIELD BORO LAUREL SPRINGS BORO LAUREL SPRINGS BORO	395322 395319 395404 394928 394928	750158 750140 750202 750024 750027	65. 25. 50. 77. 75.	MRPAU MRPAL MRPAM MRPAU MRPAU	246. 572. 372. 456.	206. 523. 307. 394.	246. 2 572. 3 372. 3 456. 3	- 21-02570 31-02130 31-05108 31-01363
07-315 07-316 07-318 07-320 07-322	NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO OWENS CORNING MERCHANTVIL PNSK WCM NJ/AMERICAN WATER CO	MAGNOLIA 16 MAGNOLIA 33 CORNING 2 WOODBINE 1 OAKLYN TEST	MAGNOLIA BORO MAGNOLIA BORO MAGNOLIA BORO MERCHANTVILLE BORO OAKLYN BORO	395134 395134 395135 395652 395359	750229 750230 750246 750307 750445	78. 75. 67. 65. 32.65	MRPAU MRPAU MRPAU MRPAL MRPAU	510. 348. 320. 285.	428. 271. 290. 245.	510. 3 348. 3 320. 3 285. 3	1-04723 1-04743 1-05100 1-02493 1-04642 1-04642
07-329 07-332 07-334 07-335 07-337	MERCHANTVIL PNSK WCM MERCHANTVIL PNSK WCM MERCHANTVIL PNSK WCM MERCHANTVIL PNSK WCM US GEOLOGICAL SURVEY	BROWNING 2A/ 1 MARION 2 MARION T 1 MARION 1 PETTY ISLAND 2	PENNSAUKEN TWP PENNSAUKEN TWP PENNSAUKEN TWP PENNSAUKEN TWP PENNSAUKEN TWP	395628 395711 395719 395720 395737	750406 750220 750225 750225 750626	16. 65. 60. 61. 5.	MRPAM MRPAL MRPAL MRPAL MRPAL	140. 258. 268. 278. 129	110. 223. 247. 243.	140. 3 258. 3 268. 3 278. 3	1-04283 1-04836 1-04641 1-02556 1-02915
07-338 07-341 07-342 07-343 07-348	US GEOLOGICAL SURVEY MERCHANTVIL PNSK WCM MERCHANTVIL PNSK WCM US GEOLOGICAL SURVEY MERCHANTVIL PNSK WCM	PETTY I EAST 3 DELA GAR 2 DELA GARDEN IA PETTY I WEST 1 PARK AVE 3	PENNSAUKEN TWP PENNSAUKEN TWP PENNSAUKEN TWP PENNSAUKEN TWP PENNSAUKEN TWP	395737 395800 395756 395757 395801	750626 750417 750411 750640 750119	5. 39. 50. 5. 25.	MRPAM MRPAL MRPAL MRPAL MRPAL	55. 145. 139. 84. 275	115. 109.	145. 3 139. 3	1-01417 1-05228
07-349 07-354 07-359 07-361 07-363	MERCHANTVIL PNSK WCM GENERAL FOODS CAMDEN CITY WD CAMDEN CITY WD CAMDEN CITY WD	PARK AVE I PETTY IS OBS PUCHACK 5 PUCHACK 4 PUCHACK 2	PENNSAUKEN TWP PENNSAUKEN TWP PENNSAUKEN TWP PENNSAUKEN TWP PENNSAUKEN TWP	395802 395811 395835 395839 395842	750117 750556 750308 750306 750312	19. 11.55 30. 10. 14.	MRPAL MRPAL MRPAL MRPAL MRPAL	270. 143. 186. 180.	240. 240. 136. 136.	270. 3 181 180	1-03534
07-367 07-368 07-369 07-370 07-372	CAMDEN CITY WD CAMDEN CITY WD CAMDEN CITY WD CAMDEN CITY WD MERCHANTVIL PNSK WCM	PUCHACK 3 DELAIR I DELAIR 2 DELAIR 3 NATIONAL HWY I	PENNSAUKEN TWP PENNSAUKEN TWP PENNSAUKEN TWP PENNSAUKEN TWP PENNSAUKEN TWP	395840 395848 395851 395853 395902	750307 750347 750355 750348 750153	10. 10. 5. 8. 40.	MRPAL MRPAL MRPAL MRPAL MRPAL	175. 138. 144. 129. 231.	120. 127. 104. 109. 87. 195.	175 138. 51 144. 51 129. 51 230. 31	-00053 -00054 -00055 -05110

.

Table 5Well-location and	<u>d -construction d</u>	lata continued.
--------------------------	--------------------------	-----------------

Well Number	Owner	Local Identifier	Municipality	Lati- tude (DMS)	Longi- tude (DMS)	Land- Surface Elevation (ft)	Aquifer	Depth of Well (ft)	Depth to Well Opening (ft)	Bottom of Well Opening (ft)	N.J. Well Permit Number
07-373 07-375 07-377 07-379 07-382	CAMDEN CITY WD CAMDEN CITY WD CAMDEN CITY WD CAMDEN CITY WD CAMDEN CITY WD	MORRIS 6 MORRIS 8 MORRIS 7 MORRIS 10 MORRIS 4A	PENNSAUKEN TWP PENNSAUKEN TWP PENNSAUKEN TWP PENNSAUKEN TWP PENNSAUKEN TWP	395900 395910 395916 395919 395929	750318 750307 750303 750302 750253	14. 10. 10. 16. 8.	MRPAL MRPAL MRPAL MRPAL MRPAL	133. 124. 120. 115. 134.	98. 	133. 120. 115. 134.	51-00051 31-00944 51-00052 31-04251 31-04252
07-390 07-392 07-398 07-404 07-407	CAMDEN CITY WD PINE HILL MUA PINE HILL MUA NJ/AMERICAN WATER CO TRAP ROCK INDUSTRIES	MORRIS I PHMUA 1 PHMUA 2-1972 RUNNEMEDE 19 3	PENNSAUKEN TWP PINE HILL BORO PINE HILL BORO RUNNEMEDE BORO RUNNEMEDE BORO	395944 394641 394726 395055 395133	750211 745909 745911 750420 750455	9. 150. 200. 67. 40.	MRPAL MRPAU MRPAU MRPAU MRPAU	107. 687. 698. 338. 215.	627. 668. 297. 195.		51-00050 31-04521 31-06646 31-03307 31-05193
07-410 07-411 07-412 07-413 07-422	NJ/AMERICAN WATER CO TAVISTOCK CLUB NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO	SOMERDALE 14 COUNTRY CLUB 1 ELM TREE 2 ELM TREE 3 ASHLAND 17	SOMERDALE BORO TAVISTOCK BORO VOORHEES TWP VOORHEES TWP VOORHEES TWP	395041 395238 394922 394922 395124	750056 750121 745630 745630 745952	95. 30. 148.68 148.73 68.	MRPAU MRPAU MRPAL MRPAM MRPAU	441. 246. 1,092. 717. 421.	219. 1,082. 706. 379.	 247. 1,092. 717. 421.	31-02360 31-05248 31-09560 31-04561 31-03306
07-423 07-426 07-476 07-477 07-520	NJ/AMERICAN WATER CO NJ/AMERICAN WATER CO US GEOLOGICAL SURVEY US GEOLOGICAL SURVEY BROOKLAWN BORO WD	ASHLAND TER 32 VOORHEES 21 NEW BKLYN 1 NEW BKLYN 2 BBWD 3	VOORHEES TWP VOORHEES TWP WINSLOW TWP WINSLOW TWP BROOKLAWN BORO	395128 395129 394215 394215 395251	745954 745906 745617 745617 750732	70. 129. 111.10 111.13 10.	MRPAM MRPAU MRPA MRPAU MRPAL	459. 482. 1,495. 839. 327.	422. 1,485. 829. 307.	482. 1,495. 839. 327.	31-03872 31-04325
07-521 07-523 07-525 07-527 07-528	CLEMENTON WD BELLMAWR BORO WD HADDONFIELD WD CAMDEN CITY WD CAMDEN CITY WD	CWD 10 HWD 8/HWD 7 PARKSIDE 18 PUCHACK 7	CLEMENTON BORO BELLMAWR BORO HADDONFIELD BORO CAMDEN CITY PENNSAUKEN TWP	394742 395152 395319 395550 395835	745931 750542 750141 750537 750302	180. 75. 25. 40. 20.	MRPAU MRPAL MRPAL MRPAL MRPAL	629. 557. 550. 288. 180.	600. 458. 500. 258. 140.	629. 557. 550. 288. 180.	31-12301 31-12315 31-09694 31-08526
07-533 07-535 07-537 07-538 07-539	CADILLAC PET FOODS CAMDEN CITY WD CAMDEN CITY WD CAMDEN CITY WD CAMDEN CITY WD	l TW-1-79 TW-4-79 TW-5-79 TW-6-79	PENNSAUKEN TWP PENNSAUKEN TWP PENNSAUKEN TWP PENNSAUKEN TWP PENNSAUKEN TWP	395932 395857 395909 395914 395902	750238 750344 750328 750324 750325	8. 10. 10. 10. 10.	MRPAL MRPAL MRPAL MRPAL MRPAL	117. 132. 128. 129. 142.	92. 100. 97. 80. 100.92	117. 130. 128. 110. 142.	31-19157 31-15367 31-14568
07-540 07-541 07-547 07-548 07-560	CAMDEN CITY WD CAMDEN CITY WD NJ/AMERICAN WATER CO BRENAMAN, JE MERCHANTVIL PNSK WCM	TW-7-79 TW-8-79 54 1 WOODBINE 2	PENNSAUKEN TWP CAMDEN CITY CAMDEN CITY PENNSAUKEN TWP MERCHANTVILLE BORO	395858 395611 395731 395802 395652	750325 750546 750458 750611 750307	10. 20. 35. 10. 50.	MRPAL MRPAL MRPAL MRPAL MRPAL	141. 255. 200. 83. 226.	98. 215. 160. 73. 196.	138. 253. 200. 83. 226.	31-14569 31-15720 31-18944 31-19463 31-14563
07-563 07-564 07-573 07-596 07-597	NJ DEPE NJ DEPE US GEOLOGICAL SURVEY BROOKLAWN BORO WD NJ/AMERICAN WATER CO	HARRISON 3 HARRISON 4 COAST GUARD 2 BBWD 4 55	CAMDEN CITY CAMDEN CITY GLOUCESTER CITY BROOKLAWN BORO CAMDEN CITY	395712 395712 395355 395239 395718	750612 750612 750738 750754 750513	15. 15. 11.30 10. 11.	MRPAL MRPAM MRPAU MRPAL MRPAL	117. 35. 89. 293. 176.	97. 15. 263. 136.	117. 35. 293. 176.	31-17116 31-19765 31-20270

Table 5.--<u>Well-location and -construction data</u> - continued.

Well Number	Owner	Local Identifier	Municipality	Lati- tude (DMS)	Longi- tude (DMS)	Land- Surface Elevation (ft)	Aquifer	Depth of Well (ft)	Depth to Well Opening (ft)	Bottom of Well Opening (ft)	N.J. Well g Permit Number
07-600 07-601 07-674 07-687 07-693	LAKELAND HOSPITAL BELLMAWR BORO WD HADDON TWP WD DEL R PORT AUTHORITY DEL R PORT AUTHORITY	LAKELAND H 4 BBWD 6 HTWD 2A B.ROSS E-1B WHITMAN #12	GLOUCESTER TWP BELLMAWR BORO HADDON TWP PENNSAUKEN TWP GLOUCESTER CITY	394658 395212 395403 395904 395416	750421 750609 750322 750358 750734	45. 40. 60. -53.10 8.80	MRPAU MRPAL MRPAL MRPAL MRPA	453. 381. 473. 84. 263.	405. 330. 430.	453. 381. 473.	31-19218 31-29099
101-007 101-008 15-001 15-003 15-006	US GEOLOGICAL SURVEY US GEOLOGICAL SURVEY CLAYTON WD CLAYTON WD WOODBURY WD	HORSESHOE-D HORSESHOE-S CWD 3 4-1973 SEWELL 1A	PHILADELPHIA PHILADELPHIA CLAYTON BORO CLAYTON BORO DEPTFORD TWP	395304 395304 393913 394015 394627	750914 750914 750517 750559 750813	-15. -15 133. 140. 20.	MRPAL MRPAM MRPAU MRPAU MRPAU	238. 50. 800. 740. 311.	 746. 670. 263.	 800. 740. 308.	n/a n/a 31-02889 31-06676 31-05174
15-008 15-009 15-011 15-016 15-024	WOODBURY WD DEPTFORD TWP MUA DEPTFORD TWP MUA DEPTFORD TWP MUA DEPTFORD TWP MUA	SEWELL 2A DTMUA 5 DTMUA 2 DTMUA 1 DTMUA 4	DEPTFORD TWP DEPTFORD TWP DEPTFORD TWP DEPTFORD TWP DEPTFORD TWP	394628 394746 394811 394839 395115	750813 750511 750914 750911 750706	21. 78. 58. 70. 40.	MRPAU MRPAU MRPAU MRPAU MRPAM	307. 447. 281. 273. 345.	244. 414. 255. 252. 282.	307. 447. 281. 273. 345	
15-028 15-059 15-060 15-062 15-063	E GREENWICH WD OWENS ILLINOIS GLASSBORO WD GLASSBORO WD GLASSBORO WD	EGWD 2 OWENS 1 GWD 3 GWD 2 GWD 4	EAST GREENWICH TWP GLASSBORO BORO GLASSBORO BORO GLASSBORO BORO GLASSBORO BORO	394755 394147 394206 394241 394308	751327 750714 750758 750642 750702	70. 144. 150. 145. 150.	MRPAU MRPAU MRPAU MRPAU MRPAU	216. 647. 612. 602. 599.	191. 606. 562. 562. 549.	216. 647. 612. 602. 599	30-00432 31-04112 31-02358 51-00042 31-04176
15-067 15-069 15-072 15-074 15-076	GREENWICH TWP WD GREENWICH TWP WD E I DUPONT HERCULES CHEMICAL HERCULES CHEMICAL	T W 1-58 GTWD 3(NEW 4) REPAUNO 3 G.TWN OB 1 4 1970	GREENWICH TWP GREENWICH TWP GREENWICH TWP GREENWICH TWP GREENWICH TWP	394900 394920 394936 394939 394939	751658 751619 751747 751704 751704	5. 10. 6. 15. 15.	MRPAM MRPAM MRPAM MRPAM MRPAM	172. 168. 101. 121. 120	157. 108. 91. 116. 90.5	172. 168. 101. 121.	30-00738 30-00757 30-00037
15-079 15-081 15-084 15-092 15-094	E I DUPONT E I DUPONT HERCULES CHEMICAL HERCULES CHEMICAL MOBIL OIL COMPANY	REPAUNO 6 REPAUNO 5 GIBBSTOWN 2 GIBBSTOWN TH 6 MOBIL 44	GREENWICH TWP GREENWICH TWP GREENWICH TWP GREENWICH TWP GREENWICH TWP	394944 394945 394948 394954 394954 394958	751734 751717 751639 751642 751512	10. 10. 12. 4. 7.	MRPAM MRPAM MRPAM MRPAM MRPAM	109. 99. 146. 112. 136	84. 81. 121. 107.	109. 99. 146. 113.	30-011224 30-001145 30-00907 30-00231 30-00317
15-096 15-097 15-098 15-100 15-109	HERCULES CHEMICAL HERCULES CHEMICAL MOBIL OIL COMPANY E I DUPONT MOBIL OIL COMPANY	GIBBSTOWN OB 2 G.TWN TH 8 MOBIL 45 REPAUPO 6 MOBIL 41	GREENWICH TWP GREENWICH TWP GREENWICH TWP GREENWICH TWP GREENWICH TWP	394959 395000 395006 395009 395027	751650 751636 751532 751706 751503	14.18 5.61 3. 3. 20.	MRPAM MRPAM MRPAM MRPAM MRPAL	134, 108, 118, 84, 260	129. 102. 95. 79.	134. 107. 115. 84.	- 60-00188 60-00315 -
15-118 15-127 15-129 15-130 15-131	MOBIL OIL COMPANY LEONARD, WM SOUTH JERSEY WATER CO SOUTH JERSEY WATER CO CLEARVIEW BD OF ED	MOBIL 47 5 SJWC 1 SJWC 3 CLEARVIEW HS 1	GREENWICH TWP HARRISON TWP HARRISON TWP HARRISON TWP HARRISON TWP	395036 394346 394409 394408 394501	751501 750959 751330 751330 751229	18. 140. 35. 35. 45.	MRPAL MRPAU MRPAU MRPAU MRPAU	240. 524. 263. 265. 445.	220.	240. 3 3 265. 3	0-00198 1-03280 0-00049 0-00210

Well Number	Owner	Local Identifier	Municipality	Lati- tude (DMS)	Longi- tude (DMS)	Land- Surface Elevation (ft)	Aquifer	Depth of Well (ft)	Depth to Well Opening (ft)	Bottom of Well Opening (ft)	N.J. Well Permit Number
15-134	PURELAND WATER CO	TEST WELL 2	LOGAN TWP	394510	752244	18.	MRPAM	189.	136.	189.	
15-135	SHELL OIL CO	OBS WELL 8A	LOGAN TWP	394516	752241	6.80	MRPAM	180.	130.	180.	30-01314
15-137	PURELAND WATER CO	PURE 2(3-1973)	LOGAN TWP	394535	752054	29.	MRPAM	208.	158.	208.	30-01371
15-139	PURELAND WATER CO	TEST WELL 3	LOGAN TWP	394608	752135	7.	MRPAL	345.	301.	345.	30-01223
15-140	PURELAND WATER CO	TEST WELL 4	LOGAN TWP	394608	752135	6.10	MRPAM	184.	132.	184.	30-01248
15-143	PURELAND WATER CO	LANDTECT TW-6C	LOGAN TWP	394551	752313	19.40	MRPAM	152.	102.	152.	30-01312
15-144	PURELAND WATER CO	I-1973	LOGAN TWP	394613	752129	7.60	MRPAM	138.	81.	136.	30-01370
15-146	PURELAND WATER CO	LANDTECT TW-9	LOGAN TWP	394648	752318	4.80	MRPAM	101.	82.	101.	
15-147	SHOEMAKER, R A	I	LOGAN TWP	394706	751951	17.50	MRPAU	39.	33.	39.	
15-158	MONSANTO CHEMICALS	BRIDGEPORT W2	LOGAN TWP	394733	752351	12.	MRPA	82.	57.	82.	30-00873
15-159	MONSANTO CHEMICALS	BRIDGEPORT E1	LOGAN TWP	394736	752344	11.	MRPA	81,	56.	81.	30-00872
15-161	MONSANTO CHEMICALS	OBI(TW5-OBC)	LOGAN TWP	394739	752232	8.	MRPAM	90.	70.	90.	30-00801
15-166	PENNS GROVE WSC	BRIDGEPORT 2	LOGAN TWP	394755	752108	5.	MRPAM	88.	65.4	85.4	30-00410
15-167	MONSANTO CHEMICALS	MONSANTO 1	LOGAN TWP	394726	752319	10.	MRPAM	96.	64.	94.	30-01170
15-170	VINE CONCRETE CO	REPAUP 1	LOGAN TWP	394854	751906	10.50	MRPAM	106.	85.4	106.	30-01220
15-175	AM DREDGING CO	RACCOON IS T I	LOGAN TWP	394858	752225	8.	MRPAL	120.	100.	120.	30-01277
15-183	PITMAN CNTY CLB	COUNTRY CLUB I	MANTUA TWP	394431	750911	85.	MRPAU	408.	378.	408.	31-05060
15-187	INVERSAND CO	#2	MANTUA TWP	394543	750746	45.	MRPAU	355.	325.	355.	
15-191	MANTUA TWP MUA	MTMUA 2	MANTUA TWP	394629	750859	72.	MRPAU	368.	336.	368.	31-04791
15-192	MANTUA TWP MUA	MTMUA 5	MANTUA TWP	394635	751116	80.	MRPAU	337.	315.	337.	31-02987
15-194	MANTUA TWP MUA	MTMUA 4	MANTUA TWP	394732	751037	10.	MRPAU	265.	230.	265.	31-05309
15-207	NATIONAL PK WD	NPWD 2	NATIONAL PARK BORO	395156	751053	30.	MRPAL	282.	241.	282.	31-02555
15-210	PAULSBORO WD	6-1973	PAULSBORO BORO	394921	751417	15.	MRPAM	230.	185.	227.	30-01348
15-212	PAULSBORO WD	PWD 4	PAULSBORO BORO	394929	751447	25.	MRPAM	220.	192.	220.	30-00069
15-213	PAULSBORO WD	PWD 5	PAULSBORO BORO	394947	751416	10.	MRPAM	175.	135.	175.	30-00602
15-220	ESSEX CHEMICAL CO	OLIN I	PAULSBORO BORO	395051	751349	10.	MRPAL	256.	234.	256.	30-00281
15-221	ESSEX CHEMICAL CO	PAULSBORO I	PAULSBORO BORO	395057	751347	10.	MRPAL	286.	258.	286.	30-01185
15-226	PITMAN WD	PWD P2	PITMAN BORO	394411	750745	130.	MRPAU	515.	475.	515.	
15-227	PITMAN WD	PWD P3	PITMAN BORO	394426	750747	99.	MRPAU	487.	447.	487.	31-04061
15-236	SWEDESBORO WD	SBWD 3	SWEDESBORO BORO	394434	751843	75.	MRPAM	312.	241.	312.	30-01177
15-238 15-239 15-240 15-242 15-248	SWEDESBORO WD DEL MONTE CORP DEL MONTE CORP DEL MONTE CORP WASHINGTON TMUA	SBWD 2 8 9 6 WTMUA 5	SWEDESBORO BORO SWEDESBORO BORO SWEDESBORO BORO SWEDESBORO BORO WASHINGTON TWP	394438 394510 394510 394512 394339	751833 751838 751838 751830 751830 750433	30. 30. 31.50 25. 125.	MRPAM MRPA MRPAU MRPAM MRPAU	244. 228. 231. 298. 618.	217. 190. 267. 559.	240. 231. 298. 618.	 30-00973 51-00029
15-253	WASHINGTON TMUA	6(FRIES MLS I)	WASHINGTON TWP	394437	750249	152.	MRPAU	652.	584.	652.	31-04741
15-260	WASHINGTON TMUA	8(BELS LK WC2)	WASHINGTON TWP	394517	750300	130.	MRPAU	620.	544.	620.	31-05206
15-261	WASHINGTON TMUA	WTMUA I	WASHINGTON TWP	394520	750218	100.	MRPAU	612.	581.	612.	31-03913
15-268	WASHINGTON TMUA	WTMUA 4	WASHINGTON TWP	394732	750447	77.	MRPAU	417.	369.	417.	31-06133
15-274	WENONAH WD	WWD I	WENONAH BORO	394743	750902	80.	MRPAU	320.	273.	310.	51-00065

Table 5.-Well-location and -construction data -- continued.

Table 5.--Well-location and -construction data -- continued.

Well Number	Owner	Local Identifier	- Municipality	Lati- tude (DMS)	Longi- tude (DMS)	Land- Surface Elevation (ft)	Aquifer	Depth of Well (ft)	Depth to Well Opening (ft)	Bottom of Well Opening (ft)	N.J. Well Permit Number
15-275 15-276 15-279 15-281 15-282	WENONAH WD W DEPTFORD TWP WD SHELL CHEMICAL CO W DEPTFORD TWP WD W DEPTFORD TWP WD	WWD 2 WDTWD 4 SHELL OBS 7 WDTWD 3 5 KINGS HIWAY	WENONAH BORO WEST DEPTFORD TWP WEST DEPTFORD TWP WEST DEPTFORD TWP WEST DEPTFORD TWP	394751 394821 394857 394912 394913	750912 751026 751250 751026 751105	50. 60. 16.93 61. 55.	MRPAU MRPAU MRPAL MRPAU MRPAL	310. 288. 320. 243. 450.	268. 242. 315. 227. 388.	310. 289. 320. 243. 450	31-00170 31-04567 30-00916 31-03021
15-283 15-284 15-285 15-286 15-295	HUNTSMAN POLYP CORP HUNTSMAN POLYP CORP HUNTSMAN POLYP CORP HUNTSMAN POLYP CORP WESTWOOD GOLF C	SHELL 3 SHELL 4 SHELL 1 SHELL 2 1-1973	WEST DEPTFORD TWP WEST DEPTFORD TWP WEST DEPTFORD TWP WEST DEPTFORD TWP WEST DEPTFORD TWP	394919 394919 394917 394917 394939	751256 751256 751307 751307 751307 751007	30. 30. 12. 19. 20.	MRPAL MRPAU MRPAL MRPAM MRPAU	384. 159. 360. 290. 140.	358. 127. 328. 273. 120	383. 157. 358. 288.	30-00900 30-00901 30-00898 30-00899 31-06200
15-296 15-297 15-299 15-300 15-303	SHELL CHEMICAL CO SHELL CHEMICAL CO POLYREZ CO POLYREZ CO PENNWALT CORP	SHELL OBS 5 SHELL OBS 6 POLYREZ 1 POLYREZ 2 TEST WELL 1	WEST DEPTFORD TWP WEST DEPTFORD TWP WEST DEPTFORD TWP WEST DEPTFORD TWP WEST DEPTFORD TWP	394942 394942 395002 395002 395030	751317 751317 751005 751005 751236	20.76 20.50 35. 35. 10.	MRPAL MRPAU MRPAU MRPAU MRPAU	326. 118. 125. 165.	321. 113. 133.	326. 118. 165.	30-00902 30-00903
15-304 15-308 15-309 15-311 15-312	PENNWALT CORP PENNWALT CORP PENNWALT CORP PENNWALT CORP W DEPTFORD TWP WD	418 TEST WELL 8 TEST WELL 5 TEST WELL 7 6 R B AVE	WEST DEPTFORD TWP WEST DEPTFORD TWP WEST DEPTFORD TWP WEST DEPTFORD TWP WEST DEPTFORD TWP	395032 395044 395045 395104 395107	751241 751242 751255 751244 750946	10. 10. 10. 10. 10. 20.	MRPAL MRPAL MRPAL MRPAL MRPAL	290. 271. 288. 243. 372	237. 231. 248. 203.	289. 271. 288 243	 30-01173 -
15-313 15-314 15-316 15-317 15-318	W DEPTFORD TWP WD COASTAL OIL CO COASTAL OIL CO COASTAL OIL CO COASTAL OIL CO	WDTWD 2 EAGLE POINT 6 EAGLE PT OBS 1 EAGLE POINT 7 EAGLE POINT 2	WEST DEPTFORD TWP WEST DEPTFORD TWP WEST DEPTFORD TWP WEST DEPTFORD TWP WEST DEPTFORD TWP	395139 395153 395159 395200 395207	750949 750946 750907 750947 750930	23. 15. 31.75 10. 17.	MRPAL MRPAL MRPAL MRPAL MRPAL	353. 318. 298. 306. 289	307. 280. 288. 261.	353. 318. 298. 301.	-
15-319 15-320 15-321 15-322 15-323	COASTAL OIL CO COASTAL OIL CO COASTAL OIL CO COASTAL OIL CO TEXAS OIL CO	EAGLE POINT 4 EAGLE POINT 1 EAGLE POINT 5 EAGLE POINT 3 EAGLE OBS 3	WEST DEPTFORD TWP WEST DEPTFORD TWP WEST DEPTFORD TWP WEST DEPTFORD TWP WEST DEPTFORD TWP	395213 395216 395221 395222 395223	750936 750915 750856 750918 750950	14. 20. 13. 20. 20.96	MRPAL MRPAL MRPAL MRPAL MRPAL	289. 288. 277. 288. 275	259. 248. 237. 258.	289. 3 288. 3 277. 3 288. 3	1-00009 1-00002 1-00007 1-00028 1-00008
15-326 15-327 15-330 15-331 15-332	WESTVILLE WD WESTVILLE WD WOODBRY HGTS BO WOODBURY WD WOODBURY WD	WWD 5 WWD 4 I HELEN AVE RAILROAD 5 PARKING LOT 3	WESTVILLE BORO WESTVILLE BORO WOODBURY HGTS BORO WOODBURY CITY WOODBURY CITY	395216 395221 394858 394955 395009	750739 750737 750845 750908 750922	12. 16. 40. 35. 50.	MRPAL MRPAL MRPAU MRPAL MRPAU	277. 319. 235. 457. 188.	243. 286. 185. 405.	280 313. 3 230. 3 457. 3	- 1-03418 1-06356 1-04259
15-333 15-339 15-342 15-345 15-346	WOODBURY WD GRASSO, J S DEL MONTE CORP MUSUMECI, PETER TOMARCHIO, ALFRED S	TATUM 4 I 10 1	WOODBURY CITY WOOLWICH TWP WOOLWICH TWP WOOLWICH TWP HARRISON TWP	395044 394350 394438 394642 394529	750907 751910 751914 751823 751340	20. 90. 60. 62. 80.	MRPAU MRPAU MRPAU MRPAU MRPAU	167. 267. 289. 100. 343.	129. 247. 192. 94. 267.	167. 3 267. 3 279. 3 100 343. 3	1-00787 0-01161 0-01104 0-01565

Well Number	Owner	Local Identifier	Municipality	Lati- tude (DMS)	Longi- tude (DMS)	Land- Surface Elevation (ft)	Aquifer	Depth of Well (ft)	Depth to Well Opening (ft)	Bottom of Well Opening (ft)	N.J. Weil Permit Number
15-347 15-348 15-349 15-350 15-354	GREENWICH TWP WD GREENWICH TWP WD PURELAND WATER CO PURELAND WATER CO ROLLINS ENVIR SERVICES	GTWD 5 (2-A) GTWD 6 LANDTECT 2 LANDTECT 1 DP 2	GREENWICH TWP GREENWICH TWP LOGAN TWP LOGAN TWP LOGAN TWP	394932 394910 394650 394550 394716	751722 751541 752316 752313 752112	20. 20. 6. 20.40 13.30	MRPAM MRPAM MRPAL MRPAL MRPAM	122. 138. 220. 284. 91.	82. 105. 170. 234. 81.	117. 135. 220. 284. 91.	30-01545 30-01776 30-01472
15-355 15-359 15-361 15-367 15-373	E GREENWICH WD E I DUPONT GLASSBORO WD GANGEMI, VICENT W DEPTFORD TWP WD	EGWD 3 C POWER 22 GWD 5 1 WDTWD 7	EAST GREENWICH TWP GREENWICH TWP GLASSBORO BORO SOUTH HARRISON TWP WEST DEPTFORD TWP	394822 395015 394141 394234 395126	751247 751727 750710 751307 750856	42. 5. 140. 73. 28.	MRPAU MRPAM MRPAU MLRW MRPAL	246. 103. 657. 500. 366.	205. 610. 323.	245. 657. 363.	30-01426
15-374 15-379 15-387 15-392 15-394	DEPTFORD TWP MUA MANTUA TWP MUA ROLLINS ENVIR SERVICES NJ TURNPIKE AUTH PMC CANNING COMPANY	DTMUA 6 MTMUA 6 DP 1 1964-S-1 CAN 1-1966	DEPTFORD TWP MANTUA TWP LOGAN TWP WOOLWICH TWP WOOLWICH TWP	394843 394601 394713 394527 394513	750728 751005 752121 751607 751913	50. 145. 10.20 105. 30.	MRPAM MRPAU MRPAM MRPAU MRPAU	489. 408. 90. 251. 149.	430. 368. 80. 241. 124.	486. 398. 90. 251. 149.	31-13385 31-06640 30-01471 30-01015 30-01094
15-395 15-398 15-411 15-412 15-415	REPAUPO FIRE CO PETTIT, LOUIS AIR PRODUCTS E I DUPONT W DEPTFORD TWP WD	30-1972 419 NO-1-1978 TEST 4 1965 TEST 8-79	LOGAN TWP LOGAN TWP GREENWICH TWP GREENWICH TWP WEST DEPTFORD TWP	394801 394935 395113 395033 394834	751759 751938 751513 751740 751044	20. 1. 20. 5. 40.	MRPAM MRPAL MRPAL MRPAL MRPAM	113. 60. 273. 123. 308.	93. 50. 238. 287.	113. 60. 268. 307.	30-01972 30-02016 30-01639 30-01031 31-14478
15-430 15-431 15-433 15-434 15-435	COASTAL OIL CO WOODBURY WD WASHINGTON TMUA WESTVILLE WD W DEPTFORD TWP WD	EAGLE POINT 6A RED BANK 6 WTMUA 9 WWD 6 WDTWD 8	WEST DEPTFORD TWP WOODBURY CITY WASHINGTON TWP WESTVILLE BORO WEST DEPTFORD TWP	395156 395034 394631 395224 394836	750938 750842 750517 750734 751046	15. 30. 135. 15. 40.	MRPAL MRPAM MRPAU MRPAL MRPAM	331. 305. 552. 312.	256. 211. 512. 265. 252.	328. 305. 552. 317. 312.	31-17788 33-07973 31-17801 31-17923 31-17911
15-437 15-438 15-439 15-490 15-492	POLYREZ CO GLOUCESTER MUA ESSEX CHEMICAL CO ROLLINS ENVIR SERVICES ROLLINS ENVIR SERVICES	POLYREZ IR GCMUA I ESSEX 2 MA-31 MA-3D	WOODBURY CITY WEST DEPTFORD TWP PAULSBORO BORO LOGAN TWP LOGAN TWP	395008 395012 395048 394716 394716	751007 751333 751401 752103 752103	50. 10. 10. 3.14 2.65	MRPAU MRPAL MRPAL MRPAM MRPAM	142. 217. 235. 40. 60.	127. 202. 215. 30. 45.	142. 217. 235. 40. 60.	31-17980 31-17939 30-01175 30-02611 30-02609
15-494 15-496 15-511 15-512 15-533	ROLLINS ENVIR SERVICES NELSON, ROBERT FEHLAUER, ALBERT FEHLAUER, ALBERT NATIONAL PARK WD	MA-3S 1 2 3 NPWD 6	LOGAN TWP E GREENWICH TWP GREENWICH TWP GREENWICH TWP NATIONAL PARK BORO	394716 394651 394828 394751 395155	752103 751632 751656 751654 751051	3.10 45. 10. 10. 22.	MRPAM MRPAU MRPAU MRPAU MRPAL	10. 160. 47. 57. 272.	5. 150. 40. 47. 240.	10. 160. 47. 57. 272.	30-02610 30-01774 30-01519 31-11690 31-17938
15-540 15-546 15-548 15-549 15-550	US EPA CHEMICAL LEAMAN CHEMICAL LEAMAN CHEMICAL LEAMAN CHEMICAL LEAMAN	EPA 108 CL2 CLDW DW1 DW2	LOGAN TWP LOGAN TWP LOGAN TWP LOGAN TWP LOGAN TWP	394800 394759 394755 394757 394757 394759	751936 751948 751952 751945 751945 751949	7.10 10.17 10. 7.04 10.17	MRPAM MRPAU MRPAU MRPA MRPAM	97. 30. 45. 97. 102.	87. 20. 30. 94.5 99.5	97. 30. 45. 97. 102.	30-02621 30-02387 30-02504 30-02423 30-02425

.

Table 5.-<u>Well-location and -construction data</u> - continued.

-

Well Number	Owner	Local Identifier	Municipality	Lati- tude (DMS)	Longi- tude (DMS)	Land- Surface Elevation (ft)	Aquifer	Depth of Well (ft)	Depth to Well Opening (ft)	Bottom of Well Openin (ft)	N.J. Weil g Permit Number
15-554 15-555 15-556 15-560 15-561	US EPA REGION II US EPA REGION II US EPA REGION II US EPA REGION II US EPA REGION II	S-2A S-2B S-2C S-11A S-11B	LOGAN TWP LOGAN TWP LOGAN TWP LOGAN TWP LOGAN TWP	394808 394808 394808 394800 394800 394800	751914 751914 751914 751913 751913	9. 10.89 11.13 11. 11.	MRPAU MRPAM MRPAM MRPAU MRPAM	14. 50. 108. 14.5 89.	4. 40. 98. 4.5 79.	14, 50. 108. 14.5 89.	30-03071 30-03072 30-03073 30-03073 30-03077 30-03078
15-562	US EPA REGION II	S-11C	LOGAN TWP	394800	751913	11.	MRPAM	115.	105.	115.	30-03079
15-564	US EPA-GAVENTA	S-9	LOGAN TWP	394802	751933	6.80	MRPAU	52.	42.	52.	30-03081
15-569	PURELAND WATER CO	PWC 3	LOGAN TWP	394529	752045	32.	MRPAM	201.	161.	201.	30-02405
15-585	ROLLINS ENVIR SERVICES	DP5	LOGAN TWP	394704	752058	7.50	MRPAM	89.	79.	89.	30-02522
15-586	ROLLINS ENVIR SERVICES	DP4	LOGAN TWP	394720	752052	11.60	MRPAM	125.	95.	125.	30-02539
15-591 15-616 15-617 15-620 15-627	ROLLINS ENVIR SERVICES US GEOLOGICAL SURVEY US GEOLOGICAL SURVEY US GEOLOGICAL SURVEY LOGAN TWP-PURELAND	25 SHIVELER MID. SHIVELER UP. GAVENTA MID. MW 103 D	LOGAN TWP LOGAN TWP LOGAN TWP LOGAN TWP LOGAN TWP	394716 394637 394637 394804 394644	752115 751916 751916 751933 752136	3.40 30.60 30.60 7. 7.38	MRPAU MRPAM MRPAU MRPAM MRPAU	19.7 240. 70. 141. 75.	9.7 230. 60. 131. 65.	19.7 240. 70. 141. 75.	30-01303 30-03677 30-33926
15-647	HERCULES CHEMICAL	MW 19B	GREENWICH TWP	394937	751646	12.	MRPAM	68.	48.	68.	30-03372
15-652	HERCULES CHEMICAL	MW 12	GREENWICH TWP	395017	751639	1.20	MRPAM	24.	17.	24.	30-03024
15-654	HERCULES CHEMICAL	MW 14	GREENWICH TWP	395015	751635	1.53	MRPAM	21.5	6.5	21.5	30-03026
15-657	E I DUPONT	OBS 38	GREENWICH TWP	394941	751737	9.16	MRPAM	94.	89.	94.	30-03461
15-660	E I DUPONT	OBS 33	GREENWICH TWP	394953	751733	8.16	MRPAM	24.6	19.6	24.6	30-03428
15-661	E I DUPONT	OBS 31	GREENWICH TWP	394953	751733	8.04	MRPAM	119.	109.	119.	30-03426
15-665	HERCULES CHEMICAL	MW 20C	GREENWICH TWP	394936	751711	14.05	MRPAM	121.	101.	121.	
15-667	HERCULES CHEMICAL	MW 20	GREENWICH TWP	394936	751711	14.24	QRNR	29.	14.	29.	30-03429
15-668	HERCULES CHEMICAL	MW 10C	GREENWICH TWP	394944	751648	7.83	MRPAM	112.	92.	112.	30-03370
15-672	AIR PRODUCTS	2-NORTH WELL	GREENWICH TWP	395014	751459	20.	MRPAL	264.	244.	264.	30-01640
15-677	EXXON CO	MW 8	PAULSBORO BORO	395050	751449	27.60	QRNR	39.	19.	39.	30-03451
15-679	MOBIL OIL COMPANY	W-5D	GREENWICH TWP	394946	751612	9.70	MRPAM	128.	118.	128.	30-03624
15-681	MOBIL OIL COMPANY	W-7D	GREENWICH TWP	395038	751605	8.70	MRPAM	70.	60.	70.	30-03601
15-682	MOBIL OIL COMPANY	W-8D	GREENWICH TWP	395048	751518	10.79	MRPAM	115.	105.	115.	30-03607
15-683	MOBIL OIL COMPANY	W-9D	GREENWICH TWP	395021	751533	10.70	MRPAM	102.	92.	102.	30-03613
15-685 15-689 15-692 15-693 15-696	EXXON CO E I DUPONT E I DUPONT E I DUPONT MOBIL OIL COMPANY	MW 7 DUPONT 93 INTERCEPTOR 46 42 W-3D	PAULSBORO BORO GREENWICH TWP GREENWICH TWP GREENWICH TWP GREENWICH TWP	395046 395018 394952 394940 394952	751446 751650 751734 751752 751502	30.40 9.50 5. 5. 8.40	MRPAM MRPAM MRPAM MRPAM MRPAM	28. 17. 136. 23. 172.	8. 7. 96. 18. 162.	28. 17. 136. 23.	30-03450 30-03778-6 30-03594
15-697	PENNS GROVE WATER CO	BACKUP-2	LOGAN TWP	394755	752108	8.	MRPAM	84.	69.	84.	30-03332
15-699	MOBIL OIL COMPANY	29	GREENWICH TWP	395037	751605	9.40	QRNR	20.	0.	20.	30-02003.2
15-700	MOBIL OIL COMPANY	40	GREENWICH TWP	394952	751527	2.	QRNR	22.	2.	22.	30-02003.3
15-707	US GEOLOGICAL SURVEY	GAVENTA W TAB	LOGAN TWP	394800	751936	7.10	MRPAU	6.75	5.75	6.75	50-00077
15-709	ESSEX CHEMICAL CO	OBS 2	PAULSBORO BORO	395053	751346	9.60	QRNR	19.5	9.1	19.5	30-01512

.

Table 5.-<u>Well-location and -construction data</u> -- continued.

T۶	ıbl	e Ś	5	<u>We</u>	<u>II-</u>	locat	<u>ion</u>	and	-con	stru	ction	<u>data</u>	 conti	inued	I.

Well Number	Owner	Local Identifier	Municipality	Lati- tude (DMS)	Longi- tude (DMS)	Land- Surface Elevation (ft)	Aquifer	Depth of Well (ft)	Depth to Well Opening (ft)	Bottom of Well Opening (ft)	N.J. Well Permit Number
15-710 15-711 15-712 15-713 15-727	BP OIL CO MOBIL OIL COMPANY US GEOLOGICAL SURVEY US GEOLOGICAL SURVEY US GEOLOGICAL SURVEY	BL-1 W-8C STEFKA 1 OBS STEFKA 2 OBS STEFKA 3 OBS	PAULSBORO BORO GREENWICH TWP GREENWICH TWP GREENWICH TWP GREENWICH TWP	395100 395048 394808 394808 394808 394808	751420 751518 751724 751724 751724 751724	5.20 11.50 6.50 5.64 5.06	QRNR MRPAL MRPAL MRPAM MRPAM	35. 163. 295. 155. 210.	10. 153. 275. 125. 206.	35. 163. 290. 155. 205.	30-02854 30-03608-9 30-04347 30-04348 30-04548
15-728 15-738 15-741 15-742 15-770	US GEOLOGICAL SURVEY MOBIL OIL COMPANY US GEOLOGICAL SURVEY US GEOLOGICAL SURVEY US GEOLOGICAL SURVEY	STEFKA 4 OBS W-4C SHALLOW OBS DEEP OBS #1-PW-L	GREENWICH TWP GREENWICH TWP MANTUA TWP MANTUA TWP NATIONAL PARK BORO	394808 394948 394652 394652 394652 395202	751724 751524 751004 751004 751115	4.46 4.50 82. 84. 10.5	MRPAU MRPAL MRPAU MRPAL MRPAL	56. 198. 313. 777. 229.	46. 188. 293. 757. 204.	56. 198. 313. 777. 224.	30-04549 30-03612-7 31-26237-6
15-771 15-772 15-773 15-774 15-776	US GEOLOGICAL SURVEY US GEOLOGICAL SURVEY US GEOLOGICAL SURVEY US GEOLOGICAL SURVEY US GEOLOGICAL SURVEY	#2-PW-M #3-OW-AL #5-OW-AU #4-OW-AM #7-0W-CM	NATIONAL PARK BORO NATIONAL PARK BORO NATIONAL PARK BORO NATIONAL PARK BORO NATIONAL PARK BORO	395202 395206 395206 395206 395202	751115 751118 751118 751118 751118 751127	10. 11.4 10. 10. 15.	MRPAM MRPAL MRPAU MRPAM MRPAM	128. 230. 55. 118. 140.	92.3 196. 30. 93. 125.	123. 216. 50. 113. 135.	31-26243 31-26242 31-26238 31-26241 31-26247
15-777 15-779 15-780 15-814 15-815	US GEOLOGICAL SURVEY US GEOLOGICAL SURVEY US GEOLOGICAL SURVEY MOBIL OIL COMPANY MOBIL OIL COMPANY	#8-OW-CU #11-OW-BU #10-OW-BM RW-12 RW-11	NATIONAL PARK BORO NATIONAL PARK BORO NATIONAL PARK BORO GREENWICH TWP GREENWICH TWP	395202 395223 395223 395024 395027	751127 751117 751117 751521 751528	15. 5. 21.30 18.50	MRPAU MRPAU MRPAM QRNR QRNR	82. 40. 90. 60. 57.	57. 25. 75. 15. 12.	77. 35. 85. 55. 52.	31-26248 31-26239 31-26244 30-02336 30-02335
15-816 15-817 15-818 15-819 15-820	MOBIL OIL COMPANY MOBIL OIL COMPANY MOBIL OIL COMPANY MOBIL OIL COMPANY MOBIL OIL COMPANY	RW-17 RW-16 RW-15 RW-14 RW-2	GREENWICH TWP GREENWICH TWP GREENWICH TWP GREENWICH TWP GREENWICH TWP	395035 395039 395005 395011 395038	751543 751547 751517 751513 751514	23.20 17.40 13.70 17. 21.50	QRNR QRNR QRNR QRNR QRNR	24. 24. 24. 60. 48.3	3. 4. 2. 15. 18.3	15. 16. 10. 55. 48.3	30-02338 30-02341 30-02339 30-02334
15-821 15-822 15-823 15-824 15-825	MOBIL OIL COMPANY MOBIL OIL COMPANY MOBIL OIL COMPANY MOBIL OIL COMPANY MOBIL OIL COMPANY	RW-3 RW-4 RW-5 RW-6 RW-7	GREENWICH TWP GREENWICH TWP GREENWICH TWP GREENWICH TWP GREENWICH TWP	395047 395042 395037 395033 395027	751512 751515 751500 751457 751506	22.10 20.30 25.40 18.80 17.30	QRNR QRNR QRNR QRNR QRNR	59. 56. 58. 53.5 53.5	19. 16. 18. 13.5 13.5	54. 51. 53. 48.5 48.5	
15-826 15-827 15-828 15-832 15-833	MOBIL OIL COMPANY MOBIL OIL COMPANY MOBIL OIL COMPANY MOBIL OIL COMPANY HERCULES CHEMICAL	RW-8 RW-9 RW-18 RW-13 PW-10	GREENWICH TWP GREENWICH TWP GREENWICH TWP GREENWICH TWP GREENWICH TWP	395022 395021 395024 395043 394942	751458 751533 751600 751527 751655	19. 11.10 11.70 19.80 11.	QRNR QRNR QRNR QRNR MRPAM	55. 50.5 30. 58. 44.5	15. 5.5 1. 13. 14.5	50. 45.5 17. 53. 44.5	 30-02340
15-834 15-835 15-836 15-837 15-838	HERCULES CHEMICAL HERCULES CHEMICAL HERCULES CHEMICAL HERCULES CHEMICAL HERCULES CHEMICAL	PW-9 PW-8B PW-8 PW-7B PW-7B PW-5B	GREENWICH TWP GREENWICH TWP GREENWICH TWP GREENWICH TWP GREENWICH TWP	394941 394938 394937 394938 394938 394942	751650 751653 751655 751649 751655	11.10 12.20 14.50 15.20 11.60	MRPAM MRPAM QRNR MRPAM MRPAM	43. 75. 19.9 75. 43.	13. 29.5 9.9 35. 23.	43. 69.5 19.9 75. 43.	

Table 5.--<u>Well-location and -construction data</u> - continued.

		· · · · · · · · · · · · · · · · · · ·									
Well Number	Owner	Local Identifier	Municipality	Lati- tude (DMS)	Longi- tude (DMS)	Land- Surface Elevation (ft)	Aquifer	Depth of Well (ft)	Depth to Well Opening (ft)	Bottom of Well Opening (ft)	N.J. Well ; Permit Number
15-839 15-843 15-998 15-999 15-1000	BP OIL CO BP OIL CO US GEOLOGICAL SURVEY US GEOLOGICAL SURVEY RAY ANGELINI INC	RW-3 P-13 CLAYTON 1 CLAYTON 2 DEEP ANGELINI 1	PAULSBORO BORO PAULSBORO BORO CLAYTON BORO CLAYTON BORO DEPTFORD TWP	395052 395055 394031 394031 394646	751408 751415 750605 750605 750631	11.60 20.40 141. 142. 75.	QRNR MRPAU MRPAM MRPAL MRPAU	85. 40. 843. 1,380. 359.	25. 38. 820. 1,330. 354.	85. 40. 837. 1,370. 359.	30-03430 30-02307 31-24775-0 31-24260 31-21614
15-1004 15-1012 15-1013 15-1031 15-1039	US GEOLOGICAL SURVEY PHILLIPS, NELSON O SCHULTES, RICHARD J MATLACK TRUCKING INC MOBIL OIL COMPANY	CEDAR LK DEEP MILLSTREAM SCHULTES 1 MW-1B MOBIL 48 DWTA	WASHINGTON TWP MANTUA TWP WASHINGTON TWP WOOLWICH TWP PAULSBORO BORO	394421 394710 394351 394553 394958	750604 751158 750611 751920 751512	80. 40. 105. 47. 7.	MRPAL MRPAU MRPAU MRPAU MRPAM	1,050. 260. 498. 105. 153.	1,040. 1 250. 482. 95. 100.	,210. 260. 492. 105. 153.	31-24259 31-22169 31-21557 30-03412 30-05060
15-1061 33-075 33-080 33-086 33-187	MOBIL OIL COMPANY MACKANNAN, C AIR REDUCTION B F GOODRICH CO US GEOLOGICAL SURVEY	W-4D CM1 (AUBURN HI) AIRCO 1 4 (PW-3) POINT AIRY OBS	GREENWICH TWP OLDMANS TWP OLDMANS TWP OLDMANS TWP PILESGROVE TWP	394948 394258 394542 394557 394037	751526 752200 752510 752523 751914	4. 16. 15. 13. 72.97	MRPAL MRPAU MRPAM MRPAL MRPAL	152. 134. 132. 189. 672.	142. 129. 112. 169. 664.	152. 134. 132. 189. 672.	30-03612
45-001 51-9002 B-95 (G) B-103 (G) B-124 (G)	US GEOLOGICAL SURVEY – PA RAILROAD CO. TACONY BRIDGE US ARMY ENGINEERS	MIFFLIN BAR 	TINICUM BRISTOL PHILADELPHIA PHILADELPHIA PHILADELPHIA	395127 400431 395903 400142 400219	751447 745452 750419 750235 745931	-17. 13. 0. 0. 0.	- wsck	231. 45. 110. 75. 50.		1	n/a n/a n/a n/a n/a
B-125 (G) B-126 (G) B-127 (G) B-128 (G) B-129 (G)	US ARMY ENGINEERS US ARMY ENGINEERS US ARMY ENGINEERS US ARMY ENGINEERS US ARMY ENGINEERS	 	PHILADELPHIA BENSALEM BENSALEM BENSALEM BRISTOL	400256 400352 400421 400419 400428	745836 745638 745516 745443 745352	0. 0. 0. 0. 0.	+ 	50. 50. 50. 50. 50.		1	 1∕a 1∕a 1∕a
B-130 (G) B-131 (G) B-148 (G) B-415 (G) Bk-520	US ARMY ENGINEERS US ARMY ENGINEERS PA TURNPIKE COMM MCKEE ESTATE		BRISTOL BURLINGTON CITY BURLINGTON TWP PHILADELPHIA BRISTOL	400431 400515 400702 395848 400438	745356 745132 744948 750357 745342	0. 0. 0. 4. 15.	 WSCK	50. 50. 158. 160. 31.		1 	1/a - - 1/a 1/a
Bk-534 (G) De-025 Ph-001 (P) Ph-006 (P) Ph-012 (P)	BRISTOL BORO WD WESTINGHOUSE ELEC US NAVY US NAVY US NAVY	 WELL #5 	BRISTOL TINICUM PHILADELPHIA PHILADELPHIA PHILADELPHIA	400609 395152 395334 395348 395342	745411 751716 751009 751059 751021	20. 14. 11.24 10.19 8.64	 MRPAL MRPAL MRPAM	64. 233. 163. 101.	29. 207. 138.	t t 233. t 163. t	/a /a /a /a
Ph-019 (P) Ph-020 (P) Ph-033 (P) Ph-035 (P) Ph-039 (P)	US NAVY US NAVY CONRAIL GULF OIL CORP GULF OIL CORP	 	PHILADELPHIA PHILADELPHIA PHILADELPHIA PHILADELPHIA PHILADELPHIA	395314 395316 395409 395431 395416	751010 751049 751202 751245 751246	8.68 13. 11. 8.10 8.10	MRPAL MRPAL MRPAL 	247. 240. 91. 106. 73.	242. 235. 74.	247. n n n n	/a /a /a /a

Well Number	Owner	Local Identifier	Municipality	Lati- tude (DMS)	Longi- tude (DMS)	Land- Surface Elevation (ft)	Aquifer	Depth of Well (ft)	Depth to Well Opening (ft)	Bottom of Well Opening (ft)	N.J. Well Permit Number
Ph-050 (P) Ph-063 (P) Ph-086 (P) Ph-101 (P) Ph-108 (P)	ABBOTTS DAIRIES ROOSEVELT PARK US NAVAL HOSPITAL PA RANGE & BOILER CO BROADWAY THEATER		PHILADELPHIA PHILADELPHIA PHILADELPHIA PHILADELPHIA PHILADELPHIA	395553 395408 395429 395621 395529	751021 751040 751050 751106 751014	27. 5.6 8.0 41. 25.	MRPAL MRPAL MRPAL WSCK	98. 185. 142. 78. 100.	83. 117. 88.	 142. 	n/a n/a n/a n/a n/a
Ph-113 (P) Ph-124 (P) Ph-127 (P) Ph-141 (P) Ph-144 (P)	US NAVAL HOME PRESIDENT CATERERS DISCOUNT PLYWOOD LIQUID CARBONIC GENERAL COLD ST.	 	PHILADELPHIA PHILADELPHIA PHILADELPHIA PHILADELPHIA PHILADELPHIA	395640 395534 395534 395457 395437	751055 751106 750926 750854 750840	38. 32.6 25.2 10. 11.	 MRPAL MRPAL MRPAL	71. 86. 95. 73. 161.	65. 72. 53. 136.	86. 95. 	n/a n/a n/a n/a n/a
Ph-152 (P) Ph-206 (P) Ph-240 (P) Ph-249 (P) Ph-275 (P)	CONRAIL WILDSTEIN & CO MORGENTHALER CROWN PAPER BOARD PA SUGAR CO	 	PHILADELPHIA PHILADELPHIA PHILADELPHIA PHILADELPHIA PHILADELPHIA	395346 395718 395515 395542 395747	750844 750826 750903 750849 750756	10. 10.55 12. 13. 13.	MRPAL MRPAL MRPAL MRPAL WSCK	199. 61. 154. 136. 400.	179. 40. 124. 72.	 	n/a n/a n/a n/a
Ph-321 (P) Ph-324 (P) Ph-325 (P) Ph-345 (P) Ph-372 (P)	F W TUNNELL CO ROHM AND HAAS CO ROHM AND HAAS CO QUAKER RUBBER CO PA FORGE CO	 	PHILADELPHIA PHILADELPHIA PHILADELPHIA PHILADELPHIA PHILADELPHIA	395939 400006 400014 400039 400127	750526 750343 750344 750312 750132	20. 11. 10. 8. 10.	WSCK MRPAL MRPAL MRPAL MRPAL	49. 67. 80. 48. 40.	45. 29.	 	n/a n/a n/a n/a n/a
Ph-389 (P) Ph-400 (P) Ph-417 (P) Ph-430 (P) Ph-447 (P)	GENERAL SMELTING CO. PHILA DEPT OF REC PUBLICKER IND. CROWN PAPER BOARD REGAL PETRO. PROD.	 	PHILADELPHIA PHILADELPHIA PHILADELPHIA PHILADELPHIA PHILADELPHIA	395859 400227 395429 395539 395524	750552 745938 750803 750840 751311	10. 15.10 5.3 13.7 20.	 WSCK MRPAL MRPAL WSCK	55. 139. 165. 118. 351.	45. 145. 108. 22.	 165. 118. 	n/a n/a n/a n/a n/a
Ph-457 (P) Ph-459 (P) Ph-509 (P) Ph-731 (P) Ph-750 (P)	PUBLICKER IND. PUBLICKER IND. HAJOCA CORP BLACK, E N S A F AMERICA INC.	 	PHILADELPHIA PHILADELPHIA PHILADELPHIA PHILADELPHIA PHILADELPHIA	395525 395521 395708 395200 395445	750845 750845 751106 751220 750831	11. 11. 20. 10. 9.7	MRPAL MRPAL WSCK WSCK MRPAL	139. 157. 63. 456. 167.	119. 127. 42. 122.	139. 157. 63. 167.	n/a n/a n/a n/a n/a
Ph-780 (P) Ph-822 (P) Ph-824 (P)	UNITED NESCO CON. CO. CITY OF PHILADELPHIA CITY OF PHILADELPHIA	 	PHILADELPHIA PHILADELPHIA PHILADELPHIA	395529 395303 395242	750846 751244 751251	11.0 5. 5.	MRPAL 	134. 171. 166.	112. 	134. 	n/a n/a n/a

•

Table 5.--<u>Well-location and -construction data</u> -- continued.

{All altitudes are in feet above sea level; QRNR, Cenozoic deposits; EGLS, Englishtown aquifer system; MRPAU, upper aquifer of the Potomac-Raritan-Magothy aquifer system; MRPAM, middle aquifer of the Potomac-Raritan-Magothy aquifer system; MRPAL, lower aquifer of the Potomac-Raritan-Magothy aquifer system; WSCK, Wissahickon Schist; -, indicates confining bed in aquifer list; TWP, Township; BORO, Borough; WD, Water Department; WC, Water Company; WCM, Water Commission, MUA, Municipal Utilities Authority; ft, feet]

number	surface	Owner	Well identifier	
05-039	12.0	NJ/AMERICAN WATER CO	DVWC 15	
Top	Bottom	Lithologic description		Aquifer
12.0	7.0	CLAY, sandy SAND, voltow, fine optimed		-
4.0	-3.0	"Salt and pepper"; "Stones"		MRPAM
-3.0	-5.0	SAND; "Stones"		**
-5.0	-10.0	CLAY, sandy; "Stones" "Stones" Jarge: SAND		**
-17.0	-21.0	CLAY, brown; "Stones"		**
-21.0	-30.0	"Stones"; GRAVEL		44
-30.0	-40.0	"Stones"; SAND SAND: "Stones": Miss		"
-46.0	-40.0	CLAY, white; Mica; BEDROCK		MRPAM WSCK
05-062	18.0	BURLINGTON CITY WD	BCWD 4	
Al	titude (ft)	1 (de la sta da castada a		
	Bollom			Aquifer
18.0	17.0	SAND, fine-grained, dirty		MRPAU
4.0	4.0	SAND; GRAVEL "Hardnan"		64 66
1.0	-8.0	SAND; GRAVEL; CLAY		
-8.0		SAND; GRAVEL; "Stones"; CLAY		MRPAU
05-064	35.0	FIRST NATIONAL BANK	BANK 2	
Al Top	titude (ft) Bottom	Lithologic description		Aquifer
35.0	34.0	"Fill"		
34.0	26.0	SAND, brown SAND: "Stones"		MRPAU
24.0	16.0	SAND, Stoles		
16.0	-4.0	SAND, wet		**
-4.0	-41.0	SAND, brown		MRPAU
-41.0	-71.0	CLAY, gray CLAY, sandy		-
-73.0	-80.0	SAND; CLAY		MRPAM
-80.0	-87.0	SAND, yellow		66
-87.0	-113.0	CLAY, red SAND, white		66 84
-121.0	-129.0	CLAY, white		
-129.0	-136.0	SAND, white		"
-136.0 -157.0	-157.0	CLAY, sandy SAND; GRAVEL		" MRPAM
05-082	35.0	MURPHY, ALBERT	FOX HILL FARM	
AI	titude (ft)			
Тор	Bottom	Lithologic description		Aquifer
35.0 29.0	29.0 19.0	SAND, brown, medium to coarse-grained; "Loam"		MRPAU
19.0	17.0	CLAY, gray, heavy		MRPAU -
17.0	10.0	CLAY, white; "grits"		-
10.0	5.0	CLAY, red; "grits"		-
-3.0	-3.0 -6.0	CLAT, red, gray, mixture CLAY, gray: "grits": "Stones"		-
-6.0	-16.0	SANDSTONE, brown; "Hardpan"		MRPAM
-16.0	-41.0	SAND, gray, medium to coarse-grained, water-bea	ring	
-41.0 -47.0	-47.0	SAND, gray, coarse-grained; GRAVEL; SAND, w End of water-bearing stratum: CLAV, white	hite, fine-grain	MBBANA
				WINEAW

Well number	Land- surface elevation	Owner	Well identifier	
05-086	18.0	TENNECO CHEMICAL CO	TENNECO 5	
Ali Top	titude (ft) Bottom	Lithologic description		Aquifer
18.0	-50.0	SAND; GRAVEL		MRPAM
-50.0	-59.0	CLAY, white, tough		64
-39.0 -66.0	-68.0 -68.0	CLAY, white tough	-grained	64
-68.0	-92.0	SAND, white and yellow, coarse-grained		**
-92.0	-96.0	CLAY, white, tough		61
-96.0	-113.0	CLAY white lough	VEL; ULAY streaks	44
-112.0	-112.0	SAND, white, and yellow, hard packed; CLAY	streaks, white	MRPAM
05-090	15.0	TENNECO CHEMICAL CO	TENNECO 6-OBS	
Al	titude (ft)			
Тор	Bottom	Lithologic description		Aquiter
15.0	10.0	"Soil"		-
10.0	0.0	"Soil"; CLAY; SAND, fine-grained		-
-31.0	-31.0	CLAY		-
-34.0	-50.0	SAND; GRAVEL		-
-50.0	-67.0	SAND		-
-07.0	-120.0	CLAY, sandy		-
-159.0	-137.0	BEDROCK		WSCK
05-150	15.0	AMICO SAND	AMICO	
Al	titude (ft)			
Тор	Bottom	Lithologic description		Aquifer
15.0	12.0	SAND		-
12.0	9.0	"Stones", big		•
9.0	-3.0	CLAY, black SAND dirty		- MRPAM
-3.0	-15.0	SAND, GRAVEL		"
-15.0	-21.0	GRAVEL		MRPAM
-21.0 -34.0	-34.0	BEDROCK		wsck
05-348	10.0	NJ/AMERICAN WATER CO	8-REPLACES 2 and 7	
Al Top	titude (fl) Bottom	Lithologic description		Aquifer
10.0	9.0	"Topsoil"		
9.0	1.0	SILT, brown		• • • • • •
1.0	-8.0	SAND, brown; "Stones"		MRPAM
-8.0 -10.0	-10.0	"Stones", large: GRAVEL		**
-15.0	-24.0	"Stones", large; GRAVEL; SAND, course-grai	ned	"
-24.0	-25.0	SAND, white, coarse-grained		**
-25.0	-31.0	CLAY, White-vellow GRAVEL		
-39.0	-48.0	SAND, brown, coarse-grained; CLAY		**
-48.0	-52.0	CLAY, yellow-white; GRAVEL; SAND, coars	e-grained	••
-52.0	-39.0	SAND, brown, coarse-grained		44
-37.0	-04.0	SAND, WINE, OLAT		"
-64.0	-69.0	CLAY, white; GRAVEL		
-64.0 -69.0	-69.0 -71.0	SAND, brown, coarse-grained		"
-64.0 -69.0 -71.0	-69.0 -71.0 -74.0	CLAY, white; GRAVEL SAND, brown, coarse-grained "Stones", large; GRAVEL		MRPAM
-64.0 -69.0 -71.0 -74.0 -83.0	-69.0 -71.0 -74.0 -83.0 -86.0	CLAY, white; GRAVEL SAND, brown, coarse-grained "Stones", large; GRAVEL CLAY, yellow CLAY, yellow: Mica		MRPAM WSCK

1

Well number	Land- surface elevation	Owner	Well identifier	
05-649	39.0	WILLINGBORO MUA	WMUA 6	
Al Top	ltitude (ft) Bottom	Lithologia description		
	Dotton	Linutingic description	-	Aquifer
39.0	36.0	"Air".		-
36.0	33.0	CLAY: SAND; "Stones"		QRNR
23.0	-1.0	MARL sandy black		-
-1.0	-2.0	"Hard spot"		-
-2.0	-16.0	CLAY, sandy, hard		•
-16.0	-36.0	CLAY, silty, dark gray		QRNR
-30.0	-46.0			MRPAU
-51.0	-56.0	GRAVEL		
-56.0	-66.0	SAND, fine to medium-grained		**
-66.0	-69.0	SAND, fine to coarse-grained; GRAV	EL, multi-color	*1
-69.0	-/1.0	SAND; CLAY, laminated		MRPAU
-72.0	-73.0	GRAVEL fine to coarse-grained		-
-73.0	-90.0	CLAY, sandy, multi-color		-
-90.0	-103.0	SAND, gray, fine-grained; CLAY		-
-103.0	-104.0	"Hard spot"		-
-104.0	-100.0	SAND: "Stones"		-
-111.0	-163.0	SAND, gray, fine-grained		MIKPAM
-163.0	-167.0	CLAY		14
-167.0	-168.0	SAND, gray, fine-grained		
-168.0	-169.0	SAND group fine grouped		**
-176.0	-181.0	SAND, gray, fine to medium-grained	CLAY halls	**
-181.0	-204.0	CLAY balls, gray; SAND lamina		**
-204.0	-216.0	SAND, gray, fine-grained		64
-216.0	-231.0	SAND, gray, GRAVEL		64
-231.0	-243.0	CLAY, laminaled, SAND, gray, fine-g	grained; GRAVEL	14
-252.0	-257.0	SAND, gray, fine to medium-grained,	laminated	**
-257.0	-266.0	CLAY, red		**
-266.0	-269.0	CLAY, gray		
-281.0	-201.0	SAND, fine to coarse-grained, laminal	ed Fl	
-291.0		CLAY, light gray, hard		MRPAM
05-651	28.0	WILLINGBORO MUA	WMUA 9(OLD 3)	
AI	titude (ft)			
1 op	Bottom	Lithologic description		Aquifer
0.0	27.0	"Topsoil".		
27.0	25.0	SAND, brown, coarse-grained; GRAV	'EL	-
20.0	-27.0	CLAY, prown; "Haropan CLAY, pray: Mica		•
-27.0	-41.0	CLAY, gray; LIGNITE		MRPAU
-41.0	-52.0	SAND, multi-color		46
-52.0	-56.0	SAND, brown, fine-grained		MRPAU
-62.0	-92.0	CLAY multi-color		-
-92.0	97.0	CLAY, gray; sandy CLAY		MRPAM
-97.0	-101.0	SAND, gray, fine-grained		46
-101.0	-117.0	SAND, white, medium to fine-grained	L	46
-125.0	-132.0	SAND, while, the grained, CLAT, while SAND brown medium-grained	nne	46
-132.0	-137.0	SAND, white, fine-grained: Mica		46
-137.0	-143.0	SAND, white, fine-grained; CLAY		"
-143.0	-147.0	CLAY, gray; sandy CLAY streaks		**
-147.0	-149.0	CLAY multi-color; SAND streaks, br	uwn	**
-167.0	-170.0	CLAY, gray; sandy CLAY		
-170.0	-176.0	SAND, white, fine-grained		54
176.0	-186.0	SAND, white, fine to medium-grained	; CLAY streaks	54 14
-191.0	-205.0	SAND, white fine to medium-orgined	"orits"	
-205.0	-212.0	SAND, white, fine to coarse-grained	, D	"

Well number	Land- surface elevation	Owner	Well identifier	
Log of 05-651	continued			
-212.0	-221.0	CLAY, multi-color		
-221.0	-227.0	CLAY, sandy; LIGNITE		44 44
-227.0	-238.0	CLAY, multi-color		
-238.0	-242.0	CLAY, sandy; LIGNITE		
-242.0	-247.0	SAND, white, fine-grained; CLAY		"
-247.0	-253.0	CLAY, white SAND medium grained		~
-233.0	-237.0	SAND brown medium to coarse grained: CLAY		
-257.0	-203.0	SAND, brown, medium to coarse-granica, CEAT		
-263.0	-208.0	CLAV grav SAND coarse-grained		**
-2710	-282.0	SAND, white, fine-grained; CLAY		MRPAM
-282.0	-292.0	CLAY, multi-color		-
-292.0	• • • • • •	BEDROCK		WSCK
05-658	19.0	WILLINGBORO MUA	WMUA 7	
A Top	ltitude (ft) Bottom	Lithologic description		Aquifer
19.0	8.0	SAND, brown; GRAVEL		QRNR
8.0	-13.0	SILT, sandy, gray-black		•
+13.0	-28.0	SAND, gray, fine to medium-grained		MRPAU
-28.0	-43.0	CLAY, gray and white		-
-43.0	-47.0	CLAY, sandy, white		-
-47.0	-52.0	SAND, white		-
-52.0	-62.0	CLAY CLAY and and arbitra SAND		
-62.0	-07.0	CLAY, red and while; SAND		MIRPAM
-07.0	-72.0	CLAT, sandy, prown.		64
-72.0	-77.0	CLAV white SAND GRAVEL		54
-77.0	-02.0	SAND brown fine-grained		
-02.0	-97.0	SAND, brown, fine to coarse-grained: GRAVEL		**
-97.0	-104.0	SAND, clavey, fine-grained		45
-104.0	-105.0	GRAVEL		41
-107.0	-111.0	CLAY, gray		44
-111.0	-123.0	SAND, brown, fine to coarse-grained		**
-123.0	-124.0	CLAY		**
-124.0	-133.0	SAND, brown, fine to coarse-grained		**
-133.0	-134.0	GRAVEL		
-134.0	-145.0	CLAY, red and gray		
-145.0	-157.0	SAND, white, fine-grained		
-137.0	-102.0	SAND, brown, fine to medium-granicu		54
-162.0	-173.0	CLAY sandy white		
-173.0	-188.0	SAND, white, fine-grained		54
-188.0	-198.0	SAND, gray, fine-grained; CLAY		
-198.0	-205.0	SAND, gray, fine to coarse-grained		**
-205.0	-208.0	CLAY, gray		64
-208.0	-214.0	SAND, gray, fine to coarse-grained		••
-214.0	-215.0	CLAY		"
-215.0	-221.0	SAND, gray, fine to coarse-grained		
-221.0	-226.0	SAND, brown and white, fine to coarse-grained		MODAL
-226.0	-237.0	SAND, gray, fine to coarse-grained; "grits".		MKPAM
-237.0	-241.0	CLAY red		-
-241.0	-267.0	BEDROCK		WSCK
05-667	39.0	WILLINGBORO MUA	WMUA 5	
А Тор	ltitude (ft) Bottom	Lithologic description		Aquifer

,

Тор	Bottom	Lithologic description	Aquifer
39.0	36.0	"Air"	
36.0	34.0	"Fill", "Dirt"	-
34.0	5.0	SAND, gray, fine-grained	MRPAU
5.0	-2.0	CLAY, gray	"
-2.0	-10.0	SAND, gray, fine-grained	MRPAU
-10.0	-48.0	CLAY, light gray	· •
-48.0	-59.0	SAND, gray, fine-grained	MRPAM
-59.0	-62.0	CLAY, red	**
-62.0	-120.0	SAND, gray, fine-grained	44
-120.0	-148.0	CLAY, red	**
-148.0	-154.0	SAND, gray, fine- to coarse-grained	

Well number	Land- surface elevation	Owner	Well identifier	
Log of 05-667	continued		······································	
-154.0	-157.0	SAND		**
-157.0	-180.0	CLAY, light gray		45
-180.0	-183.0	SAND, silty, gray, fine-grained		**
-163.0	-193.0	CLAY, gray SAND gray fine emired		"
-217.0	-217.0	CLAY sandy gray		MRPAM
-229.0		BEDROCK, weathered		WSCK
AE 669	42.0	WILLING DODO MUA		
03-000	43.0	WILLINGBURU MUA	WMUA DCB 28	
Al Top	ltitude (ft) Bottom	Lithologic description		Aquifer
43.0	37.0	"Loam", sandy, fine-grained		-
37.0	33.0	SAND, brown, fine-grained		-
23.0	25.0	SAND, line to medium-grained		-
16.0	13.0	CLAY, brown and white		MKPAU
13.0	7.0	SAND, gray; CLAY streaks		"
7.0	3.0	SAND, gray, coarse-grained		•
3.0	-15.0	CLAY, red and gray		
-13.0	-17.0	SAND gray fine-grained		MRPAU
-32.0	-44.0	CLAY, gray		-
-44.0	-47.0	SAND, brown, fine to medium-grained		MRPAM
-47.0	-66.0	CLAY, sandy, gray		64
-66.0	-71.0	SAND, coarse-grained; GRAVEL; "grits	39	**
-73.0	-75.0	CLAY, yellow and white CLAY, gray, fine-grained		
-105.0	-110.0	CLAY, red and white		4
-110.0	-120.0	SAND, brown, fine-grained		46
-120.0	-125.0	SAND, white; CLAY		, "
-125.0	-150.0	SAND, gray; CLAY		
-150.0	-157.0	SAND, white, medium-grained SAND, white, medium grained: CRAVE	1	64 64
-167.0	-174.0	SAND, write, filediani-grained, ORAVE	EL: "grits" CLAY streaks	
-174.0	-179.0	SAND, coarse-grained; CLAY streaks		**
-179.0	-199.0	CLAY, white		**
-199.0	-205.0	SAND, gray, medium-grained; CLAY st	eaks; GRAVEL	
-203.0	-215.0	CLAY red and white	EL; CLAY streaks, white	MRPAM
-215.0	210.0	BEDROCK"		WSCK
05-761	18.0	TENNECO CHEMICAL CO	TENNECO 9	
AI	titude (ft)			
lop	Bottom	Lithologic description		Aquifer
18.0	-27.0	SAND		MPPAM
-27.0	-32.0	CLAY w/ SAND or SILT		4 4
-32.0	-47.0	CLAY		"
-47.0	-77.0 _80.0			**
-80.0	-84.0	SAND		
-84.0	-86.0	CLAY		66
-86.0	-89.0	SAND		64
-89.0	-92.0	CLAY, end of log		MRPAM
05-790	5.0	TENNECO CHEMICAL CO	NO 5-1961	
All Top	Rottom	Lithologia description		A
				Aquiter
5.0	-7.0	SAND		MRPAM
-7.0	-27.0	SAND, brown, dirty		64
-27.0	-33.0	GRAVEL, White GRAVEL, vellow		
-37.0	-54.0	SAND, fine-grained: GRAVEL, white		**
-54.0	-83.0	CLAY, white		44
-83.0	-98.0	SAND, dirty; CLAY		44
-98.0	-121.0	SAND, dirty		**
-121.0	-127.0	SAND, coarse-grained		
-127.0	-155.0			

Well	Land- surface	0		
number	elevation			
Log of 05-790	continued			MDDAM
-133.0	-138.0	CLAY		WSCK
-147.0	-168.0	CLAY, SAND		46
-168.0		BEDROCK		
05-804	10.0	TAYLOR, JOSEPH	1	
Al Top	ltitude (ft) Bottom	Lithologic description		Aquifer
	£ 0	117		
10.0	5.0 0.0	SAND, brown		MRPAM
0.0	-6.0	SAND, orange		4 4
-6.0	-20.0	SAND, orange; "Stones"		MPPAM
-20.0	-44.0	CLAY green and white		
-65.0	-05.0	SAND, white; "Ironstone"		-
05-811	23.6	HOEGANAES IRON	L5	
A	ltitude (ft)			
Тор	Bottom	Lithologic description		Aquifer
23.6	19.6	SAND, brown-green, fine to coarse-grained		MRPAM
19.6	15.6	CLAY, sandy, brown; GKAVEL SAND, brown-green, medium to coarse-grained		**
-0.4	-3.4	CLAY, dark brown and black; SAND, dark gray	, coarse-grained	**
-3.4		SAND, brown, coarse-grained	÷	MRPAM
07-008	75.0	BELLMAWR BORO WD	BBWD 4	
- A	ltitude (ft)	1 14		Aquifer
1 op	Bottom			
75.0	72.0	SAND		FGLS
64.0	56.0	SAND, blown SAND: "Ironstone"		"
56.0	52.0	SAND: "Stones"		14
52.0	48.0	SAND; CLAY chips		FGLS
48.0	13.0	CLAY black		-
13.0	-7.0	CLAY, micaceous, black		-
-7.0	-36.0	CLAY, gray		-
-36.0	-48.0	CLAY, gray, fine-grained; SAND		-
-46.0	-124.0	SAND, coarse-grained		MRPAU
-124.0	-129.0	CLAY		64
-129.0	-158.0	SAND; CLAY streaks		••
-158.0	-186.0	SAND, coarse-grained; GRAVEL		MRPAII
-180.0	-200.0	CLAY red and gray		-
-200.0	-242.0	CLAY, red, black, gray, white		-
-242.0	-247.0	CLAY, white, hard		
-247.0	-252.0	CLAY, black		MKPAM
-252.0	-258.0	CLAY red black, white		41
-283.0	-287.0	CLAY, gray		**
-287.0	-293.0	CLAY; SAND layers		
-293.0	-295.0	CLAY		••
-293.0 _297.0	-297.U -298.0	SAND, coarse-granica, OKAYEL		**
-298.0	-305.0	SAND; "Stones"; CLAY chips		"
-305.0	-308.0	SAND: CLAY balls		••
-308.0	-319.0	SAND, fine to coarse-grained		46
-319.0	-324.0	ULAY, black SAND, fine to coarse, grained		MRPAM
-324.0 -325.0	-323.0	SAND, me to coarse-graned SAND: CLAY balls		-
-332.0	-338.0	CLAY, gray; SAND streaks		-
-338.0	-343.0	SAND; "Ironstone"		-
-343.0	-375.0	CLAY, red and gray		MRPAI
-373.0	-380.0 -400 0	CLAY: SAND		4 MINI AL
-400.0	-411.0	SAND: GRAVEL		**

•

Table 6. --Logs of selected wells and test boreholes in the vicinity of the Delaware River--continued.

-

Well number	Land- surface elevatior	n Owner	Well identifier	
Log of 07-008	continued	1		
-411.0	-443.0	CLAY, red and white		**
-445.0	-485.0	SAND; CLAY chips		MRPAL
-485.0 -500.0	-500.0	CLAY BEDROCK		WSCK
07-037	12.0	NEW YORK SHIPBUILDING	3	
Altitude (ft)			
Тор	Bottom	Lithologic description		Aquifer
12.0	-13.0	SAND, fine-grained		MRPAU
-13.0	-20.0	SAND, coarse-grained		4
-20.0	-20.0	SAND, coarse-grained; GRAVEL		**
-20.0	-34.0	GRAVEL, white		
-41.0	-44.0	SAND		
-44.0	-51.0	CLAY. red		MKPAU
-51.0	-54.0	SAND: GRAVEL		MDDAM
-54.0	-70.0	SAND, fine-grained		MINFAM
-70.0	-72.0	SAND, coarse-grained		86
-72.0	-73.0	CLAY, white		44
-73.0	-80.0	SAND, white		44
-80.0	-86.0	SAND, coarse-grained; CLAY streaks		**
-60.0	-93.0	SAND, coarse-grained		54
-95.0	-107.0	SAND coarse: GPAVEL		
-107.0	-136.0	CLAY red		MRPAM
-136.0	-141.0	SAND, fine-grained: CLAV		
-141.0	-159.0	SAND, fine-grained		MKPAL
-159.0	-166.0	CLAY, red		**
-166.0	-174.0	CLAY, brown and gray		45
-174.0	-181.0	SAND, white, coarse-grained; GRAVEL		54
-181.0	-186.0	GRAVEL, coarse-grained; SAND		55
-180.0	-189.0	SAND, white, coarse-grained		44
-189.0	-191.0	GRAVEL, coarse-grained; SAND, white		44
-208.0	-208.0	"Hardnan": SAND: CLAV		"
-215.0	210.0	BEDROCK		WSCK
07-047	9.0	CAMDEN SEWAGE AUTHORITY	SEWAGE PLANT 1	
	titude (ft)	••• • • • • • •		
Top	Bottom	Lithologic description		Aquifer
9.0	-10.0	"Fill"		-
-10.0	-20,0	SAND, COarse-grained		MRPAU
-20.0	-30.0 -54 N	SANDICLAV		"
-54.0	-80.0	SAND, coarse-grained: GRAVEL		MDCAT
-80.0	-85.0	CLAY, sandy		MKPAU
-85.0	-95.0	CLAY		•
-95.0	-119.0	CLAY, red		
-119.0	-133.0	SAND		•
-133.0	-151.0	CLAY, tough; SAND streaks		•
-131.0	-1/6,0	SAND; GRAVEL; CLAY streaks		MRPAL
-170.0	-188.0	SAND; BOULDERS		MRPAL
-192.0	-192.0	BEDROCK		WSCK
07-060	6.0	CAMDEN CITY WD	CITY 8A	
Alt	titude (ft)			
Тор	Bottom	Lithologic description		Aquifer
6.0	0.0	"Cinders"		-
0.0	-55.0	SAND; BOULDERS		MRPAU
-55.0	-63.0	CLAY		-
-63.0	-/1.0	SAND		MRPAM
-/1.0	-82.0	SAND; CLAY		MRPAM
-104.0	-10-4.0	SAND loose		-
-121.0	-130.0	SAND muddy		MKPAL

.

	Land-			
well	SUFIACE	Owner	Well identifier	
	elevation	Owner		
Log of 07-060	continued			
-130.0	-177.0	SAND, GRAVEL		MRPAL
-177.0		CLAY, sandy		-
07-065	8.0	CAMDEN CITY WD	CITY 2B	
AI	titude (ft)			•
Top	Bottom	Lithologic description		Aquifer
8.0	6.0	"Fill"		-
6.U 2.0	2.0			
-5.0	-3.0	GRAVEL hard		MKFAU
-11.0	-17.0	SAND: GRAVEL		**
-17.0	-34.0	CLAY, sandy		44
-34.0	-44.0	SAND, GRAVEL		46
-44.0	-68.0	SAND; GRAVEL; CLAY streaks		MRPAU
-08.0	-100.0	CLAY, gray, tough SAND, coarse-grained: GRAVEL		-
-128.0	-141.0	CLAY tough		-
-141.0	-149.0	SAND, GRAVEL		MRPAL
-149.0	-152.0	CLAY		· · · ·
-152.0	-161.0	SAND, BOULDERS		MRPAL
-161.0	-182.0			WSCK
162.0		DEDRUCK		
07-074	4.0	PUBLIC SERVICE ELECTRIC AND GAS	PSEGC 8	
07 074		i oblic blavich blaciate i ab dib	i bede v	
AI	titude (ft)			
Top	Bottom	Lithologic description		Aquiter
40	-2.0	"Fill"		_
-2.0	-9.0	"Mud"		-
-9.0	-20.0	SAND; GRAVEL		MRPAU
-20.0	-26.0	CLAY		
-26.0	-32.0	SAND; GRAVEL		MKPAU
-32.0	-49.0	SAND		MRPAM
-54.0	-83.0	CLAY		-
-83.0	-92.0	SAND; GRAVEL		MRPAL
-92.0	-93.0	CLAY		4
-93.0	-136.0	SAND, GRAVEL		MRPAL
-130.0	-139.0	REDROCK		WOLK
-157.0		DEDROCK		
07-163	39.0	NJ/AMERICAN WATER CO	COLUMBIA 22	
Al Top	titude (ft)	Lithologia description		Aquifer
39.0	36.0	"Air"		· -
36.0	27.0	CLAY, sandy, brown		-
27.0	-41.0	MARL, dark gray		-
-41.0	-04.0	CLAY, dark gray, hard SAND, gray, fine, grained		MPPALI
-96.0	-101.0	CLAY, dark gray		MINI AU
-101.0	-135.0	SAND, multi-color, fine to medium-grained		MRPAU
-135.0	-148.0	CLAY, red		-
-148.0	-157.0	SAND, multi-color, fine to medium-grained		-
-157.0	-1/6.0	CLAY, red SAND lamina	•	MDDAM
-170,0	-101.0	SAND multi-color fine to medium-grained		
-218.0	-230.0	CLAY, red		
-230.0	-232.0	SAND lamina	•	54
-232.0	-238.0	CLAY, red		11. 41
-238.0	-261.0	SAND lamina		**
-201.0	-205.0	ULA I, 100 SAND Jamina		MRDAM
-203.0	-271.0	CLAY red		
-295.0	-298.0	SAND lamina		- ·
-298.0	-305.0	CLAY		, •
-305.0	-307.0	SAND, fine to medium-grained		-
-307.0	-331.0	CLAY, red		-
-551.0	-328.0	SAND, multi-color, fine to measur-grained		MIKI'AL

Well number	Land- surface elevation	Owner	Well identifier	
Log of 07-163	continued			
~-358.0	-360.0	CLAY, red		45
-360.0	-419.0	SAND, fine to medium-grained		46
-419.0	-431.0	CLAY lamina		MRPAL
-431.0		BEDROCK		WSCK
07-194	8.0	G & W NATURAL RESOURCES	4-DEEP	
Al Top	ltitude (ft) Bottom	Lithologic description		Aquifer
8.0	4.0	SAND, coarse-grained; GRAVEL		MRPAU
4.0	-3.0	CLAY, silty, black		41
-3.0	-46.0	CLAY, gray; grass roots		44
-46.0	-95.0	SAND, coarse-grained; CLAY, streaks, white		46
-95.0	-102.0	GRAVEL CLAV while the t		MRPAU
-102.0	-105.0	CLAY, white, tough		-
-105.0	-110.0	CLAY, sandy, streaks, white; SAND, coarse-grained	d; GRAVEL	· ·
-110.0	-147.0	SAND, fine-grained; CLAY streaks, white		MRPAM
-147.0	-102.0	SAND, medium to coarse-grained; GRAVEL		MRPAM
-102.0	-172.0	CLAY, white, tough		-
-172.0	-187.0	CLAY, rea, lough		-
-167.0	-200.0	SAND control grand CLAV structure white		-
-200,0	-230.0	CLAY white tough		MKPAL
-230.0	-233.0	SAND coarse grained: GRAVEL		
-233.0	-200.0	CLAY white		
-261.0	277.0	SAND coarse amined: GRAVEL		MDDAI
-277.0	-277.0	BEDROCK		WSCK
07-198	8.0	G & W NATURAL RESOURCES	1R-1973	
Al Top	titude (ft) Bottom	Lithologic description		Aquifer
8.0	-2.0	**Fill?*		
-2.0	-23.0	SAND: GRAVEL		MRPALI
-23.0	-26.0	CLAY		4
-26.0	-77.0	SAND; CLAY streaks		MRPAU
-77.0	-92.0	CLAY		_
-92.0	-125.0	SAND, gray, coarse-grained; CLAY		MRPAM
-125.0	-181.0	CLAY, red		-
-181.0	-203.0	CLAY, sandy		MRPAL
-203.0	-247.0	SAND, coarse-grained; GRAVEL, fine-grained		MRPAL
-247.0 -257.0	-257.0	CLAY, white BEDROCK		WSCK
07-202	8.0	AMSPEC CHEMICAL	HARSHAW 3	
Al	titude (ft)			,
Тор	Bottom	Lithologic description		Aquifer
8.0	-4.0	"Fill"; "Mud"		-
-4.0	-15.0	GRAVEL		MRPAU
-15.0	-20.0	SAND, coarse-grained		6 8
-20.0	-77.0	SAND; fine-grained; CLAY		6h
-77.0	-84.0	GRAVEL, coarse-grained		MRPAU
-84.0	-112.0	SAND; CLAY streaks		MRPAM
-112.0	-154.0	SAND, GRAVEL		
-134.0	-138.0	SAND, coarse-grained		мкрам
-138.0	-103.0	CLAY, White, tough		
-103.0	-104.U	CLAV		
-104.0	-107.0			**
-107.0	-170.0	SAND: coarse_mained		MDDA1
_207 A	-207.0	SAND hard		MIKI'AL
207.0	_223.0	SAND streaks		54
-223.0	-260.0	SAND coarse-grained		MDDAI
-260.0	-200.0	CLAY, hard, Mica		WSCK

Well number	Land- surface elevation	Owner	Well identifier	
07-205	7.0	HINDE AND DAUCH	3	
Al Top	titude (ft) Bottom	Lithologic description	-	Aquifer
7.0	-1.0	"Fill"; "ashes"		-
-1.0	-5.0	SAND; GRAVEL		-
-19.0	-37.0	CLAY, sandy		-
-37.0	-55.0	SAND, fine-grained		-
-55.0	-65.0	CLAY, sandy CLAY		-
-77.0	-97.0	CLAY, sandy		-
-97.0	-141.0	SAND: GRÁVEL		-
-141.0	-155.0	CLAY, white SAND: CRAVEL		-
-155.0	-104.0	CLAY	•	-
-196.0	-251.0	SAND; GRAVEL		MRPAL
-251.0	-258.0	CLAY		WSCK
-258.0		BEDROCK		
07-221	11.1	US GEOLOGICAL SURVEY	COAST GUARD 1	
Al Top	titude (ft) Bottom	Lithologic description		Aquifer
11.1	6.1	CLAY; sandy, dark brown, fine-grain	ned; PEBBLES	-
6.1	4.1	"Slag" fragments	l	· · · · · ·
4.1	2.1	SAND, brown, medium to fine-grain	ed; slag fragments	MRPAU
2.1	-4.9	SAND, yellow-brown, medium-grain	ed; quarz PEBBLES, rounded	14
-4.9	-13.9	SAND, white-tan, medium to coarse	-grained, subrounded; PEBBLES, 1/2-inch, quartz	56
-18.9	-22.9	SAND, very coarse-grained; quartz l	EBBLES, rounded; CHERT, gray; CLAY matrix	**
-22.9	-23.9	SAND, medium to coarse-grained; q	uartz PEBBLES, rounded	
-23.9	-29.9	GRAVEL; CLAY		44
-29.9	-31.9	SAND, Very coarse-grained, quartz r	EDDLCJ	**
-33.9	43.9	GRAVEL, guartz, rounded; silty mat	rix; SAND, medium to coarse-grained	"
-43.9	-44.9	GRAVEL, quartz, rounded; silty mat	rix; SAND, medium to coarse-grained; COBBLES	**
-44.9	-67.9	SAND, coarse-grained, sub-rounded	quartz PEBBLES, rounded	**
-07.9	-08.9	SAND, coarse-graned, infointe cen	ed: quartz COBBLES	44
-69.9	-76.9	SAND, medium to coarse-grained; q	uartz PEBBLES, rounded	24
-76.9	-78.9	SAND, yellow, coarse-grained; GRA	VEL; limonite cement	**
-78.9	-79,9	SAND, yellowish, coarse to medium	grained; quartz PEBBLES, rounded	MPPALI
-79,9	-80.9	CLAY, silty, red: quartz PEBBLES.	rounded	-
-88.9	-93.9	CLAY, sandy, white		-
-93.9	-103.9	CLAY, reddish		-
-103.9	-110.9	SAND, clayey, pink, fine to medium SAND, reddish, medium grained; Cl	egrained; quartz PEBBLES	MKPAM
-112.9	-115.9	SAND, reduisi, medium-grained, C	LAY	**
-115.9	-120.9	SAND, very coarse-grained, sub-ang	jular	MRPAM
-120.9	-121.9	CLAY, sandy, gray, coarse-grained		-
-121.9	-125.9	CLAY, silty, red and white, mollied		-
-125.9	-130.9	SAND medium-grained		MRPAL
-152.9	-156.9	SAND, clayey, white, medium to co	arse-grained	**
-156.9	-158.9	SAND, white, coarse-grained		
-158.9	-160.9	SAND, white, coarse-grained; CLA	ŕ	
-100.9	-173.9	SAND claves white fine-grained		44
-173.9	-176.9	SAND, white, very fine- to coarse-g	rained; CLAY	64
-176.9	-181.9	SAND, white, fine-grained; CLAY,	white: quartz PEBBLES	"
-181.9	-182.9	SAND, white, fine-grained; CLAY,	white; shell fragments	
-182.9	-163.9	CLAY silty light gray	IIIC IIIC	м
-186.9	-191.9	SAND, clayey, gray, medium-graine	:d	**
-191.9	-199.9	SAND, clayey, gray		
100.0	.202.0	SAND, grav-nink, medium-grained;	CLAY	**
-199.9	-205.9		N FO	46
-203.9	-207.9	SAND, coarse-grained; quartz PEBI	SLES SLES and white: CLAY white	**

Well number	Land- surface elevation	o Owner	Well identifier	
Log of 07-221	- continued			
-223.9	-228.9	SAND, multi-color, very coarse-grained; quartzite PEBBLE	S, rounded	**
-228.9	-235.9	SAND, very coarse-grained; quartizite PEBBLES; CLAY		MRPAL
-240.9	210.7	BEDROCK		WSLK
07-332	65.0	MERCHANTVILLE PENNSAUKEN WCM	MARION 2	
Тор 	Bottom	Lithologic description	·	Aquifer
65.0	61.0	"Fill"		-
61.0 57.0	57.0	CLAY, sandy, brown and yellow		-
14.0	-20.0	SAND, coarse to medium-grained: GRAVEL: iron streaks	•	MPDALL
-20.0	-31.0	CLAY, gray and white; SAND seams, fine-grained		WINI AU
-31.0	-53.0	SAND, light brown, coarse to medium-grained		MRPAU
-53.0	-74.0	CLAY, sandy, white and gray; SAND seams, fine-grained; (GRAVEL	-
-95.0	-98.0	CLAY, gray and white		МКРАМ
-98.0	-115.0	GRAVEL, fine to medium grained; SAND		MRPAM
-115.0	-155.0	CLAY, sandy, gray and white, fine-grained; GRAVEL stread	ks	-
-155.0	-165.0	SAND, fine to medium-grained; GRAVEL		-
-175.0	-175.0	GRAVEL, fine to medium-grained; SAND		MRPAL
07-334	60.0	MERCHANTVILLE PENNSAUKEN WCM	MARION T 1	
А	ltitude (ft)		• •	
Тор	Bottom	Lithologic description		Aquifer
	570	۳۲۵۶۶۰۵۱۳		**
57.0	50.0	CLAY, sandy, brown, vellow and white		-
50.0	27.0	SAND, yellow, coarse-grained; GRAVEL		MRPAU
27.0	-28.0	CLAY, sandy, white; GRAVEL		"
-28.0	-60.0	SAND, brown, coarse-grained; CLAY streaks, white		MRPAU
-70.0	-97.0	SAND. coarse-grained: GRAVEL: CLAY streaks, white		- MRPAM
-97.0	-101.0	CLAY, sandy, white		"
-101.0	-153.0	SAND, brown, coarse-grained; CLAY streaks, white		MRPAM
-153.0	-162.0	CLAY, tough SAND, coarse grained: GRAVE1		-
-172.0	-188.0	CLAY, tough		MKPAL
-188.0	-208.0	SAND, brown, coarse-grained; GRAVEL; BOULDERS	-	MRPAL
-208.0 -223.0	-223.0	CLAY, white BEDROCK		WSCK
07-341	39.0	MERCHANTVILLE PENNSAUKEN WCM	DELA GARDEN 2	WBCK
_ · -	bitude (A)			
Тор	Bottom	Lithologic description		Aquifer
39.0	11.0	SAND, medium-grained: gray		MDDANA
11.0	-11.0	SAND; GRAVEL; BOULDERS		WINF AW
-11.0	-33.0	SAND; GRAVEL; CLAY streaks		**
-33.0	-75.0	SAND; GRAVEL; BOULDERS; CLAY streaks		MRPAM
-77.0	-111.0	SAND GRAVEL		MDDAT
-111.0		BEDROCK	•	WSCK
07-354	11.6	GENERAL FOODS	PETTY IS OBS	
A	titude (ft)			
Тор	Bottom	Lithologic description		Aquifer
11.6	5.6	"Top" SAND and soil		
5.6	2.6	SAND, dark gray		MRPAL
2.6	-2.4	SAND, gray	•	46
7.4	-10.4	SAND, dark grav	• •	**
-10.4	-18.4	SAND, gray; some PEBBLES		**
-18.4	-20.4	SAND, gray, coarse		**
-20.4	-38.4	SAND, GRAY; w/ mucky CLAY mixed at intervals		**
-38.4	-48.4	SAND, gray, coarse		••

Well number	Land- surface elevation	Owner V	Vell identifier	
Log of 07-354	continued			
-48.4	-53.4	SAND, gray, coarse; and PEBBLES	"	
-53.4	-58.4	SAND, gray, very coarse		
-58.4	-60.4	"Hard pan", coarse packed, gravelly, (water tight)	"	
-60.4	-70.4	"Hard pan, with streaks of close packed CLAT, (water light)	"	
-77 4	-77.4	CLAY and SAND		
-83.4	-86.4	SAND. grav	"	
-86.4	-88.4	SAND, fine	"	
-88.4	-97.4	SAND, coarse	"	
-97.4	-103.4	SAND and GRAVEL	••	
-103.4	-112.4	GRAVEL, coarse	MDDAL	
-112.4	-115.4	SAND, coarse; some fine SAND	MKPAL	
-115.4	-131.4	CLAY, yellow and blue Baltimore GNEISS, "basel rock"	WSCK	
-131.4		Ballmore Giverss, basarrock	wook.	
07-363	14.0	CAMDEN CITY WD P	UCHACK 2	
A	ltitude (ft)		A	
Тор	Bottom	Lithologic description	Aquiter	
14.0	-4.0	SAND, coarse-grained	MRPAU	
-4.0	-19.0	CLAY, red	•	
-19.0	-48.0	SAND, brown	MRPAM	
-48.0	-66.0		MPDAL	
-00.0	-/3.0	CLAY	WINI AL	
-75.0	-00.0	SAND coarse-grained		
-00.0	-116.0	"Hardnan"		
-116.0	-144.0	SAND; GRAVEL	•	
-144.0	-151.0	GRAVEL, sandy; BOULDERS	MRPAL	
-151.0		"Rock"	WSCK	
07-539	10.0	CAMDEN CITY WD	TW-6-79	
Α	ltitude (ft)			
Тор	Bottom	Lithologic description	Aquifer	
	5.0	CLAV condu block		
10.0	5.0	SAND fine to medium grained: streaks soft: GRAVEL fine-gra	ined MRPAM	
0.0	-5.0	SAND, white, fine to medium-grained; SRAVEL; CLAY streaks	brown "	
-5.0	-11.0	SAND, white, fine to medium-grained; GRAVEL		
-11.0	-16.0	"Hard streaks"; GRAVEL	44	
-16.0	-21.0	SAND; GRAVEL; "rubber"; CLAY	MRPAM	
-21.0	-31.0	CLAY, white and yellow	-	
-31.0	-41.0	CLAI, SARUY, WITH, DAIND AND UKAVEL SIRAKS SAND white medium grained CLAV streaks white	-	
-51.0	-51.0	CLAY white: SAND streaks	-	
-62.0	-67.0	CLAY, sandy	-	
-67.0	-71.0	CLAY, white	-	
-71.0	-77.0	CLAY, white; SAND streaks		
-77.0	-92.0	CLAY, white; SAND and GRAVEL streaks	MRPAL	
-92.0	-113.0	SAND, fine to medium-grained; GRAVEL; CLAY streaks, white		
-113.0	-123.0	SAND, fine to coarse-grained; GRAVEL; CLAY streaks, white	41	
-123.0	-134.U -120.0	GRAVEL, coarse-grained; CLAY streaks, while GRAVEL coarse-grained; CLAV streaks	MRPAI.	
-139.0	-137.0	CLAY, white	WSCK	
-144.0	-154.0	CLAY, white and yellow	54	
-154.0		BEDROCK		
07-687	-53.1	DELAWARE RIVER PORT AUTHORITY B	ROSS E-1B	
A	ltitude (ft)			

Тор	Bottom	Lithologic description	Aquifer
-53.1	-55.1	SAND, brown, medium-grained	MRPAL
-55.1	-64.1	SAND, Fine, and GRAVEL, tan, silty	**
-64.1 -67.1	-67.1 -73.1	SAND, white, silty; CLAY lenses SAND brown, medium; trace SILT	44
-73.1	-83.1	SAND, brown and gray, course to fine, SILTY	••
-83.1	-92.1	SAND, white, medium to fine, CLAY and GRAVEL seams	MRPAI
-112.1	-126.6	MICA GNEISS, weathered	WSCK

ł

Log of 07487 - continued Mick G (NEISS, weathered to initize 07-693 8.8 DELAWARE RIVER PORT AUTHORITY WHITMAN #12 Ahitude (ft) Inibologic description Aquifer 7 73 Concrete	Well number	Land- surface elevation	Owner Well identifier	
07-693 8.8 DELAWARE RIVER PORT AUTHORITY WHITMAN #12 Altinde (ft) Top Endotom Libbolgic description Aquifer 7.8 7.3 Concrete Image: Conconcrete Ima	Log of 07-687 -126.6	continued -136.6	MICA GNEISS, weathered to intact	
Altitude (ft) Aquifer Typ Bottom Lithologic description Aquifer 3.2 Concrete	07-693	8.8	DELAWARE RIVER PORT AUTHORITY WHITMAN #12	
8.8 7.3 Concrete	A1 Top	titude (ft) Bottom	Lithologic description	Aquifer
1.3 -3.2 Thi Units and notes in black; losse 1 1.12 3.12 SIAND, gray, fince set, loss gray, wet, losse NRPAU 3.02 4.12 SAND, gray, fince, set, loss gray, wet, losse, wet 1 4.12 4.12 GRAVEL, fine, SILT, gray, losse, wet 1 4.12 4.32 GRAVEL, fine, SILT, gray, losse, wet 1 4.12 5.20 SAND, oray, fine, some GRAVEL, moist, compact 1 4.12 SAND, oray, fine, some GRAVEL, moist, compact 1 1 4.12 SAND, oray, fine, some GRAVEL, moist, compact 1 1 4.12 4.20 SAND, black, moist, compact 1 1 4.12 4.00 SAND, black, moist, compact 1 1 4.12 1.102 SAND, black, moist, compact 1 1 4.102 1.092 SAND, black, moist, compact 1 1 4.102 1.092 SAND, fine, GRAVEL, fine, montographic 1 1 4.102 1.092 SAND, fine, GRAVEL, fine, moist, compact 1 1	8.8	7.3	Concrete	-
-102 -212 SILT, "mirer" some SAND, gray, met, loose MRPAU -302 -412 SAND, gray, fine, well, loose MRPAU -412 -412 SAND, gray, fine, well, loose - -412 -412 SAND, gray, fine, well - -412 -412 SAND, gray, fine, some SAND, and SLT, brown; moist, compact - -412 -422 SAND, gray, fine, some SAND and SLT, brown; ensist, compact - -412 -422 SAND, gray, fine; moist, compact - -412 -422 SAND, fine; moist, compact - -412 -422 SAND, fine; moist, compact - -412 -412 SAND, fine; moist, compact - -4122 SAND, gray, fine; moist, compact - - -4122 SAND, gray, fine; moist, compact - - -4122 SAND, gray, fine; moist, compact - - -4122 CLAY, white; (RAVEL, fine; well, compact - - -4122 CLAY, white; (RAVEL, fine; compact - - -4122<	-5.2	-5.2	""III", "Cinders and rocks", black; loose SILT "river": wood light gray: mojet loose	-
-21.2 -30.2 SAND, gray, fine; wet, loose	-10.2	-21.2	SILT, "river"; some SAND, gray; wet, loose	-
-30.2 -41.2 SAND, gray; GRAVEL, fine, strown; moist	-21.2	-30.2	SAND, gray, fine; wet, loose	MRPAU
-132 -302 CAND CL, IMC, MUL, BAY, Mole, Weit	-30.2	-41.2	SAND, gray; GRAVEL, fine, brown; moist	54
-502 512 SAND corrise: (RAYEL, weit, losse - -512 622 SAND, some (RAYEL, moist, compact - -612 -622 SAND, and SRAY, losse - -712 -732 SAND, and (RAYEL, gray, moist, compact - -712 -732 SAND, and (RAYEL, gray, moist, compact MRPAU -712 -732 SAND, gray, fine; moist, compact MRPAU -712 -732 SAND, gray, fine; moist, compact MRPAM -7002 -1022 SAND, gray, fine; moist, compact - -7002 -1322 SAND, gray, fine; moist, compact - -7002 -1322 SAND, gray, fine; moist, compact - -1412 -1402 CLAY, white; GRAVEL, fine; wei, losse - -1702 -1712 CLAY, white; GRAVEL, fine; wei, losse - -1712 -1712 CLAY, white; GRAVEL, fine; wei, losse - -1712 -1712 CLAY, white; GRAVEL, fine; wei, losse - -1712 -1712 CLAY, white; GRAVEL, fine; wei, losse - -1712 -1722 CLAY, brown and gray - <t< td=""><td>-43.2</td><td>-50.2</td><td>SAND, silty: GRAVEL, vellow: loose, wet</td><td>**</td></t<>	-43.2	-50.2	SAND, silty: GRAVEL, vellow: loose, wet	**
-5.1.2 -6.1.2 SAND, while, fine; some GRAVEL; moist, compact - -6.2.1 -7.1.2 SAND, and GRAVEL, grown; wet, loose - -7.1.2 SAND, fine, and GRAVEL, grown; wet, loose - - -7.1.2 SAND, fine, and GRAVEL, grown; wet, loose - - -7.1.2 SAND, fine, and GRAVEL, grown; wet, loose - - -7.1.2 SAND, fine, and GRAVEL, fine; wet, loose - - -1.02.1 -1.02.2 SAND, fine; moist, compact - - -1.02.1 -1.12.2 SAND, fine; moist, compact - - -1.02.1 -1.12.2 SAND, fine; fine; moist, compact - - -1.12.2 CLAY, white; GRAVEL, fine; wet, loose - - - -1.12.2 CLAY, white; GRAVEL, fine; compact - - - -1.12.2 CLAY, moist, compact - - - - -1.12.2 CLAY, moist, compact - - - - - - - - - - - - - - - - - - </td <td>-50.2</td> <td>-51.2</td> <td>SAND, coarse; GRAVEL; wet, loose</td> <td>**</td>	-50.2	-51.2	SAND, coarse; GRAVEL; wet, loose	**
-0.12 -0.22 SAND and GRAVEL, brown, well, lose	-51.2	-61.2	SAND, white, fine; some GRAVEL; moist, compact	**
-712 -712	-01.2	-02.2	SAND, gray, fine; some SAND and SILT, brown; moist, compact	64
-73.2 -90.2 SILT and SAND, black models, compact MRPAM -80.2 -91.2 SAND, gray, fine, most, compact MRPAM -10.2 -100.2 SAND, gray, fine, most, compact * -10.2 -102.2 SAND, gray, fine, most, compact * -10.2 -102.2 SAND, gray, fine, most, compact * -10.2 -141.2 SAND, gray, fine, most, compact MRPAM -141.2 -149.2 CLAY, white; some SAND, most, compact * -170.3 -151.2 -170.2 CLAY, white; most, compact * -170.2 -182.2 SAND, white, fine; most, compact * * -170.3 -182.2 SAND, fine; GRAVEL, trace of CLAY; most, compact * * -182.2 SAND, fine; GRAVEL, trace of CLAY; most, compact * * * -182.2 SAND; fine; GRAVEL, trace of CLAY; most, compact * * * -182.2 SAND; fine; GRAVEL, fine; most, compact * * * -182.2 SAND; fine; GRAVEL, fine; most, compact * * * -142.2 -244.2 WICA SCHIST	-71.2	-73.2	SAND and ORAVEL, blowin, wel, bose SAND, fine, and GRAVEL, grav: moist compact	MPPALI
-80.2 -91.2 SAND, gray, fine; moist, compact MRPAM -100.2 109.2 SAND, fine; gray; CLAY, white; moist, compact """"""""""""""""""""""""""""""""""""	-73.2	-80.2	SILT and SAND, black; moist, compact	-
-1012 SAND, Ime, Ensy: CLAY, white; most, compact ************************************	-80.2	-91.2	SAND, gray, fine; moist, compact	MRPAM
	-100.2	-100.2	SAND, fine, gray; CLAY, white; moist, compact SAND, gray, fine; moist, compact	
-132.2 -141.2 SAND, gray, fine; moist, compact MRPAM -149.2 -149.2 CLAY, white; GRAVEL, fine - -151.2 CLAY, white; GRAVEL, fine - -170.2 -170.2 CLAY, brown and gray - -170.2 -170.2 CLAY, brown and gray - -170.2 -182.2 SAND, fine; (CAY, moist, compact - -182.2 -188.2 SAND, fine; (GAVEL; trace of CLAY, moist, compact - -182.2 -188.2 SAND, fine; (GAVEL; trace of CLAY, moist, compact - -194.2 -208.2 CLAY, red: SAND; GRAVEL; trace of CLAY, moist, compact - -207.2 -217.2 SAND, fine; (GAVEL; trace of CLAY, moist, compact - -217.2 -227.2 CLAY, red: SAND; GRAVEL; trace of Mica; moist, compact - -217.2 -227.2 CLAY, red: SAND; GRAVEL; trace of Mica; moist, compact - -217.2 -227.2 CLAY, red: SAND; GRAVEL; trans, trace of CLAY; wood chips - -249.2 -254.2 MICA SCHIST, decomposed; gray, soft, moist - -15.0 SAND, olive gray, set ocarse to fine, subangular; muscovite and biotite (1%); MRPAU	-109.2	-132.2	SAND, coarse; GRAVEL, fine; wet, loose	46
-1412 -149.2 CLAY, white; some SAND; moist, compact -1492 -151.2 CLAY, red and white; moist, compact - -170.2 -170.2 CLAY, red and white; moist, compact - -170.2 -182.2 SAND, fine; CLAY, moist, compact - -182.2 -184.2 SAND, fine; CRAYEL; trace of CLAY; moist, compact - -182.2 -144.2 SAND, fine; CRAYEL; trace of CLAY; moist, compact - -208.2 -217.2 SAND, fine; CRAYEL; trace of CLAY; moist, compact - -207.2 -240.2 MICA SCHIST, dec of CLAY; moist, compact - -207.2 -240.2 MICA SCHIST, dec of CLAY; moist, compact - -207.2 -240.2 MICA SCHIST, dec of CLAY; moist, compact - -207.2 -240.2 MICA SCHIST, dec of CLAY; moist, compact - -207.2 -240.2 MICA SCHIST, dec of CLAY; moist, compact - -15.0 JS.0 SAND, olive gray, very coarse to fine, subangular; muscovite and biotite (1%); MRPAU -15.0 GRAVEL (4 mm), tarce of CLAY; wood chips - - -15.0 GAND CLAY, edmn, olive gray, subngular; CLAY, silly; wood chips, chin	-132.2	-141.2	SAND, gray, fine; moist, compact	MRPAM
1372 1712 CLAY, twitte, URAYEL, life 1702 1702 CLAY, twitte, URAYEL, life 1702 1702 CLAY, thrown and gray 1702 1722 CLAY, thrown and gray 1702 1822 SAND, fine; CLAY, moist, compact 1822 1882 SAND, fine; CLAY, moist, compact 1822 1882 SAND, fine; GRAVEL; trace of CLAY, moist, compact 1822 2082 CLAY, red; SAND, GRAVEL; trace of Mica; moist, compact 1942 2082 CLAY, red; SAND, GRAVEL; trace of Mica; moist, compact 2172 22722 CLAY, red; SAND, GRAVEL; trace of Mica; moist, compact 2172 22722 CLAY, red; SAND, GRAVEL; trace of Mica; moist, compact 2172 22722 CLAY, red; SAND, GRAVEL; trace of Mica; moist, compact 2172 22722 CLAY, moist, CGRAVEL; trace of Mica; moist, compact 2172 22722 CLAY, moist, CGRAVEL; trace of Mica; moist, compact 2172 22724 MICA SCHIST, decompaced, gray, solt; moist 2173 GRAVEL (4 mm), trace of CLAY; wood chips *** -150 SAND, olive gray, very coarse, angular, some CLAY; wood chips; ** -150	-141.2	-149.2	CLAY, white; some SAND; moist, compact	•
-1702 -1792 CLAY, brown and gray	-149.2	-170.2	CLAY, red and white: moist compact	-
-1792 -1822 SAND, fine: CLAY, moist, compact MRPAL -1822 -1842 SAND, Mite, fine, moist, compact * -1942 SAND, Mite, fine, moist, compact * -1942 208.2 CLAY, gray, some SAND, GRAVEL; moist, compact * -2072 -2272 CLAY, regr, some SAND, GRAVEL; mace of CLAY; moist, compact * -2172 -249.2 MICA SCHIST, decord of CLAY; moist, compact * -2172 -249.2 MICA SCHIST, decord of Kay, moist, compact * -2172 -249.2 MICA SCHIST, decord of Mica, moist, compact * -249.2 -254.2 MICA SCHIST, decord of Mica, moist, compact * -269.2 -254.2 MICA SCHIST, decord of Mica, moist, compact * -150 US GEOLOGICAL SURVEY HORSESHOE-D * -151 MICA SCHIST, decord of Mica, moist, compact * * -150 SAND, olive gray, very coarse to fine, subangular; muscovite and biotite (1%); MRPAU -150 GRAVEL (4 mm), inve of CLAY, inve gray; wood chips * * -40.0 45.0 GRAVEL (5 mm), olive gray, subangular; CLAY, sily; wood chips, thota vert fine orunded	-170.2	-179.2	CLAY, brown and gray	-
-182.2 -188.2 SAND, white, fine; moist, compact	-179.2	-182.2	SAND, fine; CLAY, moist, compact	MRPAL
1942 2042 SAND, Inte, URAYEL, Itace of CLAY; moist, compact ************************************	-182.2	-188.2	SAND, white, fine; moist, compact	••
-208.2 -217.2 SAND. fire: GRAVEL trace of CLAY; moist, compact MRPAL -217.2 -227.2 CLAY, red; SAND, GRAVEL; trace of Mica; moist, compact MRPAL -207.2 -249.2 MICA SCHIST, decompact, gray, soft; moist WSCK -249.2 -254.2 MICA SCHIST, hard, end of log WSCK Altitude (ft) Top Bottom Lithologic description Aquifer	-194.2	-208.2	CLAY, gray: some SAND, GRAVEL: moist, compact	44
-217.2 -227.2 CLAY, red; SAND; GRAVEL; trace of Mica; moist, compact MRPAL -227.2 -249.2 -254.2 MICA SCHIST, decomposed, gray, soft; moist WSCK -249.2 -254.2 MICA SCHIST, decomposed, gray, soft; moist WSCK -249.2 -254.2 MICA SCHIST, decomposed, gray, soft; moist WSCK -249.2 -254.2 MICA SCHIST, decomposed, gray, soft; moist WSCK -249.2 -254.2 MICA SCHIST, decomposed, gray, soft; moist WSCK -249.2 -254.2 MICA SCHIST, decomposed, gray, soft; moist WSCK -249.2 -254.2 MICA SCHIST, decomposed, gray, soft; moist WSCK -250.0 SAND, olive gray, very coarse to fine, subangular; muscovite and biotite (1%); GRAVEL (4 mm), intrace of CLAY, wood chips MRPAU -45.0 -50.0 GRAVEL (5 mm), subrounded; CLAY, olive gray, subangular; CLAY, silty; wood chips, thoit and muscovite * -51.0 -60.0 GRAVEL (5 mm), olive-gray, subangular; CLAY, silty; wood chips, chunks of coal; Mica * -55.0 -60.0 GRAVEL (5 mm), fuice gray, subangular; CLAY, silty; wood chips, chunks of coal; Mica * -55.0 -60.0 GRAVEL (5 mm), fuice gray, subangular; CLAY, silty; wood chi	-208.2	-217.2	SAND, fine; GRAVEL; trace of CLAY; moist, compact	**
-24/2 -24/2 MICA SCHIST, decomposed, gray, solt; moist WSCK -24/2 -254.2 MICA SCHIST, hard, end of log ** I01-007 -15.0 US GEOLOGICAL SURVEY HORSESHOE-D Altitude (ft) Top Bottom Lithologic description Aquifer -15.0 -33.0 SAND, olive gray, very coarse to fine, subangular; muscovite and biotite (1%); MRPAU -35.0 -40.0 SILT; GRAVEL (4 mm), trace of CLAY; wood chips * -40.0 45.0 GRAVEL (5 mm), subrounded; CLAY, olive gray; wood chips; * -50.0 CLAY, dark olive-gray, silty; wood chips; Mica * * -51.0 -50.0 CLAY, dark olive-gray, silty; bundnat wood chips, organics * -51.0 -60.0 SAND, olive-gray, silty; whome GRAVEL * * -51.0 GRAVEL (5 mm), olive-gray, wome CLAY * * -51.0 GRAVEL (1) invey fine rounded * * -61.0 SAND, olive-gray, wome CLAY * * -51.0 GRAVEL (2 mm), inder and SAND, coarse; Mica * * -51.0 GRAVEL (2 mm), inder and SAND, coarse; Mica <td< td=""><td>-217.2</td><td>-227.2</td><td>CLAY, red; SAND; GRAVEL; trace of Mica; moist, compact</td><td>MRPAL</td></td<>	-217.2	-227.2	CLAY, red; SAND; GRAVEL; trace of Mica; moist, compact	MRPAL
101-007 -15.0 US GEOLOGICAL SURVEY HORSESHOE-D Altitude (ft) Top Bottom Lithologic description Aquifer -15.0 -35.0 SAND, olive gray, very coarse to fine, subangular; muscovite and biotite (1%): MRPAU -35.0 -40.0 -45.0 GRAVEL (4 mm), trace of CLAY; wood chips * -40.0 -45.0 GRAVEL (5 mm), subrounded; CLAY, olive gray; wood chips * -40.0 -45.0 GRAVEL (5 mm), subrounded; CLAY, olive gray; some CLAY; wood chips; * -50.0 CLAY, dark olive-gray, subangular, CLAY, silty; wood chips, * * -51.0 GRAVEL (5 mm), olive gray, subangular, CLAY, silty; wood chips, * * -51.0 -60.0 SAND, olive-gray, subangular, CLAY, silty; wood chips, organics * * -61.0 SAND, olive-gray, wery coarse, silty; abundant wood chips, organics * * * -63.0 -65.0 CLAY, olive-gray, willy; woone GRAVEL * * * -70.0 -75.0 CLAY, brownish-black; will some SAND, coarse; Mica * * * -70.0 -75.0 CLAY, white W GRAVEL (5 mm) and SAND, coarse; Mica <	-249.2	-249.2 -254.2	MICA SCHIST, decomposed, gray, soft; moist MICA SCHIST, hard, end of log	WSCK
Altitude (ft)Lithologic descriptionAquifer-15.0-35.0SAND, olive gray, very coarse to fine, subangular; muscovite and biotite (1%); GRAVEL (5 mm), subrounded; CLAY; wood chipsMRPAU-35.0-40.0SILT; GRAVEL (5 mm), subrounded; CLAY, olive gray; wood chips"-40.045.0GRAVEL (5 mm), subrounded; CLAY, olive gray; wood chips; biotite and muscovite"-45.0-50.0CLAY, dark olive-gray, silty; wood chips; Mica"-55.0-60.0SAND, olive-gray, silty; wood chips; Mica"-55.0-60.0SAND, olive-gray, fine to very fine rounded"-63.0-65.0CLAY, olive gray, silty; wome CLAY, silty; wood chips, organics"-63.0-65.0CLAY, olive-gray, wilty; wisome GRAVEL"-70.0GRAVEL (3 mm), olive-gray, wisome CLAY""-70.0CLAY, horwish-black; wisome SAND, coarse""-75.0-80.0CLAY, olive-gray, wisome SAND, coarse"-75.0-80.0CLAY, red w/ GRAVEL (5 mm); Mica"-75.0-80.0CLAY, white w/ GRAVEL (5 mm); Mica"-75.0-75.0CLAY, white w/ GRAVEL (5 mm); Mica"-75.0-80.0CLAY, red w/ GRAVEL (5 mm); Mica"-75.0-75.0CLAY, white w/ GRAVEL (5 mm); Mica"-75.0-75.0CLAY, white w/ GRAVEL (2 mm)"-75.0-75.0CLAY, white w/ GRAVEL (2 mm); Mica"-75.0-75.0CLAY, red w/ GRAVEL (2 mm)"-75.0-75.0	101-007	-15.0	US GEOLOGICAL SURVEY HORSESHOE-D	
Image: constraint of the second consec subangular second constraint of the second constraint of th	Alt	titude (ft)	l idealania deceniarian	
-15.0 -35.0 SAND, olive gray, very coarse to fine, subangular; muscovite and biotite (1%); GRAVEL (4 mm), trace of CLAY; wood chips MRPAU -35.0 -40.0 SILT; GRAVEL (5 mm), subrounded; CLAY, olive gray; wood chips * -40.0 -45.0 GRAVEL (2 mm), olive gray; SAND, very coarse, angular; some CLAY; wood chips; biotite and muscovite * -45.0 -50.0 CLAY, dark olive-gray, silty; wood chips; Mica * -50.0 -55.0 GRAVEL (2 mm), olive-gray, subangular; CLAY, silty; wood chips, chunks of coal; Mica * -55.0 -60.0 SAND, olive-gray, rep, fine to very fine rounded * -60.0 -63.0 SAND, olive-gray, wry coarse, silty; abundant wood chips, organics * -63.0 -65.0 CLAY, olive-gray, wry coarse, SAND, coarse * -65.0 -70.0 GRAVEL (3 mm), olive-gray, wry some CLAY * -75.0 -70.0 GRAVEL (5 mm), Mica; minor CLAY * -70.0 -75.0 CLAY, ned w GRAVEL (5 mm); Mica * -70.0 -75.0 CLAY, ned w GRAVEL (2 mm); Mica; minor CLAY, red * -70.0 -75.0 CLAY, wite w GRAVEL (2 mm); Mica; minor CLAY, white * -97.0 -9		Bottom		Aquiter
 40.0 40.0 40.0 45.0 44.0 45.0 46.0 46.0<td>-15.0</td><td>-35.0</td><td>SAND, olive gray, very coarse to fine, subangular; muscovite and biotite (1%); GRAVEL (4 mm), trace of CLAY; wood chips</td><td>MRPAU</td>	-15.0	-35.0	SAND, olive gray, very coarse to fine, subangular; muscovite and biotite (1%); GRAVEL (4 mm), trace of CLAY; wood chips	MRPAU
-45.0-50.0CLAY, dark olive-gray, silty; wood chips; Mica**-50.0-55.0GRAVEL (5 mm), olive-gray, subangular; CLAY, silty; wood chips, chunks of coal; Mica**-50.0-60.0SAND, olive-gray, fine to very fine rounded**-60.0-63.0SAND, olive-gray, very coarse, silty; abundant wood chips, organics**-63.0-65.0CLAY, olive-gray, very coarse, silty; abundant wood chips, organics**-63.0-65.0CLAY, olive-gray, wry coarse, silty; abundant wood chips, organics**-70.0GRAVEL, (3 mm), olive-gray, wry some GRAVEL**-75.0-70.0GRAVEL, (3 mm), olive-gray, wry some CLAY**-75.0-70.0GRAVEL, (2 mm); Mica**-75.0-80.0CLAY, noinsh-black; wry some SAND, coarse**-75.0-80.0CLAY, noing, fine to very fine, rounded**-80.1-85.0CLAY, red w/ GRAVEL (2 mm); Mica**-95.0-97.0SAND, gray, fine to very fine, rounded**-97.0-100.0GRAVEL (2 mm), light gray; SAND, very coarse-medium; CLAY, white**-100.0IGRAVEL (2 mm), light gray; SAND, very coarse; CLAY, red and whiteMRPAU-108.0-110.0CLAY, white; GRAVEL and coarse SAND110.0-113.0CLAY, white; GRAVEL and coarse and GRAVEL (2 mm)113.0-115.0SAND, light gray, fine-medium, subrounded120.0CLAY, white; GRAVEL and coarse, subangular; CLAY, red and whiteMRPAM-120.0-125.0 <td< td=""><td>-35.0 -40.0</td><td>-40.0 -45.0</td><td>SIL1; GRAVEL (5 mm), subrounded; CLAY, olive gray; wood chips GRAVEL (5 mm), olive gray; SAND, very coarse, angular; some CLAY; wood chips;</td><td>64 65</td></td<>	-35.0 -40.0	-40.0 -45.0	SIL1; GRAVEL (5 mm), subrounded; CLAY, olive gray; wood chips GRAVEL (5 mm), olive gray; SAND, very coarse, angular; some CLAY; wood chips;	64 65
 -50.0 -55.0 CLAY, dark Olive-gray, silly; Wood chips, Mica -50.0 -55.0 GRAVEL (5 mm), olive-gray, subangular; CLAY, silty; wood chips, chunks of coal; Mica -55.0 -60.0 SAND, olive-gray, fine to very fine rounded -60.0 -63.0 SAND, olive-gray, silty; abundant wood chips, organics -63.0 -65.0 CLAY, olive-gray, silty; w/ some GRAVEL -65.0 -70.0 GRAVEL, (3 mm), olive-gray, w/ some CLAY -70.0 -75.0 CLAY, brownish-black; w/ some SAND, coarse -75.0 -80.0 CLAY, olive-green w/ GRAVEL (5 mm) and SAND, coarse; Mica -85.0 -70.0 GRAVEL, (15 mm), Mica -75.0 -80.0 CLAY, olive-green w/ GRAVEL (25 mm); Mica -85.0 -95.0 CLAY, white w/ GRAVEL (2.5 mm); Mica -85.0 -95.0 CLAY, white w/ GRAVEL (2.5 mm); Mica; minor CLAY, red -97.0 -100.0 GRAVEL (2-mm); Mica; minor CLAY, red -97.0 -100.0 GRAVEL (2-mm), brick red; SAND, very coarse; CLAY, white -97.0 -100.0 GRAVEL (2 mm), brick red; SAND, very coarse; CLAY, red and white -100.0 -105.0 GRAVEL (3 mm), brick red; SAND, very coarse; CLAY, red and white -100.0 -105.0 CLAY, white; GRAVEL and coarse SAND -108.0 CLAY, white; GRAVEL and coarse SAND -108.0 CLAY, white; GRAVEL and coarse SAND -113.0 -115.0 SAND, light gray, fine-medium, subrounded -113.0 -115.0 SAND, light gray, medium-coarse, subangular; CLAY, red and white -120.0 CLAY, red; SAND, coarse, GRAVEL (2 mm) -120.0 SAND, light gray, medium-coarse, subangular; some CLAY, gray; Mica -130.0 -135.0 SAND, dark gray, medium-coarse, subangular; some CLAY, white; Mica -130.0 -135.0 SAND, light gray, medium-coarse, subangular; some CLAY, white; Mica -130.0 -135.0 SAND, dark gray, medium-coarse, subangular; some CLAY, white; Mica -135.0 -137.0 SAND, light gray, medium-coarse, subangular; some CLAY, white; Mica -135.0 -135.0 SAND, light gray, medium-coarse, subangular; some CLAY, white; Mica <	45.0	50.0	biotite and muscovite	
-55.0-60.0SAND, olive-gray, fine to very fine rounded""""-60.0-63.0SAND, olive-gray, very coarse, silty; abundant wood chips, organics""""-63.0-65.0CLAY, olive-gray, silty; w/ some GRAVEL"""-63.0-65.0CLAY, olive-gray, silty; w/ some CLAY"""-70.0-75.0CLAY, brownish-black; w/ some SAND, coarse""""-70.0-75.0CLAY, olive-green w/ GRAVEL (5 mm) and SAND, coarse; Mica""""-80.0CLAY, olive-green w/ GRAVEL (5 mm); Mica""""-80.0-85.0CLAY, white w/ GRAVEL (2.5 mm); Mica; minor CLAY, red""""-85.0-97.0SAND, gray, fine to very fine, rounded""""-95.0-97.0SAND, gray, fine to very fine, rounded"""-97.0-100.0GRAVEL (2 mm), light gray; SAND, very coarse-medium; CLAY, white"""-100.0-105.0GRAVEL (2 mm), brick red; SAND, very coarse; CLAY, red and whiteMRPAU-108.0-113.0CLAY, white; GRAVEL and coarse SAND-"""-113.0-113.0CLAY, white; traces of SAND, coarse and GRAVEL (2 mm)-"""-113.0-115.0SAND, light gray, fine-medium, subrounded-"""-113.0-125.0SAND, light gray, medium-coarse, subangular; CLAY, red and whiteMRPAM-125.0-130.0SAND, dark gray, medium-coarse, subangular; some CLAY, white; Mica""""<""""	-50.0	-55.0	GRAVEL (5 mm), olive-gray, subargular; CLAY, silty; wood chips, chunks of coal; Mica	
-00.0-03.0SAND, olive-gray, very coarse, silty; abundant wood chips, organics"""-63.0-65.0CLAY, olive-gray, silty; w/ some GRAVEL"""-65.0-70.0GRAVEL, (3 mm), olive-gray, w/ some CLAY"""-70.0-75.0CLAY, brownish-black; w/ some SAND, coarse"""-75.0-80.0CLAY, olive-green w/ GRAVEL (5 mm) and SAND, coarse; Mica"""-80.0-85.0CLAY, red w/ GRAVEL (5 mm); Mica; minor CLAY, red"""-80.0-85.0CLAY, white w/ GRAVEL (2.5 mm); Mica; minor CLAY, red"""-95.0-97.0SAND, gray, fine to very fine, rounded"""-97.0-100.0GRAVEL (2-mm), light gray; SAND, very coarse; CLAY, red and white"""-100.0-105.0GRAVEL (2-mm), brick red; SAND, very coarse; CLAY, red and whiteMRPAU-105.0-108.0CLAY, white; GRAVEL and coarse SAND-"""-108.0-110.0CLAY, white; traces of SAND, coarse and GRAVEL (2 mm)-"""-110.0-113.0CLAY, red; SAND, coarse, GRAVEL (2 mm)-"""-120.0-125.0SAND, light gray, medium-coarse, subangular; CLAY, red and whiteMRPAM-125.0-130.0SAND, dark gray, medium-coarse, subangular; some CLAY, gray; Mica"""<"">""-130.0-135.0SAND, dark gray, medium-coarse, subangular; some CLAY, white; Mica"""<"""	-55.0	-60.0	SAND, olive-gray, fine to very fine rounded	**
-65.0-70.0GRAVEL (3 mm), olive-gray, wilsome CLAY-70.0-75.0CLAY, brownish-black; wilsome SAND, coarse-75.0-80.0CLAY, olive-green w/ GRAVEL (5 mm) and SAND, coarse; Mica-80.0-85.0CLAY, red w/ GRAVEL (5 mm); Mica; minor CLAY, red-80.0-85.0CLAY, red w/ GRAVEL (2 mm); Mica; minor CLAY, red-95.0CLAY, white w/ GRAVEL (2 mm); Mica; minor CLAY, red-95.0-97.0SAND, gray, fine to very fine, rounded-97.0-100.0GRAVEL (2 mm), light gray; SAND, very coarse; CLAY, red and white-97.0-100.0GRAVEL (2 mm), brick red; SAND, very coarse; CLAY, red and white-100.0-105.0GRAVEL (3 mm), brick red; SAND, very coarse; CLAY, red and white-101.0-108.0CLAY, white; GRAVEL and coarse SAND-101.0-111.0CLAY, white; GRAVEL and coarse SAND-110.0-113.0CLAY, white; traces of SAND, coarse and GRAVEL (2 mm)-115.0-120.0CLAY, red; SAND, coarse, GRAVEL (2 mm)-120.0-125.0SAND, light gray, medium-coarse, subangular; CLAY, red and white-120.0-125.0SAND, dark gray, medium-coarse, subangular; some CLAY, gray; Mica-130.0-137.0SAND, dark gray, medium-coarse, subangular; some CLAY, white; Mica-135.0-137.0SAND, light gray, medium-coarse, subangular; some CLAY, white; Mica-135.0-137.0SAND, light gray, medium-coarse, subangular; some CLAY, white; Mica-135.0-137.0SAND, light gray, medium-coarse, subangular; some CLAY, white; Mica-135.0SAND, ligh	-60.0	-63.0	SAND, olive-gray, very coarse, silty; abundant wood chips, organics	"
-70.0-75.0CLAY, brownish-black; w/ some SAND, coarse-75.0-80.0CLAY, olive-green w/ GRAVEL (5 mm) and SAND, coarse; Mica-80.0-85.0CLAY, red w/ GRAVEL (5 mm); Mica-80.0-85.0CLAY, red w/ GRAVEL (5 mm); Mica-80.0-85.0CLAY, red w/ GRAVEL (2 mm); Mica; minor CLAY, red-95.0CLAY, white w/ GRAVEL (2.5 mm); Mica; minor CLAY, red-97.0-97.0SAND, gray, fine to very fine, rounded-97.0-100.0GRAVEL (2 mm), light gray; SAND, very coarse-medium; CLAY, white-105.0GRAVEL (2 mm), light gray; SAND, very coarse; CLAY, red and white-105.0-108.0-108.0CLAY, red; GRAVEL and coarse SAND-108.0-110.0-110.0CLAY, white; GRAVEL and coarse so and GRAVEL (2 mm)-110.0-113.0-113.0CLAY, white; traces of SAND, coarse and GRAVEL (2 mm)-110.0-113.0-115.0-120.0-120.0CLAY, red; SAND, coarse, GRAVEL (2 mm)-120.0-125.0-120.0CLAY, red; SAND, coarse, subangular; CLAY, red and white-130.0SAND, dark gray, medium-coarse, subangular; some CLAY, gray; Mica-130.0-137.0-137.0SAND, dark gray, medium-coarse, subangular; some CLAY, white; Mica-137.0SAND, light	-65.0	-70.0	GRAVEL, (3 mm), olive-gray, w/ some CLAY	
-75.0-80.0CLAY, olive-green w/ GRAVEL (5 mm) and SAND, coarse; Mica**-80.0-85.0CLAY, red w/ GRAVEL (5 mm); Mica; minor CLAY, red**-85.0-95.0CLAY, white w/ GRAVEL (2.5 mm); Mica; minor CLAY, red**-95.0-97.0SAND, gray, fine to very fine, rounded**-97.0-100.0GRAVEL (2-mm), light gray; SAND, very coarse-medium; CLAY, white**-100.0-105.0GRAVEL (2-mm), light gray; SAND, very coarse; CLAY, red and whiteMRPAU-105.0-108.0CLAY, red; GRAVEL and coarse SAND108.0-110.0CLAY, white; GRAVEL and coarse so and GRAVEL (2 mm)110.0-113.0CLAY, white; Traces of SAND, coarse and GRAVEL (2 mm)113.0-115.0SAND, light gray, fine-medium, subrounded115.0-120.0CLAY, red; SAND, coarse, GRAVEL (2 mm)120.0-125.0SAND, light gray, medium-coarse, subangular; CLAY, red and whiteMRPAM-125.0-130.0SAND, dark gray, medium-coarse, subangular; some CLAY, gray; Mica*-130.0-135.0SAND, dark gray, medium-coarse, subangular; some CLAY, white; Mica*-137.0-137.0SAND, light gray, medium-coarse, subrounded, well sorted*-137.0SAND, light gray, medium-coarse, subrounded, well sorted*-137.0SAND, light gray, medium-coarse, subrounded, V red and white; Mica*	-70.0	-75.0	CLAY, brownish-black; w/ some SAND, coarse	**
-80.0-60.0-60.7, red w/ GRAVEL (3 mm), Mica-85.0-95.0CLAY, white w/ GRAVEL (2.5 mm); Mica; minor CLAY, red-97.0-97.0SAND, gray, fine to very fine, rounded-97.0-100.0GRAVEL (2-mm), light gray; SAND, very coarse-medium; CLAY, white-100.0-105.0GRAVEL (2 mm), brick red; SAND, very coarse; CLAY, red and white-105.0-108.0CLAY, red; GRAVEL and coarse SAND-108.0-110.0CLAY, white; GRAVEL and coarse SAND-108.0-110.0CLAY, white; GRAVEL and coarse SAND-113.0-115.0SAND, light gray, fine-medium, subrounded-113.0-115.0SAND, light gray, fine-medium, subrounded-115.0-120.0CLAY, red; SAND, coarse, GRAVEL (2 mm)-120.0-125.0SAND, light gray, medium-coarse, subangular; CLAY, red and white-130.0SAND, dark gray, medium-coarse, subangular; some CLAY, gray; Mica-130.0-135.0SAND, dark gray, medium-coarse, subangular; some CLAY, white; Mica-137.0-137.0SAND, light gray, medium-coarse, subrounded, well sorted-137.0SAND, light gray, medium-coarse, subrounded, well sorted-137.0SAND, light gray, medium-coarse, subrounded, V red and white: Mica	-/3.0	-80.0	CLAY, olive-green w/ GRAVEL (5 mm) and SAND, coarse; Mica	*
-95.0-97.0SAND, gray, fine to very fine, rounded"-97.0-100.0GRAVEL (2·mm), light gray; SAND, very coarse-medium; CLAY, white"-100.0-105.0GRAVEL (3 mm), brick red; SAND, very coarse; CLAY, red and whiteMRPAU-105.0-108.0CLAY, red; GRAVEL and coarse SAND108.0-110.0CLAY, white; GRAVEL and coarse SAND108.0-110.0CLAY, white; GRAVEL and coarse SAND108.0-110.0CLAY, white; GRAVEL and coarse SAND113.0-115.0SAND, light gray, fine-medium, subrounded115.0-120.0CLAY, red; SAND, coarse, and GRAVEL (2 mm)120.0-125.0SAND, light gray, medium-coarse, subangular; CLAY, red and whiteMRPAM-125.0-130.0SAND, dark gray, medium-coarse, subangular; some CLAY, gray; Mica"-130.0-135.0SAND, dark gray, medium-coarse, subangular; some CLAY, white; Mica"-137.0-137.0SAND, light gray, medium-coarse, subrounded, well sorted"-137.0-137.0SAND, light gray, medium-coarse, subrounded, Verd and white: Mice coal fragments"	-85.0	-95.0	CLAY, the w/ GRAVEL (5 mm); Mica: minor CLAY red	
-97.0-100.0GRAVEL (2·mm), light gray; SAND, very coarse-medium; CLAY, white""-100.0-105.0GRAVEL (3 mm), brick red; SAND, very coarse; CLAY, red and whiteMRPAU-105.0-108.0CLAY, red; GRAVEL and coarse SAND108.0-110.0CLAY, white; GRAVEL and coarse SAND108.0-110.0CLAY, white; GRAVEL and coarse SAND113.0-113.0CLAY, white; GRAVEL and coarse SAND113.0-115.0SAND, light gray, fine-medium, subrounded115.0-120.0CLAY, red; SAND, coarse, GRAVEL (2 mm)120.0-125.0SAND, light gray, medium-coarse, subangular; CLAY, red and whiteMRPAM-125.0-130.0SAND, dark gray, medium-coarse, subangular; some CLAY, gray; Mica"-130.0-135.0SAND, dark gray, medium-coarse, subrounded, well sorted"-137.0-137.0SAND, light gray, medium-coarse, subrounded, well sorted"-137.0SAND, gray, medium-coarse, subrounded, CLAY, white; Mice coal fragments"	-95.0	-97.0	SAND, gray, fine to very fine, rounded	"
-100.0 -105.0 GRAVEL (3 mm), brick red; SAND, very coarse; CLAY, red and white MRPAU -105.0 -108.0 CLAY, red; GRAVEL and coarse SAND - -108.0 -110.0 CLAY, white; GRAVEL and coarse SAND - -108.0 -110.0 CLAY, white; GRAVEL and coarse SAND - -108.0 -110.0 CLAY, white; GRAVEL and coarse SAND - -110.0 -113.0 CLAY, white; GRAVEL and coarse sAND - -113.0 -115.0 SAND, light gray, fine-medium, subrounded - -115.0 -120.0 CLAY, red; SAND, coarse, GRAVEL (2 mm) - -120.0 -125.0 SAND, light gray, medium-coarse, subangular; CLAY, red and white MRPAM -125.0 -130.0 SAND, dark gray, medium-coarse, subangular; some CLAY, gray; Mica " -130.0 -135.0 SAND, dark gray, medium-coarse, subangular; some CLAY, white; Mica " -135.0 -137.0 SAND, light gray, medium-coarse, subrounded, well sorted " -137.0 SAND, light gray, medium-coarse, subrounded, Verd and white: Mica "	-97.0	-100.0	GRAVEL (2 mm), light gray; SAND, very coarse-medium; CLAY, white	44
-108.0 -110.0 CLAY, white; GRAVEL and coarse SAND -110.0 -113.0 CLAY, white; GRAVEL and coarse SAND -113.0 -113.0 CLAY, white; traces of SAND, coarse and GRAVEL (2 mm) -113.0 -115.0 SAND, light gray, fine-medium, subrounded -115.0 -120.0 CLAY, red; SAND, coarse, GRAVEL (2 mm) -120.0 -125.0 SAND, light gray, medium-coarse, subangular; CLAY, red and white MRPAM -125.0 -130.0 SAND, dark gray, medium-coarse, subangular; some CLAY, gray; Mica " -130.0 -135.0 SAND, dark gray, medium-coarse, subangular; some CLAY, white; Mica " -137.0 -137.0 SAND, light gray, medium-coarse, subrounded, well sorted " -137.0 SAND, light gray, medium-coarse, subrounded, Verd and white: Mica "	-105.0	-105.0	CLAY red: GRAVEL and coarse SAND	MRPAU
-110.0 -113.0 CLAY, white; traces of SAND, coarse and GRAVEL (2 mm) -113.0 -115.0 SAND, light gray, fine-medium, subrounded -115.0 -120.0 CLAY, red; SAND, coarse, GRAVEL (2 mm) -120.0 -125.0 SAND, light gray, medium-coarse, subangular; CLAY, red and white -125.0 -130.0 SAND, dark gray, medium-coarse, subangular; some CLAY, gray; Mica -130.0 -135.0 SAND, dark gray, medium-coarse, subangular; some CLAY, white; Mica -135.0 -137.0 SAND, light gray, medium-coarse, subrounded, well sorted -137.0 -135.0 SAND, light gray, medium-coarse, subrounded, well sorted	-108.0	-110.0	CLAY, white; GRAVEL and coarse SAND	•
-113.0 -115.0 SAND, light gray, fine-medium, subrounded -115.0 -120.0 CLAY, red; SAND, coarse, GRAVEL (2 mm) -120.0 -125.0 SAND, light gray, medium-coarse, subangular; CLAY, red and white MRPAM -125.0 -130.0 SAND, dark gray, medium-coarse, subangular; some CLAY, gray; Mica " -130.0 -135.0 SAND, dark gray, medium-coarse, subangular; some CLAY, white; Mica " -137.0 -137.0 SAND, light gray, medium-coarse, subrounded, well sorted " -137.0 SAND, light gray, medium-coarse, subrounded, well sorted "	-110.0	-113.0	CLAY, white: traces of SAND, coarse and GRAVEL (2 mm)	-
-120.0 -125.0 CLAT, red, SAND, coarse, ORAYEL (2 mm) - -120.0 -125.0 SAND, light gray, medium-coarse, subangular; CLAY, red and white MRPAM -125.0 -130.0 SAND, dark gray, medium-coarse, subangular; some CLAY, gray; Mica " -130.0 -135.0 SAND, dark gray, medium-coarse, subangular; some CLAY, white; Mica " -135.0 -137.0 SAND, light gray, medium-coarse, subrounded, well sorted " -137.0 -155.0 SAND, gray, medium-coarse, subrounded, Well sorted "	-113.0	-115.0	SAND, light gray, fine-medium, subrounded	•
-125.0 -130.0 SAND, dark gray, medium-coarse, subangular; some CLAY, gray; Mica """"""""""""""""""""""""""""""""""""	-120.0	-125.0	SAND, light gray, medium-coarse, subangular: CLAY red and white	- MRPAM
-130.0 -135.0 SAND, dark gray, medium-coarse, subangular; some CLAY, white; Mica " -135.0 -137.0 SAND, light gray, medium-coarse, subrounded, well sorted " -137.0 -155.0 SAND, gray, medium-coarse, subrounded; CLAY, red and white: Mica: coal fragments "	-125.0	-130.0	SAND, dark gray, medium-coarse, subangular; some CLAY, gray; Mica	1711XJ 73171 14
-133.0 -137.0 SAND, light gray, medium-coarse, subrounded, well sorted " -137.0 -155.0 SAND, gray, medium-coarse, subrounded: CLAY, red and white: Mice: coal fragments "	-130.0	-135.0	SAND, dark gray, medium-coarse, subangular; some CLAY, white; Mica	"
with wy graph in water water, out out out out out out out with the state of t	-135.0 -137.0	-157.0	SAND, light gray, medium-coarse, subrounded, well sorted SAND, gray, medium-coarse, subrounded: CLAY, red and white: Mica: coal fragments	"

,

Table 6. -Logs of selected wells and test boreholes in the vicinity of the Delaware River-continued.

٠

Well number	Land- surface elevation	Owner	Well identifier	
Log of 101-007 -155.0	continued -165.0	GRAVEL (3 mm), light gray; SAND, very cos traces of CLAY, red: Mica	rse-coarse, subangular;	MRPAM
-165.0	-175.0	CLAY, red; GRAVEL (2 mm), traces of CLA	Y, white	-
-175.0	-185.0	CLAY, white to gray; w/ some SAND, coarse	to very coarse	MDDAL
-185.0	-195.0	SAND, light gray, medium-coarse; w/some Cl	AY, red and write	WIKPAL
-195.0	-197.0	sample		
-205.0	-215.0	SAND, light gray, medium-very coarse, subro	unded; biotite and muscovite	"
-215.0	-245.0	SAND, light gray, coarse-very coarse, increase	e in Mica content	MRPAL
-245.0 -253.0	-253.0	Mica, more biotite than muscovite; SAND BEDROCK, hard drilling, end of log		WSCK "
15-067	5.0	GREENWICH TWP WD	TEST WELL 1-58	
Al	titude (ft)			Aquifar
Тор	Bottom	Lithologic description		Aquiic:
50	20	"Air"		-
2.0	-45.0	CLAY, sandy, brown		-
-45.0	-86.0	SAND, fine to coarse-grained		MRPAM
-86.0	-87.0	CLAY, dark gray		"
-87.0	-106.0	SAND, gray, fine-grained, GRAVEL		"
-100.0	-123.0	CLAY, red		**
-127.0	-130.0	SAND, gray, fine-grained		"
-130.0	-164.0	SAND, fine and medium-grained		
-164.0	-168.0	SAND; CLAY, lamina		MKPAM
-168.0	-194.0	SAND fine to coarse-orgined: CLAY gray is	eminated	MRPAL
-244.0	-257.0	CLAY, sandy, gray		MRPAL
-257.0	20710	CLAY, very tough; bedrock		WSCK
15-074	15.0	HERCULES CHEMICAL	GIBBSTOWN OB 1	
Al	ltitude (ft)			•
Тор	Bottom	Lithologic description		Aquiter
15.0	14.0	"Tapsoil"		-
14.0	12.0	CLAY, sandy, brown		
12.0	-6.0	SAND, coarse-grained; GRAVEL		MRPAM
-6.0	-11.0	CLAY, sandy, mixed		45
-11.0	-28.0	SAND, brown and while, coarse-grained		44
-46.0	-72.0	CLAY: GRAVEL, mixed		**
-72.0	-106.0	SAND, brown, coarse-grained		<u>к</u>
-106.0	-108.0	CLAY, sandy, yellow		MPDAM
-108.0		CLAY, red		MINEAM
15-100	3.0	E I DUPONT	REPAUNO OB 6	
A Top	ltitude (ft) Bottom	Lithologic description		Aquifer
3.0	1.0	SAND, (based on geophysical log)		-
1.0	-3.0	CLAY, sandy		- MDDAM
-3.0	-13.0			
-13.0	-27.0	SAND		MRPAM
-41.0	-55.0	CLAY		-
-55.0	-59.0	SAND		-
-59.0	-63.0	CLAY		MPPAI
-63.0	-87.0	JANU CLAV sandu		
-92.0	-94.0	SAND, end of log		MRPAL
15-221	10.0	ESSEX CHEMICAL CO	PAULSBORO 1	
	1.1. 1. (0)			
A Top	Ititude (ft) Bottom	Lithologic description		Aquifer
10.0 7.0	7.0 6.0	"Fill"; "Dirt" SAND, yellow, coarse-grained		MRPAU

-

	Land-			
Well	Surface			
		Owner	Well identifier	
og of 15-221	continued	1		
6.0	2.0	SAND, black-pepper		41
2.0	-22.0	SAND, white, coarse-grained		44
-22.0	-27.0	CLAY, white; "Stones"		**
-38.0	-47.0	CLAY may tough		"
-47.0	-69.0	SAND: "Stones"		
-69.0	-80.0	CLAY, grav		MRPAU
-80.0	-86.0	CLAY, red and white		-
-86.0	-107.0	SAND, fine-grained; GRAVEL		MRPAM
-107.0	-122.0	CLAY, red		44
-136.0	-155.0	CLAY red and amu		MRPAM
-155.0	-164.0	SAND: GRAVEL, coarse-grained		-
-164.0	-184.0	SAND, coarse-grained		MKPAL
-184.0	-211.0	SAND, white, fine to medium-grained; GRAVE	L	"
-211.0	-238.0	CLAY, white, brown, red, gray		**
-238.0	-242.0	SAND, medium to coarse-grained		**
-244.0	-263.0	GRAVEL contra grained: "Stones": CLAV	in and Marin	**
-263.0	-273.0	GRAVEL, todase-grained, Signes ; CLAT, with	ite and black	*
-273.0		"Stones", GRAVEL; CLAY, white		MRPAL
15-312	20.0	WEST DEPTFORD TWP WD	6 RED BANK AVE	
Al	titude (ft)			
Тор	Bottom	Lithologic description		Amifer
20.0		CLAV		
-27.0	-65.0	CLAY silty hard		-
-65.0	-123.0	SAND: GRAVEL: "Stones"		MDDAIL
-123.0	-126.0	CLAY; "Stones"		MKPAU
-126.0	-146.0	SAND		MRPAU
-146.0	-166.0	CLAY; "Hardpan"		-
-100.0	-254,0	CLAY, red, hard		MRPAM
-294.0	-349.0	SAND		
-349.0	0.000	CLAY		MRPAL
15-313	23.0	WEST DEPTFORD TWP WD	WDTWD 2	
Ali	titude (ft)			
Тор	Bottom	Lithologic description		Aquifer
21.0	20.0	(i A :_1)		······
20.0	80	CLAV brown		-
8.0	-8.0	CLAY, gray		-
-8.0	-19.0	SAND, gray		MPPALI
-19.0	-25.0	CLAY, gray		WINTAU "
-25.0	-38.0	SAND, fine to coarse-grained		**
-58.0	-39.0	CLAY, gray		**
-99.0	-102.0	CLAY grav		**
-102.0	-111.0	SAND, gray, fine to coarse-grained		54 54
-111.0	-116.0	"Hardpan"		••
-116.0	-143.0	SAND, medium to coarse-grained; GRAVEL		MRPAU
-143.0	-130.0	CLAY, gray SAND group medium to solve to the total		•
-177.0	-186.0	CLAY red	.L	MRPAM
-186.0	-198.0	SAND, fine to medium-grained		**
-198.0	-215.0	CLAY, red		
-215.0	-232.0	SAND, coarse-grained; GRAVEL		MRPAM
-232.0	-244.0	CLAY, red		•
-244.0 -282.0	-282.0 -297.0	CLAT; SAND SAND fine to medium aminod		-
-297.0	-302.0	SAND fine to coarse-grained		MRPAL
-302.0	-308.0	SAND, fine-grained; GRAVEL, coarse-grained		
-308.0	-315.0	CLAY, gray		**
-315.0	-325.0	SAND, coarse-grained; GRAVEL		**
-325.0	-333.0	SAND, coarse-grained; CLAY		MRPAL
-333.0		BEDROCK		WSCK

·

Table 6. –Logs of selected wells and test boreholes in the vicinity of the Delaware River-continued.

Well	Land- surface elevation	Owner	Well identifier		
15-323	21.0	TEXAS OIL CO	EAGLE PT OBS 3		
Al Top	ltitude (ft) Bottom	Lithologic description		Aquifer	
21.0	0.0	"Mud", river	· .	-	
0.0	-22.0	CLAY, sandy		MRPAIL	
-22.0	-45.0	SAND, CLAY streaks	TAV streaks	MRPAU	
-45.0	-91.0	CLAV red	JLAT SIICANS	-	
-91.0	-164.0	SAND coarse-grained		MRPAM	
-164.0	-205.0	CLAY, tough	and the second se	-	
-205.0	-224.0	SAND; CLAY streaks			
-224.0	-266.0	SAND, coarse-grained		MRPAL	
-266.0	-272.0	CLAY, blue; SAND; GRAVEL		WSCK	
-272.0		BEDROCK		WOCK	
15-333	20.0	WOODBURY WD	TATUM 4		
A Top	ltitude (ft) Bottom	Lithologic description		Aquifer	
· · · ·					
20.0	16.0	"Topsoil"; CLAY, brown		-	
10.0	8.0	CLAY, yenow, Stones, brown		-	
-85.0	-02.0	SAND dirty GRAVEL: CLAY		-	
-90.0	-95.0	SAND, dirty gray, fine-grained		MRPAU	
-95.0	-98.0	SAND, coarse-grained; GRAVEL,	fine-grained		
-98.0	-105.0	SAND, GRAVEL, coarse-grained		**	
-105.0	-113.0	SAND, fine-grained		**	
-113.0	-124.0	SAND, fine-grained; GRAVEL, co	arse-grained	64	
-124.0	-128.0	SAND: GRAVEL course-grained		**	
-128.0	-130.0	SAND, OKAVEL, coarse-granted	ned	41	
-134.0	-140.0	SAND, medium to coarse-grained		44	
-140.0	-151.0	SAND, fine-grained		MRPAU	
-151.0		CLAY		•	
15-412	5.0	E I DUPONT	TEST 4 1965		
A	ltitude (ft)	Lithologic description		Aquifer	
1 op	Dollon				
5.0	-5.0	CLAY, black		-	
-5.0	-14.0	SAND; GRAVEL		-	
-14.0	-27.0	CLAY, sandy, brown		MRPAL	
-27.0	-55.0	SAND; GKAVEL "Hardnan"		"	
210		natupan		60	
-33.0	-33.0	SAND: GRAVEL: CLAY: "Stones	i i i i i i i i i i i i i i i i i i i		
-33.0 -35.0 -63.0	-63.0 -77.0	SAND; GRAVEL; CLAY; "Stones "Hardpan"	Γ.	MRPAL	
-33.0 -35.0 -63.0 -77.0	-63.0 -77.0	SAND, GRAVEL, CLAY; "Stones "Hardpan" BEDROCK	r	MRPAL WSCK	
-33.0 -35.0 -63.0 -77.0 15-439	-33.0 -63.0 -77.0 10.0	SAND; GRAVEL; CLAY; "Stones "Hardpan" BEDROCK ESSEX CHEMICAL CO	ESSEX 2	MRPAL WSCK	
-33.0 -35.0 -63.0 -77.0 15-439	-53.0 -63.0 -77.0 10.0 Altitude (ft) Bottom	SAND; GRAVEL; CLAY; "Stones "Hardpan" BEDROCK ESSEX CHEMICAL CO Lithologic description	ESSEX 2	MRPAL WSCK Aquifer	
-33.0 -35.0 -63.0 -77.0 15-439 A Top	-53.0 -63.0 -77.0 10.0 Altitude (ft) Bottom	SAND; GRAVEL; CLAY; "Stones "Hardpan" BEDROCK ESSEX CHEMICAL CO Lithologic description	ESSEX 2	MRPAL WSCK Aquifer	
-33.0 -35.0 -63.0 -77.0 15-439 <u>A</u> Top <u>10.0</u>	-53.0 -63.0 -77.0 10.0 Altitude (ft) Bottom -15.0	SAND; GRAVEL; CLAY; "Stones "Hardpan" BEDROCK ESSEX CHEMICAL CO Lithologic description SAND, fine-grained; CLAY brown SAND, medium to correct project	ESSEX 2	MRPAL WSCK Aquifer MRPAU MRPAU	
-33.0 -35.0 -63.0 -77.0 15-439 Top -10.0 -15.0 -76.0	-53.0 -63.0 -77.0 10.0 Altitude (ft) Bottom -15.0 -76.0 -76.0	SAND; GRAVEL; CLAY; "Stones "Hardpan" BEDROCK ESSEX CHEMICAL CO Lithologic description SAND, fine-grained; CLAY brown SAND, medium to coarse-grained; CLAY gray: SAND streaks	ESSEX 2 GRAVEL; CLAY streaks, red, white	MRPAL WSCK Aquifer MRPAU MRPAU	
-33.0 -35.0 -63.0 -77.0 15-439 10.0 -15.0 -76.0 -106.0	-53.0 -63.0 -77.0 10.0 Altitude (ft) Bottom -15.0 -106.0 -135.0	SAND; GRAVEL; CLAY; "Stones "Hardpan" BEDROCK ESSEX CHEMICAL CO Lithologic description SAND, fine-grained; CLAY brown SAND, medium to coarse-grained; CLAY, gray; SAND streaks CLAY, red, white	ESSEX 2 GRAVEL; CLAY streaks, red, white	MRPAL WSCK Aquifer MRPAU MRPAU	
-33.0 -35.0 -63.0 -77.0 15-439 15-439 10.0 -15.0 -106.0 -135.0	-63.0 -63.0 -77.0 Altitude (ft) Bottom -15.0 -106.0 -106.0 -135.0 -145.0	SAND; GRAVEL; CLAY; "Stones "Hardpan" BEDROCK ESSEX CHEMICAL CO Lithologic description SAND, fine-grained; CLAY brown SAND, medium to coarse-grained; CLAY, gray; SAND streaks CLAY, red, white SAND, coarse-grained	ESSEX 2 GRAVEL; CLAY streaks, red, white	MRPAL WSCK Aquifer MRPAU E MRPAU	
-33.0 -35.0 -63.0 -77.0 15-439 15-439 10.0 -15.0 -106.0 -135.0 -145.0	-53.0 -63.0 -77.0 Altitude (ft) Bottom -15.0 -76.0 -106.0 -135.0 -145.0 -154.0	SAND; GRAVEL; CLAY; "Stones "Hardpan" BEDROCK ESSEX CHEMICAL CO Lithologic description SAND, fine-grained; CLAY brown SAND, medium to coarse-grained; CLAY, gray; SAND streaks CLAY, red, white SAND, coarse-grained CLAY	ESSEX 2 GRAVEL; CLAY streaks, red, white	MRPAL WSCK Aquifer MRPAU MRPAU	
-33.0 -35.0 -63.0 -77.0 15-439 10.0 -15.0 -76.0 -106.0 -135.0 -145.0 -145.0	-53.0 -63.0 -77.0 Altitude (ft) Bottom -15.0 -76.0 -106.0 -135.0 -135.0 -145.0 -178.0	SAND; GRAVEL; CLAY; "Stones "Hardpan" BEDROCK ESSEX CHEMICAL CO Lithologic description SAND, fine-grained; CLAY brown SAND, medium to coarse-grained; CLAY, gray; SAND streaks CLAY, gray; SAND streaks CLAY, red, white SAND, coarse-grained CLAY SAND, coarse-grained; GRAVEL;	ESSEX 2 GRAVEL; CLAY streaks, red, white CLAY streaks, red, white	MRPAL WSCK Aquifer MRPAU MRPAU MRPAM MRPAL	

	Land-			
Well	surface			
number	elevation	Owner	Well identifier	
15-496	45.0	NELSON, ROBERT	1	
A	ltitude (ft)			
Тор	Bottom	Lithologic description		Aquifer
45.0	7.0	SAND, yellow, coarse-grained		ORNR
7.0	-10.0	CLAY, sandy, black		-
-10.0	-40.0	"Mud", graphite, black		•
-73.0	-78.0	CLAY, grav hard		MCVL
-78.0	-85.0	SAND, gray, fine to coarse-grained		MPDATI
-85.0	-90.0	CLAY, gray		MIRIAO
-70.0		SAND, gray, fine to coarse-grained		MRPAU
15-511	10.0	FEHLAUER, ALBERT	2	
A	ltitude (ft)			
Тор	Bottom	Lithologic description		Aquifer
10.0	40	CLAY sandy vellow		
4.0	-2.0	SAND, grav, fine-grained: CLAY		-
-2.0	-8.0	SAND, yellow, fine to coarse-grained		- MRPALI
-8.0	-18.0	CLAY, brown		""
-18,0		SAND, yellowish, coarse-grained; "Stones"		MRPAU
15-512	10.0	FEHLAUER, ALBERT	3	
A	ltitude (ft)	••• • • • • •		
Top	Bottom	Lithologic description		Aquifer
10.0	6.0	**Fill?*		
6.0	2.0	CLAY, gray		•
2.0	0.0	SAND, yellow, fine to coarse-grained		-
0.0	-13.0	CLAY, sandy, gray; "Stones"		-
-19.0	-34.0	SAND, gray, the to coarse-grained; "Stones" SAND, yellow, fine to coarse-grained; "Stones"		MRPAU
-34.0	5.110	SAND, gray, coarse-grained; "Stones"		
15-533	22.0	NATIONAL PARK WD	NPWD 6	
AI	titude (ft)			
Тор	Bottom	Lithologic description		Aquifer
22.0	18.0	SAND		
18.0	7.0	SAND, brown; GRAVEL		ÓRNR
7.0	-7.0	CLAY, yellow, SAND, brown		MRPAU
-7.0	-33.0 -34.0	CLAY, white; GRAVEL; white CLAY, white		"
-34.0	-38.0	SAND, coarse-grained: GRAVET		44 14
-38.0	-57.0	"Stones", coarse-grained; GRAVEL		
-57.0	-61.0	GRAVEL, brown, coarse-grained		41
-61.0	-68.0	"Stones", coarse-grained		66
-08.0	-82.0	CLAY, white; GRAVEL CLAY, group LICNITE		MRPAU
-88.0	-99.0	CLAY, gray, LIGNITE CLAY, white: LIGNITE: GRAVEI		-
-99.0	-101.0	CLAY, yellow	•	•
-101.0	-112.0	SAND, white and brown		MRPAM
-112.0	+117.0	CLAY, white; GRAVEL		64
+121.0	-127.0	CLAY, White SAND white CLAY		44
-130.0	-131.0	GRAVEL, brown and white		
-131.0	-134.0	CLAY, white		MKPAM
-134.0	-146.0	CLAY, red and white		-
-146.0	-160.0	CLAY, gray		-
-160.0	-170,0	CLAY light any		•
-171.0	-185.0	SAND gray coarse orgined		-
-185.0	-198.0	CLAY, gray and red		MKPAL
-198.0	-213.0	CLAY, red		44
-213.0	-218.0	SAND, fine-grained		44
-218.0	-237.0	SAND, coarse-grained		"
-238.0	-230.0 -250.0	SAND coarse-grained		
				MRPAI

Well number	Land- surface elevation	Owner	Well identifier	
Log of 15-533 -250.0	continued	CLAY, white and red		-
15-772	11.4	US GEOLOGICAL SURVEY	#3-OW-AL	
А Тор	ltitude (ft) Bottom	Lithologic description		Aquifer
11.4	5.4	SOIL and Clayey SILT		MRPAU
5.4	-5.6	SAND		
-5.6	-35.6	GRAVEL SUT with SAND		••
-33.0	-39.0	GRAVEL: SAND and SILT		MRPAU
-51.6	-61.6	CLAY; SILT		-
-61.6	-68.6	CLAY		-
-68.6	-92.6			MIKPAM "
-92.0	-100.6	GRAVEL: with SAND		"
-100.6	-105.6	Clayey SILT		**
-105.6	-113.6	GRAVEL and SAND		MRPAM
-113.6	-126.6			-
-120.0	-183.6	CLAY		-
-183.6	-204.6	GRAVEL; SAND		MRPAL
-204.6	-213.6	GRAVEL; SAND; SILT		MKPAL
-213.6	-218.0	MICA SCHIST		WOCK
15-770	10.5	US GEOLOGICAL SURVEY	#1-PW-L	
	(ft)			
Тор	Bottom	Lithologic description		Aquifer
10.5	0.5	SAND		MRPAU
9.5	-1.5	SILT, clayey		44
-1.5	-14.5	SAND and GRAVEL		54 54
-14.5	-16.5	SILT, clayey; SAND AND GRAVEL		64
-10.5	-19.5	SAND		66
-29.5	-44.5	GRAVEL		64
-44.5	-51.5	SAND, Very fine, SILT, and CLAY		MRPAU
-51.5	-57.5	CLAY; SILT and GRAVEL		MRPAM
-60.5	-00.5	CLAY: SAND and GRAVEL lenses		**
-79.5	-99.5	GRAVEL		
-99.5	-115.5	GRAVEL		мкрам
-115.5	-122.5			-
-129.5	-184.5	CLAY		-
-184.5	-190.5	SILT		-
-190.5	-192.5			MRPAL
-192.5	-198.5	SILT		
-200.5	-206.5	GRAVEL		**
-206.5	-209.5	SILT		MPDAT
-209.5	-212.5			WSCK
-220.5	-232.5	MICA SCHIST		64
45-001	-17.0	US GEOLOGICAL SURVEY	MIFFLIN BAR	
	Altitude (ft)			
Тор	Bottom	Lithologic description		Aquifer
-17.0	-30.0	CLAY, olive green, silty, contains 1% qua	rtz PEBBLES, subrounded	-
-30.0	-62.0	CLAY, olive green, silty and sandy (fine),	contains 1% muscovite	-
-62.0	-/2.0 _97 0	CLAY, onve green, siny and sandy (fine- CLAY, olive green, silty and sandy (fine-	nedium), contains 1% muscovite nedium), contains 1% PEBBLES, 2.5 cm	-
-87.0	-102.0	SAND, gray, very coarse, contains musco	vite (1%), subrounded to subangular;	MRPAM
		GRAVEL, quartz, feldspar, lithic fragm	nents (red shale); PEBBLES (5 mm)	
-102.0	-117.0	Same as above: except increase in CLAY	- red and white	мкрам
-117.0	-122.0	SAND light gray very coarse to fine sub	rounded:	MRPAL
-122.0	-132.0	GRAVEL (3 mm); muscovite and CLA	Y (30%)	
-132.0	-142.0	SAND, light gray, very coarse; muscovite	; GRAVEL (5 mm); CLAY, white and red	66

Well number	Land- surface elevation	owner	Well identifier	
Log of 45-001	continued	l		
-142.0	-152.0	SAND, pinkish gray, very coars	e, subrounded; GRAVEL (8 mm); CLAY, white	64
-152.0	-157.0	Same as above, less CLAY		"
-157.0	-172.0	SAND, pinkish gray, very coars lithic fragments; Fe-cemented	e, subangular, GRAVEL (5 mm): quartz, feldspar, I granules; and CLAY, white	
-172.0	-187.0	Same as above, except increase	in CLAY	**
-187.0	-202.0	GRAVEL (5 mm), pinkish gray Fe-cemented granules, suban	w/ muscovite, feldspar, quartz; gular SAND, coarse	64
-202.0	-227.0	GRAVEL and CLAY, GRAVE	getting coarser	66
-227.0	-237.0	GRAVEL as above		44
-242.0	-242.0	GRAVEL as above, except incre GRAVEL as above w/ mussouit	ase in muscovite (40%)	
-248.0	-2-10.0	BEDROCK - no sample, hard dr	illing, end of log	MRPAL WSCK
51-9002	13.0			
A	ltitude (ft)			
.Тор	Bottom	Lithologic description		Aquifer
13.0	8.0	SAND, tannish-brown, coarse-gr	rained	MRPAM
8.0	-2.0	SAND, dark gray, medium-grain	ed	64
-2.0	-17.0	SAND, gray, fine-grained		44
~17.0	-29.0	SAND, brown, medium-grained		**
-32.0	-32.0	SAND, tannish-brown, coarse-gi BEDROCK	ained; GRAVEL	MRPAM WSCK
B-95	0.0	PENNSYLVANIA RAILR	OAD CO.	
Α	ltitude (ft)			
Тор	Bottom	Lithologic description		Aquifer
-3.0	-9.0	CLAY; SAND		
-9.0	-12.0	"Mud"		-
-12.0	-22.0	SAND, GRAVEL		MRPAL
-22.0	-25.0	CLAY		**
-23.0	-51.0			"
-54.0	-61.0	SAND		
-61.0	-77.0	GRAVEL		
-77.0	-87.0	GRAVEL coarse-prained		MODAL
-87.0		BEDROCK		WSCK
B-103	0.0	TACONY BRIDGE		
A	ltitude (ft)			
Тор	Bottom	Lithologic description		Aquifer
0.0	-59.0	"Mud", Sandy		•
-59.0	-62.0	GRAVEL		MRPAL
-62.0	-75.0	UNEISS		WSCK
B-124	U.U	US ARMY ENGINEERS		
Top	Bottom	Lithologic description		Aquifer
0.0	-30.0	SILT: SAND		**************
-30.0	-34.0	SAND; GRAVEL		MRPAM
-34.0		BEDROCK		WSCK
B-125	0.0	US ARMY ENGINEERS		
Al	ltitude (ft)			
Top	Bottom	Lithologic description	****-	Aquifer
0.0	-30.0	"Mud", river	`	-
-30.0	-32.0	SAND; GRAVEL		MRPAM
-52.0		BEDROCK		WSCK

_

•

Well number	Land- surface elevation	Owner	Well identifier	
B-126	0.0	US ARMY ENGINEERS		
Al Top	ltitude (ft) Bottom	Lithologic description		Aquifer
0.0 -25.0 -33.0	-25.0 -33.0	"Mud", river SAND; GRAVEL BEDROCK		MRPAM WSCK
B-127	0.0	US ARMY ENGINEERS		
Al Top	ltitude (ft) Bottom	Lithologic description		Aquifer
0.0 -25.0 -36.0	-25.0 -36.0	"Mud", river SAND; GRAVEL BEDROCK		MRPAM WSCK
B-128	0.0	US ARMY ENGINEERS		
Al Top	ltitude (ft) Bottom	Lithologic description		Aquifer
0.0 -25.0 -35.0	-25.0 -35.0	"Mud", river SAND; GRAVEL BEDROCK		MRPAM WSCK
B-129	0.0	US ARMY ENGINEERS		
Α	ltitude (ft)			A
Тор	Bottom	Lithologic description		Aquiter
0.0	-25.0 -35.0	"Mud", river SAND; GRAVEL		MRPAM
-35.0 B-130	0.0	US ARMY ENGINEERS		
Α	ltitude (ft)			
Тор	Bottom	Lithologic description		Aquifer
0.0	-20.0	"Mud", river		- MRDAM
-20.0 -29.0	-29.0	SAND BEDROCK		WSCK
B-131	0.0	US ARMY ENGINEERS		
A Top	ltitude (ft) Bottom	Lithologic description		Aquifer
0.0 -13.0 -32.0	-13.0 -32.0 -50.0	"River". SAND and GRAVEL CLAY, brown, red, white; SAND, fine		MRPAM MRPAM
B-415	4.0			
А Тор	Altitude (ft) Bottom	Lithologic description		Aquifer
4.0	-9.0	SAND; GRAVEL		•
-9.0	-15.0	CLAY GRAVEL		-
-18.0	-21.0	CLAY		-
-21.0	-34.0	SAND; GRAVEL		MKPAM
-34.0	-42.0 -74.0	SAND		MRPAL
-74.0	-90.0	CLAY		54 14
-90.0	-92.0	CLAY; GRAVEL		
-113.0	-115.0	CLAY		48
-115.0	-126.0	SAND; GRAVEL		64 64
-126.0	-127.0	CLAY SAND, CRAVEL		MRPAL
-127.0	-136.0	SAND, GRAVEL		

Well number	Land- surface elevation	Owner	Well identifier	
Log of B-415 -136.0	continued	BEDROCK		11/001/
Bk-520	15.0	MCKEE ESTATE		WSCK
A Top	ltitude (ft) Bottom	Lithologic description		A qui far
15.0	 I	*[oam''		Aquilei
10.0 -16.0	-16.0	GRAVEL BEDROCK		MRPAM WSCK
Bk-534	20.0	BRISTOL BORO WD		
A Top	ltitude (ft) Bottom	Lithologic description		Aquifer
20.0 -26.0 -37.0	-26.0 -37.0	SAND, brown, coarse; GRAVEL; and CLAY SAND, white, very fine; CLAY		MRPAM MRPAM
-44.0	-44.0	BEDROCK		wsck
De-025	14.0	WESTINGHOUSE ELECTRIC	WELL #5	
Al Top	ltitude (ft) Bottom	Lithologic description		Aquifer
14.0	3.0	SAND, brown; GRAVEL; CLAY		MRPAM
-17.0 -32.0	-32.0	SAND, brown; GRAVEL BEDROCK		MRPAL WSCK
Ph-019	8.7	US NAVY		
Al Top	titude (ft) Bottom	Lithologic description		Aquifer
8.7	3.7	"Fill", Sandy		MRPAU
-69.3	-75.3	CLAY red		MRPAU -
-/5.3 -80.3	-80.3 -94 3	CLAY, white CLAY red		•
-94.3	-106.3	SAND, fine		MRPAM
-106.3 -109.3	-109.3	CLAY, sandy SAND		4
-119.3	-123.3	CLAY, red and white		MRPAM
-123.3	-163.3	CLAY, red		-
-173.3	-175.5	CLAY, red and white CLAY, gray, hard		-
-180.3	-191.3	SAND, hard		MRPAL
-191.3	-201.3	GRAVEL SAND white CLAV gravelly		**
-207.3	-216.3	GRAVEL		 64
-216.3	-220.3	SAND and GRAVEL		**
-220.3	-222.3	SAND, white SAND and GRAVEI		**
-236.3	-243.3	SAND and fine GRAVEL		44
-243.3 -250.3	-250.3 -265.3	SAND, micaceous MICA SCHIST, soft		MRPAL WSCK
Ph-020	13.0	US NAVY		
Ali	titude (ft)			
Top	Bottom	Lithologic description		Aquifer
13.0	-30.0	"Fill" "Mud"		MRPAU
-30.0 -43.0	-43.0 -47.0	SAND; GRAVEL, fine-grained		**
-47.0	-51.0	CLAY, red		
-51.0	-65.0	CLAY, gray		46
-65.0 _72.0	-72.0	SAND, fine-grained GRAVEL		MRPAU
-75.0	-97.0	CLAY, red		-

,

Well surface Owner Well identifier Log of Ph000 - coolinged		Land-		
Number Curve Curve Cop Of Ph-COD. continued CLAY, gray, hard MRPAM 1260 SAND, fine-grained, hard MRPAM 1260 SAND, fine-grained MRPAL 1410 -110.0 SAND, fine-grained MRPAL 1410 -110.0 SAND, fine-grained MRPAL 1720 -177.0 CLAY, sandy - 177.1 -170.0 CLAY, sandy - 177.0 -170.0 CLAY, sandy - 177.1 -170.0 CLAY, sandy - 177.1 -170.0 CLAY, sandy, white WSCK 228.0 -224.0 GRAYEL - 170.0 -0.0 -0.0 -0.0 170.0 CLAY, ready, sandy, white - 171.0 -0.0 -0.0 -0.0 170.0 CLAY, ready, ready, sandy - 171.0 -0.0 GRAYEL - 171.0 -0.0 GRAYEL - 171.0 -0.0	Well	Surface	Owner	Well identifier
Ling of Phy200 - continued ANY, przy, hard MRPAM 9700 - 1260 SAND, fine-grained, hard MRPAM 12801 - 1200 SAND, fine-grained, hard MRPAL 12801 - 1200 SAND, fine-grained, hard MRPAL 12801 - 1200 SAND, fine-grained, hard - 1200 - 1770 SAND, fine-grained, hard - 17701 - 1770 SAND, fair - 22800 CLAY, randy, white WSCK 22800 CLAY, red - 110 6.0 - - 1200 - 120 CLAY, red - - 1201 - 120 CLAY, red - - 1201 - 120 GRAVEL, "Mud" - - 1201 - 120 GRAVEL, "Mud" - - 1201 - 120 GRAVEL, "Mud" - - 1201	number	elevation		
Prior CLAY, gray, hard MRPAM 1090 1280 SAND, Gine-grained, hard MRPAM 1280 -1300 CLAY, gray - 1410 -1100 SAND; GRAYEL - -1720 -1720, GLAY, gray - - -1720 SAND; GRAYEL - - -1720 SAND; SAND; Bard - - -1720 SAND; SAND; Bard - - -1720 -1720, sond; SANVEL - - -1720 -1720, sond; SAND; Bard - - -1720 -120 CLAY, Fork, Walt; - - -170 RANVEL - - - -120 CLAY, Fork, Walt; - - - -120<	Log of Ph-020	continued		
1000 -1260 SAND, fine-grained, hard MRPAM 1260 -1410 CAAV, gray	-97.0	-109.0	CLAY, gray, hard	-
1380 -1300 CLAY, envy	-109.0	-126.0	SAND, fine-grained, hard	MKPAM
-1410 -1410 LAN, Pég. appind MRPAL -1410 -1710 SAND, CRAVEL - -1710 -1710 CLAY, ship - -1710 -1710 CLAY, ship - -1710 -1710 CLAY, ship - -1710 -1710 CLAY, white - -1710 -1840 CLAY, white - -1820 -2140 SAND, CRAVEL MRPAL -2140 SAND, CRAVEL MRPAL - -2140 SAND, CRAVEL MRPAL - -2140 CRAVEL, "Mad" - - -100 -170 CRAVEL -	-126.0	-130.0	CLAY, gray	
-110 -1720 SAND; BRAYEL -1720 -1770 CLAY, sandy -1770 CLAY, sandy - -1770 SAND; Intra Viela - -1770 SAND; Intra Viela - -1770 SAND; Mark Viela - -1780 CLAY, white - -2280 RAVEL WSCK -2280 CLAY, sandy, white - -2280 CLAY, red, sandy - -100 -170 CLAY, red, sandy - -120 CLAY, red, sinf - - -220 -170 CRAVEL; Coarse grained - - -210 CLAY, red, sinf - - - -210	-130.0	-141.0	CLAY, red SAND, fine grained	MRPAL
-1720 -1720 CLAY sindy LL -1770 -1770 SAND, hard - -1970 SAND, GRAVEL MRPAL -2140 SAND, GRAVEL MRPAL -2140 SAND, GRAVEL MRPAL -2140 SAND, GRAVEL MRPAL -2140 SAND, GRAVEL MRPAL -2340 CLAY, sindy, white MRPAL -2340 CORRAIL - -110 6.0 "Cinder" -110 6.0 "Cinder" -110 6.0 "Cinder" -110 6.0 "Cinder" -120 CLAY, redu -	-141.0	-101.0	SAND, Inc-granicu SAND- GRAVEI	"
-1770 -1970 SAND, bard - -1980 CLAY, white MRPAL -2840 RAVEL WSCK 2280 RAVEL WSCK Ph-033 11.0 CONRAIL MRPAL Altitude (fi) Lithologic description - 110 6.0 "Cinders" - -12.0 -17.0 GRAVEL, "Mad" - -12.0 -17.0 GRAVEL, "Mad" - -12.0 -17.0 GRAVEL, "Mad" - -12.0 -17.0 GRAVEL - -17.0 CLAY, red, stiff - - -17.0 24.0 SAND, claw, eff. - -17.0 -17.0 GRAVEL - - -17.0 -17.0 GRAVEL - - -17.0 -17.0 GRAVEL - - -17.0 -17.0 SAND, claw, GRAVEL - - -10 SAND, claw, White, GRAVEL - - - -10 -10 SAND, claw, White, GRAVEL - -	-172.0	-177.0	CLAY, sandy	"
-1970 -1980 CLAY, while	-177.0	-197.0	SAND, hard	*
-198.0 -214.0 SAND; GRAVEL MRFAL -228.0 CLAY, andy, white WSCK WSCK 228.0 CLAY, andy, white WSCK WSCK Ph-033 11.0 CONRAIL	-197.0	-198.0	CLAY, white	"
2140 2280 CRAVEL MRXAL 2340 2340 CAX, sandy, white BEDROCK WSCK WSCK Ph-033 11.0 CONRAIL Adiitude (ft) Aquifer 10.0 6.0 0°Cinders" - - 10.0 6.0 0°Cinders" - - 10.0 5.0 CLAY, red - - 11.0 6.0 CCAY, red, suff - - -1.0 CLAY, red, suff - - - -2.0 CLAY, red, suff - - - -1.0 SAND, CRAVEL M	-198.0	-214.0	SAND; GRAVEL	NADDA I
Apple 1 CLA Y, samp, while Model 234.0 PLDOCK Market Market Ph-033 11.0 CONRAIL Aquifer - 11.0 6.0 "Cinders" - - 6.0 0.0 GRAVEL; "Mud" - - -12.0 CLAY, red - - - -12.0 CLAY, red - - - -12.0 CLAY, red, suff - - - -12.0 CLAY, red, suff - - - -21.0 CLAY, white, suff - - - -21.0 CLAY, white, suff - - - -21.0 SAND, relaw, consergrained - - - - -21.0 SAND, relaw, cons	-214.0	-228.0	GRAVEL	MRTAL WSCK
Pp-033 11.0 CONRAL Ph-033 11.0 CONRAL Adiitude (ft) Lithologic description Aquifer 11.0 6.0 Cinders" . 11.0 6.0 Cinders" . 11.0 6.0 Cinders" . 12.0 CLAY.ref with . . 12.0 CLAY.ref with . . 21.0 CLAY.ref with . . 22.0 -3.0 CLAY.ref with . . 23.0 -3.0 CLAY.ref with . . . 23.0 -3.0 CLAY.ref with -3.0. -4.0 SAND.CRAYEL -3.0 -3.0 CLAY.ref with w.coarse-grained -3.0 -3.0 CLAY.ref with w.coarse-grained 	-228.0	-234.0	CLAY, sandy, white	WBCK
Ph-033 11.0 CONRAIL Adititude (ft) Top Lithologic description Aquifer 11.0 6.0 "Cinders"	-234.0		BEDROCK	
Allitude (ft) Top Lithologic description Aquifer 11.0 6.0 'Cinders'' 0.0 'Cind	Ph-033	11.0	CONRAIL	
Top Entitle Aquifer 11.0 6.0 "Cinders" - 6.0 0.0 GRAVEL: "Mud" - 12.0 CLAY; GRAVEL<	Δ	ltitude (ft)		
11.0 6.0 "Cindes" 6.0 0.0 GRAVEL; "Mud"	Top	Bottom	Lithologic description	Aquifer
11.0 6.0 "Cinders" - 6.0 0.0 GRAVEL; "Mud" - 12.0 CLAY; GRAVEL - -12.0 CLAY; GRAVEL - -21.0 -24.0 SAND, coarse-grained - -17.0 GRAVEL - - -24.0 SAND, coarse-grained - - -24.0 SAND, coarse-grained - - -30.0 -42.0 CLAY, red, stiff - - -42.0 CLAY, red, stiff - - - -47.0 -60.0 SAND; ClaW, coarse-grained - - - -61.0 -71.0 SAND, claW, coarse-grained - - - - -71.0 SAND, peliow, coarse-grained -			·····	
6.0 0.0 GRAVEL, "Mud" - -5.0 -12.0 CLAY, ref MRPAM -12.0 CLAY, ref MRPAM -17.0 GRAVEL, Carse-grained MRPAM -21.0 -24.0 SAND, corse-grained MRPAM -20.0 -24.0 SAND, corse-grained MRPAM -30.0 GRAVEL MRPAM - -30.0 GRAVEL MRPAM - -30.0 GRAVEL MRPAM - -42.0 CLAY, ref, stiff - - -47.0 CLAY, white, stiff - - -61.0 SAND, clav, white, stiff - - -7.10 SAND, pellow, coarse-grained - - -7.10 -7.10 SAND, pellow, coarse-grained MRPAL - -7.10 -7.10 SAND, pellow, coarse-grained - - -7.10 -7.10 SAND, pellow, coarse-grained - - -7.10 -7.10 SAND, brow, clave - <td< td=""><td>11.0</td><td>6.0</td><td>"Cinders"</td><td>•</td></td<>	11.0	6.0	"Cinders"	•
0.0 -3.0 CLAY, RAVEL MRRAM -12.0 CLAY, GRAVEL MRRAM -17.0 GRAVEL MRRAM -21.0 CLAY, GRAVEL MRRAM -21.0 -24.0 SAND, coarse-grained MRRAM -24.0 SAND, coarse-grained MRRAM -30.0 -42.0 CLAY, red, stiff MRRAM -42.0 CLAY, red, stiff MRRAM -40.0 SAND, CRAVEL MRRAL -40.0 SAND, CRAVEL MRRAL -61.0 -71.0 SAND, velux; carvet " -71.0 SAND, velux; carvet " " -71.0 SAND, velux; carvet WSCK WSCK Ph-035 8.1 GULF OIL CORP	6.0	0.0	GRAVEL; "Mud"	
-120 -120 CLAVEL Count-grained MRPAM -170 210 CLAVE Count-grained " -210 24.0 SAND, coarse grained; GRAVEL " -24.0 30.0 GRAVEL " -24.0 30.0 GRAVEL MRPAM -30.0 GRAVEL MRPAM -40.0 SAND, coarse grained; GRAVEL MRPAL -40.0 SAND, CLAY " -41.0 SAND, coarse grained; GRAVEL " -71.0 SAND, pellow; GRAVEL " -71.0 SAND, pellow; GRAVEL " -71.0 SAND, pellow; CRAVEL " -71.0 SAND, pellow; CRAVEL WSCK Ph-035 8.1 GULF OIL CORP " -21.0 -22.0 CLAY with: GRAVEL " -21.0 -22.0 CLAY with: GRAVEL " -21.0 -22.0 CLAY with: GRAVEL " -21.0 -21.0 SAND, brown; GRAVEL " -22.0 -22.0 CL	0.0	-5.0	CLAY, rea	
170 210 CLAY, CRAYEL MRPAM 210 -240 SAND.course-grained; GRAVEL MRPAM -240 SAND.course-grained; GRAVEL MRPAM -300 -420 CLAY, red, stiff	-3.0	-12.0	GRAVEL coarse-grained	MRPAM
21.0 24.0 SAND_coarse-grained; GRAVEL MRPAM -30.0 42.0 CLAY, red, stiff - -47.0 -60.0 SAND; GRAVEL MRPAL -47.0 -60.0 SAND; GRAVEL MRPAL -60.0 SAND; GRAVEL - - -71.0 SAND; Jellow; GRAVEL WSCK WSCK 85.0 CLAY, white: GRAVEL WSCK WSCK 85.1 GULF OIL CORP - - -1 -1 "Toposil"; CLAY - -2.1 -5.9 -5.9 - - -2.1 -5.9 -5.9 - - -2.1 -5.9 SAND, brown; GRAVEL MRPAL -47.9 -5.5.9 CLAY, Hill - -2.2.9 CLAY, Fill" - - -2.2.9	-17.0	-21.0	CLAY; GRAVEL	é.
-24.0 -30.0 CRAVEL MRPAM -30.0 42.0 CLAY, red, stiff - -42.0 -47.0 CLAY, white, stiff - -47.0 SAND, GRAVEL - - -47.0 SAND, CLAY - - -50.0 SAND, CLAY - - -71.0 SAND, Delbow; CRAVEL - - -71.0 -77.0 SAND, Delbow; CRAVEL - - -77.0 SS.0 CLAY, white; GRAVEL - - -83.0 BEDROCK WSCK WSCK - Ph-035 8.1 GULF OIL CORP - - - -1.5.9 -2.2.9 CLAY, "Fill" - - - -2.1 "Topsoil"; CLAY, "Fill" - - - - -3.5.9 CLAY, White, CAY, "Fill" - - - - -4.7.9 SAND, RAVEL; PEBBLES MRPAL - - - -75.9 SAND, CRAVE	-21.0	-24.0	SAND, coarse-grained; GRAVEL	, <u> </u>
-30.0 42.0 CLAY, red, stiff - 42.0 -CLAY, white, stiff MRPAL 47.0 -60.0 SAND; GRAVEL " -61.0 -71.0 SAND, yellow; GRAVEL " -71.0 SAND; CLAY " " -71.0 SAND; yellow; GRAVEL " " -71.0 SAND; yellow; Coarse-grained " " -71.0 Bottom Lithologic description MRPAL WSCK Ph-035 8.1 GULF OIL CORP - - - -1.5.9 "Diri"; CLAY, "Fill" - - - - -22.9 CLAY, ShuD, brown " - <td>-24.0</td> <td>-30.0</td> <td>GRAVEL</td> <td>MRPAM</td>	-24.0	-30.0	GRAVEL	MRPAM
42.0 47.0 CLAY, White, Still MRPAL 47.0 SAND, GRAVEL * *61.0 SAND, CRAVEL * *71.0 77.0 SAND, Vellow, GRAVEL * *71.0 77.0 SAND, Vellow, GRAVEL * *85.0 BEDROCK WSCK Ph-035 8.1 GULF OIL CORP Altitude (ft) - - 8.1 2.1 "Topsoil"; CLAY, "Fill" *.1 - - *.1 2.1 "Topsoil"; CLAY, "Fill" *.5 - - *.1 2.1 "Topsoil"; CLAY, "Fill" *.5 - - *.5 "Dirt", CLAY, "Fill" *.5 - - *.1 2.1 - *.5 CLAY, SND, hown, GRAVEL - *.5 - - *.6 - - *.7.9 SAND, GRAVEL, PEBBLES " *.7.9 SAND, Brown, GRAVEL, PEBBLES " *.7.9 SAND, Mite, CORSP " *.1 - - *.1 - - *.1 - - *.1 - - *.1 </td <td>-30.0</td> <td>-42.0</td> <td>CLAY, red, stiff</td> <td>-</td>	-30.0	-42.0	CLAY, red, stiff	-
47.0 -00.0 SAND; CLAY	-42.0	-47.0	CLAY, While, Still SAND: CDAVE	MRPAL.
-40.0 -71.0 SAND, yellow; GRAVEL * -71.0 -77.0 SAND, yellow; coarse-grained MRPAL -77.0 -85.0 BEDROCK WSCK Ph-035 8.1 GULF OIL CORP MRPAL Altitude (ft) Lithologic description Aquifer 8.1 2.1 "Topsoil"; CLAY, "Fill" - -5.9 -22.9 CLAY, "Fill" - -5.9 -22.9 CLAY, "Fill" - -7.4, 9 -55.9 CLAY, SAND, brown - -7.4, 9 -5.9 SAND, brown; GRAVEL MRPAL -6.9 SAND, brown; GRAVEL # - -7.4, 9 -7.5.9 SAND, white, coarse-grained # -7.4, 9 -7.5.9 SAND, white, coarse-grained # -7.4, 9 -7.5.9 SAND, white, coarse-grained # -7.4, 9 -7.5.9 SAND, white, CRAVEL * -7.4, 9 -7.5.9 SAND, white, CRAVEL * -7.5.9 SAND, white, GRAVEL *	-47.0	-00.0	SAND, OKAVEL	"
-71:0 -77:0 SAND. jellow, coarse-grained " -77:0 -85:0 CLAY, white, GRAVEL MRPAL -85:0 BEDROCK WSCK Ph-035 8.1 GULF OIL CORP Aquifer Altitude (ft) Lithologic description Aquifer 8.1 2.1 "Topsoil"; CLAY - 2.1 -5.9 "Diri"; CLAY, "Fill" - -5.9 -22.9 CLAY, "Fill" - -22.9 -47.9 CLAY, blue - -4.9 SAND, brown, GRAVEL MRPAL - -5.9 -24.9 CLAY, blue - - -4.7.9 SAND, brown, GRAVEL MRPAL - - -5.9 -5.9 SAND, brown, GRAVEL WSCK WSCK Ph-039 8.1 GULF OIL CORP - - - -7.5.9 SAND, white, coarse-grained - - - - -7.4.9 -7.5.9 SAND, white, coarse-grained - - - - -7.6.9 -2.1 CLAY, blue, 'Mud" -	-60.0	-710	SAND, CEAT SAND, vellow: GRAVEL	
-77.0 -85.0 CLAY, white; GRAVEL MRPAL -85.0 BEDROCK WSCK WSCK Ph-035 8.1 GULF OIL CORP Adjuited (R) Aquifer - - - - - - 8.1 2.1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <td< td=""><td>-71.0</td><td>-77.0</td><td>SAND, yellow, coarse-grained</td><td>**</td></td<>	-71.0	-77.0	SAND, yellow, coarse-grained	**
-85.0 BEDROCK WSLK Ph-035 8.1 GULF OIL CORP Altitude (ft) Top Lithologic description Aquifer 8.1 2.1 "Topsoil"; CLAY, "Fill" - 2.1 -5.9 "Din"; CLAY, "Fill" - -22.9 -47.9 CLAY, "Fill" - -21.9 -5.5.9 CLAY; SAND, brown - -47.9 -55.9 CLAY; SAND, brown; GRAVEL MRPAL -55.9 -22.9 SAND, brown; GRAVEL MRPAL -66.9 -74.9 SAND, brown; GRAVEL MRPAL -66.9 -74.9 SAND, white, coarse-grained - -75.9 SAND, white, coarse-grained - - -75.9 SAND, white, GRAVEL MRPAL - -75.9 SAND, brue; "Mud" - - -6.9 -22.9 CLAY, blue; "Mud" - - -6.9 -22.9 CLAY, blue MRPAL - -50.9 -57.9 SAND, white; GRAVEL MRPAL <td< td=""><td>-77.0</td><td>-85.0</td><td>CLAY, white: GRAVEL</td><td>MRPAL</td></td<>	-77.0	-85.0	CLAY, white: GRAVEL	MRPAL
Ph-0358.1GULF OIL CORP Top BottomLithologic descriptionAquifer8.12.1"Topsoil"; CLAY-2.1-5.9"Diri"; CLAY, "Fill"22.9CLAY, Will"22.9CLAY, Ville35.9CLAY, SAND, brown55.9CLAY, SAND, brown, fine-grained55.9CAP, SAND, brown, fine-grained64.9-69.9SAND, brown, fine-grained64.9-69.9SAND, CRAVEL, PEBBLES74.9-75.9SAND, white, coarse-grained75.9BEDROCKWSCKPh-0398.1GULF OIL CORP<	-85.0		BEDROCK	WSCK
Altitude (ft) Top Lithologic description Aquifer 8.1 2.1 "Topsoil"; CLAY - 2.1 -5.9 "Dirt"; CLAY, "Fill" - -5.9 -22.9 CLAY, Bull - -72.9 CLAY, "Fill" - - -72.9 -47.9 CLAY, Bulle - -47.9 -55.9 CLAY, SAND, brown - -47.9 -57.9 SAND, brown; GRAVEL MRPAL -64.9 SAND, White, coarse-grained - - -75.9 BEDROCK WSCK WSCK Ph-039 8.1 GULF OIL CORP - - - - - - - - - - - - - - - - - - - -	Ph-035	8.1	GULF OIL CORP	
Top Bottom Lithologic description Aquifer 8.1 2.1 "Topsoil"; CLAY - 2.1 -5.9 "Dirt"; CLAY, "Fill" - -2.9 -22.9 CLAY, "Fill" - -2.9 -47.9 CLAY, Blue - -47.9 -55.9 CLAY, SAND, brown - -55.9 -64.9 SAND, brown; GRAVEL MRPAL -64.9 SAND, brown; GRAVEL; PEBBLES MRPAL -64.9 -74.9 SAND, white; coarse-grained - -74.9 -75.9 SAND, Wite; coarse-grained - -75.9 BEDROCK WSCK WSCK Ph-039 8.1 GULF OIL CORP - -6.9 -22.9 CLAY, blue; "Mud" - -5.0.9 CLAY, blue; "Mud" - - -5.0.9 CLAY, blue; GRAVEL MRPAL - -5.0.9 CLAY, blue; GRAVEL MRPAL - -5.0.9 SAND, white; GRAVEL MRPAL - -5.	A	ltitude (ft)		
8.1 2.1 "Topsoil"; CLAY	Тор	Bottom	Lithologic description	Aquifer
8.1 2.1 "Topson"; CLAY, "Fill" - 2.1 -5.9 "22.9 CLAY, "Fill" - -22.9 -22.9 CLAY, "Fill" - - -22.9 -47.9 CLAY, SAND, brown, GRAVEL MRPAL - -47.9 -5.9 CLAY, SAND, brown, GRAVEL MRPAL - -55.9 -64.9 SAND, brown, GRAVEL MRPAL - -69.9 -74.9 SAND, white, coarse-grained " - -75.9 BEDROCK WSCK WSCK - Ph-039 8.1 GULF OIL CORP - - - -6.9 -22.9 CLAY, blue; "Mud" - - - -6.9 -22.9 CLAY, blue; "Mud" - - - -22.9 -50.9 CLAY, blue; "Mud" - - - -22.9 -50.9 CLAY, blue; "Mud" - - - -22.9 -50.9 CLAY, blue; Mud" - - - -51.9 SAND, white; GRAVEL MRPAL MRPAL - -				
2.1 -3.9 Durt CLAY, Fritt -22.9 CLAY, SAND, brown	8.1	2.1	"TOPSOH"; CLAT	
-22.9 -47.9 CLAY, blue - -47.9 -55.9 CLAY, SAND, brown - -55.9 -64.9 SAND, brown, GRAVEL MRPAL -64.9 -69.9 SAND, brown, fine-grained - -69.9 -74.9 SAND, white, coarse-grained - -74.9 -75.9 SAND, white, coarse-grained - -74.9 -75.9 SAND, white, coarse-grained - -75.9 BEDROCK WSCK WSCK Ph-039 8.1 GULF OIL CORP - -75.9 Betorm Lithologic description - -8.1 -6.9 -22.9 CLAY, blue; "Mud" - -22.9 -50.9 CLAY, blue; "Mud" - - -22.9 -50.9 CLAY, blue; GRAVEL - - -50.9 -57.9 SAND, white; GRAVEL MRPAL -57.9 -61.9 BEDROCK MRPAL -61.9 BEDROCK WSCK WSCK Ph-050 27.0 ABBOTTS DAIRIES - -19 Betrow Lithologic de	-50	-2.9	CLAY "Fill"	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-22.9	-47.9	CLAY, blue	•
-55.9 -64.9 SAND, brown; GRAVEL MRPAL -64.9 -69.9 SAND, brown; fine-grained """"""""""""""""""""""""""""""""""""	-47.9	-55.9	CLAY; SAND, brown	• • • • • •
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-55.9	-64.9	SAND, brown; GRAVEL	MRPAL
$\begin{array}{cccc} -69.9 & -74.9 & SAND; ORAVEL; PEBBLES & MRPAL \\ -75.9 & BEDROCK & WSCK \\ \hline Ph-039 & 8.1 & GULF OIL CORP & & & & \\ \hline \hline Top & Bottom & Lithologic description & & & & \\ \hline \hline R.1 & -6.9 & "Topsoil" & & & & \\ \hline -6.9 & -22.9 & CLAY, blue; "Mud" & & & & \\ \hline -22.9 & -50.9 & CLAY, blue; "Mud" & & & & \\ \hline -30.9 & -57.9 & SAND; purple; GRAVEL & & & & \\ \hline -50.9 & -57.9 & SAND; white; GRAVEL & & & & \\ \hline Ph-050 & 27.0 & ABBOTTS DAIRIES & & & \\ \hline \hline Top & Bottom & Lithologic description & & & & \\ \hline 27.0 & -36.0 & CLAY, buff; SAND; GRAVEL & & & & \\ \hline \hline 27.0 & -36.0 & CLAY, buff; SAND; GRAVEL & & & \\ \hline \end{array}$	-64.9	-69.9	SAND, brown, fine-grained	
-75.9 SAND, white, coalse-granted WSCK Ph-039 8.1 GULF OIL CORP Altitude (ft) Lithologic description Aquifer 8.1 -6.9 "Topsoil" - -6.9 -22.9 CLAY, blue; "Mud" - -22.9 -50.9 CLAY, blue; "Mud" - -50.9 -57.9 SAND, purple; GRAVEL MRPAL -57.9 -61.9 SAND, white; GRAVEL MRPAL -61.9 BEDROCK WSCK WSCK Ph-050 27.0 ABBOTTS DAIRIES Aquifer -77.0 -36.0 CLAY, buff; SAND; GRAVEL -	-69.9	-/4.9	SAND, URAVEL, PEBBLES	MRPAI
Ph-0398.1GULF OIL CORP $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-74.9	-13.9	BEDROCK	WSCK
$\frac{\begin{array}{c c c c c c c c c c c c c c c c c c c$	Ph_030	8 1	GULF OIL CORP	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 11-037			
Image: Second Constraint Entitle Constraint Image: Second Constraint 8.1 -6.9 'Topsoil" - -6.9 -22.9 CLAY, blue; "Mud" - -22.9 -50.9 CLAY, blue - -50.9 -57.9 SAND; purple; GRAVEL MRPAL -57.9 -61.9 SAND, white; GRAVEL MRPAL -61.9 BEDROCK WSCK Ph-050 27.0 ABBOTTS DAIRIES Altitude (ft) Lithologic description Aquifer 27.0 -36.0 CLAY, buff; SAND; GRAVEL -	A	Altitude (ft)	Lithologic description	Aouifer
8.1 -6.9 "Topsoil" - -6.9 -22.9 CLAY, blue; "Mud" - -22.9 -50.9 CLAY, blue - -50.9 -57.9 SAND; purple; GRAVEL MRPAL -57.9 -61.9 SAND, white; GRAVEL MRPAL -61.9 BEDROCK WSCK Ph-050 27.0 ABBOTTS DAIRIES		Donom		
-6.9 -22.9 CLAY, blue; "Mud" - -22.9 -50.9 CLAY, blue - -50.9 -57.9 SAND; purple; GRAVEL MRPAL -57.9 -61.9 SAND, white; GRAVEL MRPAL -61.9 BEDROCK WSCK Ph-050 27.0 ABBOTTS DAIRIES	8.1	-6.9	"Topsoil"	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-6.9	-22.9	CLAY, blue; "Mud"	•
-50.9 -57.9 SAND; purple; GRAVEL MRPAL -57.9 -61.9 SAND, white; GRAVEL MRPAL -61.9 BEDROCK WSCK Ph-050 27.0 ABBOTTS DAIRIES Altitude (ft) Top Bottom Lithologic description Aquifer	-22.9	-50.9	CLAY, blue	
-57.7 -61.9 BEDROCK WSCK Ph-050 27.0 ABBOTTS DAIRIES Altitude (ft) Top Bottom Lithologic description Aquifer 27.0 -36.0 CLAY, buff; SAND; GRAVEL -	-50.9	-57.9	SAND; purple; GRAVEL	MRIAL
Ph-050 27.0 ABBOTTS DAIRIES Altitude (ft) Lithologic description Aquifer 27.0 -36.0 CLAY, buff; SAND; GRAVEL -	-57.9	-01.9	BEDROCK	WSCK
Altitude (ft) Top Bottom Lithologic description 27.0 -36.0 CLAY, buff; SAND; GRAVEL -	-01.7	27.0	APPOTTS DAIDIES	
Altitude (11) Top Bottom Lithologic description Aquifer 27.0 -36.0 CLAY, buff; SAND; GRAVEL -	rn-030	27.U	ABDUT 15 DAIRIES	
27.0 -36.0 CLAY, buff; SAND; GRAVEL -		Altitude (ft)	Lithologic description	Amifer
27.0 -36.0 CLAY, buff; SAND; GRAVEL -		Douom		
	27.0	-36.0	CLAY, buff; SAND; GRAVEL	

.

Well number	Land- surface elevation	Owner	Well identifier	
Log of Ph-050	continued			
-36.0	-53.0	GRAVEL, yellow		MDDAXA
-53.0	-62.0	CLAY, blue		
-62.0	-75.0	GRAVEL, white, angular		MRPAL
-75.0	-85.0	Feldspathic tragments BEDROCK		WSCK
Ph-101	41.0	PA RANGE & BOILER CO		
_ A	ltitude (ft)			
Тор	Bottom	Lithologic description		Aquifer
41.0	31.0	"Depth to floor"		-
31.0	11.0	GRAVEL, yellowish		MRPAL
-14.0	-14.0	GRAVEL; BOULDERS; SAND; "Mud" CLAX, white plastic		"
-15.0	-34.0	GRAVEL SAND' BOULDERS' water		MDDAI
-34.0		BEDROCK		WSCK
Ph-108	25.0	BROADWAY THEATER		
A Top	ltitude (ft) Bottom	Lithologic description		Aquifer
25.0	21.0	CLAY, tough		-
-29.0	-29.0	SAND, GRAVEL SAND, fine-orginal		MRPAM
-35.0	-37.0	CLAY: SAND		
-37.0	-42.0	SAND; GRAVEL		44
-42.0	-55.0	SAND, coarse-grained; CLAY		**
-55.0	-59.0	GRAVEL, medium-grained		14
-39.0	-62.0	GRAVEI		**
-67.0	-73.0	SAND: GRAVEL		MDDAM
-73.0	-80.0	CLAY		WINEAW
-80.0	-86.0	SAND; GRAVEL		MRPAL
-86.0 -102.0	-102.0	CLAY, sandy BEDROCK		MRPAL WSCK
Ph-113	38.0	U S NAVAL HOME		
AI	ltitude (ft)			
Тор	Bottom	Lithologic description		Aquifer
38.0	31.0	CLAY		
31.0	18.0	CLAY, river; SAND, hard		-
18.0	8.0	GRAVEL; SAND; CLAY		MRPAL
6.0 -6.0	-0.0	CLAY		MRPAL
-27.0	-27.0	BEDROCK		WSCK
Ph-141	10.0	LIQUID CARBONIC CORP		
Al Top 	titude (ft) Bottom	Lithologic description		Aquifer
10.0	-22.0	"Fill"; "Mud", river, gray		+
-22.0	-35.0	"Mud", river, gray		• • • •
-35.0	-63.0	SAND, unc-grained; UKAVEL, coarse-grained SAND, coarse-grained; GPAVEL		MRPAU
-63.0	-95.0	CLAY, red		MKPAU
-95.0	-97.0	SAND, fine-grained; GRAVEL		MRPAM
-97.0	-121.0	CLAY, red		-
-121.0	-175.0	SAND, coarse-grained; GRAVEL CLAY, white, weathered		MRPAL WSCK
Ph-144	11.0	GENERAL COLD STORAGE		
Al TopBo	titude (ft) ottom Litholo	ogic description		Aquifer
11.0	1.0	"Depth to floor"		*******
1.0	-23.0	CLÁY		-
-23.0	-58.0	SAND; GRAVEL; BOULDERS		MRPAU

-
Well number	Land- surface elevation	Owner	Well identifier
Log of Ph-144	continued		
-58.0	-63.0	CLAY, yellow	•
-63.0	-77.0	CLAY, red; CLAY streaks, white	-
-77.0	-122.0	CLAY, blue, tough; CLAY streaks, white and red	MDDAI
-122.0	-133.0	SAND; CLAY	MRFAL
-133.0	-149.0	SAND; GRAVEL, coarse-grained	NADDAI
-149.0	-154.0	SAND; CLAY, white	WSCK
-154.0	-166.0	CLAY, white, soft	WBCK "
-166.0	-174.0	SAND, dark, packed	
-174.0		BEDROCK	
Ph-152	10.0	CONRAIL	
A	ltitude (ft)		Aquifer
Тор 	Bottom	Lithologic description	
10.0	0.0	"Fill"	-
0.0	-0.0	CLAV hue coff	-
-0.0	-31.0	SAND coarse-grained: GRAVE1	MRPAU
-21.0	-72.0	OLAV red	-
-72.0	-132.0	SAND GRAVEL	MRPAM
-132.0	-130.0	CLAY sandy	-
-130.0	-148.0	CLAV tough	· -
-141.0	-156.0	SAND hard	MRPAL
-156.0	-161.0	SAND streaks	44
-161.0	-187.0	SAND, coarse-grained; GRAVEL	
-187.0	-194.0	CLAY, tough	
-194.0	-209.0	SAND; GRAVEL	MRPAL
-209.0	-225.0	CLAY	WSCK
-225.0		BEDROCK	
Ph-206	10.6	WILDSTEIN & CO	
٨	ltitude (ft)		A
Тор	Bottom	Lithologic description	Aquiter
10.6	L.6	"Fill"	-
1.6	-3.4	Wood; CLAY; "Mud"	•
-3.4	-18.4	CLAY, gray; "Mud"	-
-18.4	-24.4	SAND, coarse-grained	MRPAL
-24.4	-49.4	SAND; GRAVEL	WINFAL WSCV
-49.4		BEDROCK	WOCK
Ph-240	12.0	MORGENTHALER BROTHERS	
A	ltitude (ft)		
Тор	Bottom	Lithologic description	Aquiter
12.0	-7.0	"Loam"	- MDDA11
-7.0	-20.0	SAND, dry; GRAVEL	MIRPAU
-20.0	-35.0	CLAY, black	-
-35.0	-42.0		-
-42.0	-47.0		•
-4/.0	-21.0	DAND, UKAYEL	·
-51.0	-04.0		MRPAM
-04.0	-//.U	CLAV red	-
-//.0	-102.0 102.0	SAND' GRAVEL	MRPAL
•102.0 109.0	-100.0	SAND: GRAVEL: CLAY white	54
+108.0	-113.0	SAND GRAVEL	44
-113.0	-133.0	CLAY white	41
-133.0	-137.0	SAND' GRAVEL	MRPAL
-143.0	-143.0	BEDROCK	WSCK
Ph-249	13.0	CROWN PAPER BOARD CO	
	Altitude (ft)		
	MUMBER OF		

Table 6. –Logs of selected wells and test boreholes in the vicinity of the Delaware River-continued.

			Aquifer
Top	Bottom	Lithologic description	Aquito
,			
13.0	-30	"Surface formation"	•
-3.0	-160	"Surface formation": GRAVEL	-
0.41	-34.0	CI AY blue	•
-10.0	46.0	SAND: GDAVEL: only	MRPAM
-34.0	-40.0	SAND, GRAVEL, Biby	

Mall	Land-			
number	elevation	n Owner	Well identifier	
Log of Ph-249	continue	4		
-46.0	-74.0	CLAY, red		
-74.0	-91.0	SAND, water-bearing		MPPAI
-91.0	-95.0	CLAY, white		MINIAL "
-95.0	-121.0	SAND, white		MRPAL
-121.0	-131.0	BEDROCK		WSCK
Ph-275	13.0	PENNSYLVANIA SUGAR CO		
A	ltitude (ft)			
Тор	Bottom	Lithologic description		Aquifer
13.0	-8.0	"Depth to river bed"		
-8.0	-25.0	"Mud", meadow		-
-23.0	-30.0	CLAT, DIUC; SAND		-
-50.0		BEDROCK		WSCK
Ph-321	20.0	F W TUNNELL CO		
A	ltitude (ft)	T Select to the second		
		Lithologic description		Aquifer
20.0	15.0	GRAVEL, blue, coarse-grained		-
15.0	12.0	CLAY; GRAVEL		MRPAM
12.0	-1.0	SAND, GRAVEL		•• •
-13.0	-13.0	GRAVEL coarse mained		"
-29.0	-27.0	BEDROCK		MRPAM WSCK
Ph-324	11.0	ROHM AND HAAS CO		
AI	titude (ft)			
Тор	Bottom	Lithologic description		Aquifer
11.0	6.0	"Topsoil"		
6.0	-14.0	SAND; GRAVEL		MRPAM
-14.0	-29.0	CLAY, yellow		•
-29.0	-34.0	CLAY, sandy		-
-54.0	-56.0	"Rock", end of log		MRPAL
Ph-325	10.0	ROHM AND HAAS CO		WBCK
Al	titude (ft)			
Тор	Bottom	Lithologic description		Aquifer
10.0	-15.0	SAND and GRAVEL		MRPAM
-15.0	-30.0	CLAY, yellow and brown.		-
-30.0 -50.0	-50.0 -70.0	SAND, fine, brown; GRAVEL "Mira Rock"		MRPAL
Ph-345	8.0	OUAKER RUBBER CORP		WSCK
Тор	Bottom	Lithologic description		Aquifer
8.0	5.0	Cinder "Fill"		
5.0	-1.0	CLAY, brown		•
-1.0	-2.0	Wood		
-2.0	-15.0	SAND, coarse-grained; "Stones"		MRPAM
-15.0	-27.0	CLAY, brown		-
-34.0	-34,U	BEDROCK		WSCK
Ph-372	10.0	PENNSYLVANIA FORGE CO		
Ali	titude (ft)			
Тор	Bottom	Lithologic description		Aquifer
10.0	-100	GRAVEL cogregorized		
-10.0	-25.0	GRAVEL, fine-grained		MRPAM
-25.0		BEDROCK		WSCK

Table 6. -Logs of selected wells and test boreholes in the vicinity of the Delaware River-continued.

Well number	Land- surface elevation	Owner	Well identifier	_
Ph-389	10.0	GENERAL SMELTING CO		
At	titude (ft)			
Тор	Bottom	Lithologic description		Aquifer
10.0	0.0	"Fill". SAND distric		MRPAM
0.0	-0.0	CLAV sandy		4
-12.0	-210	SAND dirty		**
-21.0	-24.0	SAND, dirty; GRAVEL		**
-24.0	-30.0	SAND; GRAVEL, water		**
-30.0	-34.0	SAND; GRAVEL, coarse-grained	·	MDDAM
-34.0	-45.0	CLAY, sandy; GRAVEL		WSCK
-45.0		BEDRUCK		WOOK
Ph-400	15.0	PHILADELPHIA DEPT OF RECREATI	ON	
AI	ltitude (ft)			Aquifar
Top	Bottom	Lithologic description		74uner
15.0	-33.0	"Earth"; loose rock		MRPAM
-33.0		BEDROCK		WSCK
Ph-447	20.0	REGAL PETROLEUM PRODUCTS CO)	
A	ltitude (ft)			
Тор	Bottom	Lithologic description		Aquifer
20.0	0.0	"Fill"		
0.0	\$10	BEDROCK		WSCK
Ph-457	11.0	PUBLICKER INDUSTRIES INC		
. A	ltitude (ft)			
Top	Bottom	Lithologic description		Aquifer
	2.0	(4C)117		****************
11.0	-2.0	"FIU "Mud" river		-
-14.0	.19.0	SAND dark gray coarse-grained		MRPAM
-39.0	-49.0	CLAY, red and white		-
-49.0	-79.0	CLAY, red, tough		-
-79.0	-99,0	CLAY, sandy, soft		-
-99.0	-107.0	SAND, fine-grained; CLAY streaks		MRPAL
-107.0	-120.0	CLAV		WSCK
-130.0	-150.0	BEDROCK		
Pb-459	11.0	PUBLICKER INDUSTRIES INC	,	i.
	liituda (ft)			
Тор	Bottom	Lithologic description		Aquifer
11.0	-1.0	"Fill", "Cinders"		-
-1.0	-11.0	"Mud", river		-
-11.0	-31.0	SAND, fine-grained; BOULDERS		
-51.0	-35.0	SAND, meanin-grained; BUULDERS		
-33.0 -07 N	-97.0	CLAY sandy soft		-
-103.0	-1170	SAND, medium to coarse-grained: SAND streaks, v	vhite, fine-grained	MRPAL
-117.0	-125.0	SAND, gray, coarse-grained; GRAVEL	<i>g</i>	"
-125.0	-126.0	CLAY		41
-126.0	-141.0	SAND, coarse-grained; GRAVEL		MRPAL
-141.0				WOUK
Ph-509	20.0	HAJOCA CORP		
A Tor	ltitude (ft) Bottom	Lithologic description		Aquifer
-41.0		BEDROCK		WSCK

Table 6. -Logs of selected wells and test boreholes in the vicinity of the Delaware River--continued.

.

•

-

	Land-		
Well	surface	_	
number	elevatior	Owner W	ell identifier
Ph-731	10.0	BLACK, E N	
٨	Hinda (D)	,	
Top	Bottom	Lithologic description	Aquifer
10.0	-35.0	"Alluvium" blue	
-35.0	-36.0	SAND	MRPAU
-36.0	-69.0	"Alluvium", blue	66
-69.0	-75.0	GRAVEL	MRPALI
-75.0	-77.0	CLAY, white	-
-77.0	-124.0	SAND, beach	MRPAM
-124.0	-134.0	GRAVEL	MRPAM
-134.0	-137.0		-
-137.0	-143.0	CRAVEL, red	MRPAL
-160.0	-100.0	SAND baseby CRAVEL	
-198.0	-170.0	BEDROCK	MRPAL WSCK
Ph-822	5.0	CITY OF PHILADELPHIA	
А	ltitude (ft)		
Тор	Bottom	Lithologic description	Aquifer
5.0	0.0	"Fill" black silty sandy CLAY	
0.0	-6.0	CLAY, silty, organic, gray	-
-6.0	-13.0	SAND, gray, fine-grained	MRPALI
-13.0	-16.0	CLAY, red, SILT	Mitti Ao
-16.0	-29.0	GRAVEL, very coarse-grained, multi-color; SAND, coarse-grained;	angular to subrounded "
-29.0	-31.0	CLAY, white, lignitic; SAND, very fine-grained	"
-31.0	-32.0	SAND, white, fine-grained; SILT	MRPAU
-32.0	-30.0	CLAY, white, lignific.	-
-38.0	-36,0	CLAY, while, laminated CLAY, and lighting SAND, used find any instants OLAY struct	-
-85.0	-134.0	GRAVEL coarse-grained	e -
-134.0	-135.0	CLAY, red	MKPAL
-135.0	-137.0	SAND, white-gray, medium-grained	MRPAI
-137.0	-143.0	CLAY, gray-white	WSCK
-143.0		BEDROČK	'n
Ph-824	5.0	CITY OF PHILADELPHIA	
A1	titude (ft)		
Top	Bottom	Lithologic description	Aquifer
5.0	0.0	SILT, sandy, black; CLAY, "Fill"	
0.0	-19.0	CLAY, silty, gray	•
-19.0	-20.0	OKAVEL, multi-color, fine to medium-grained; subangular to subro	unded MRPAU
-20.0 -28.0	-20.0	GRAVEL multi-color subangular to rounded, SAND	44 1.1000.1.11
-37.0	-41.0	CLAV silty gray SAND fine to coarse grained: GRAVEL	MRPAU
-41.0	-54.0	CLAY, sandy, gray; SAND, fine-orgined; GRAVEL, fine-grained	-
-54.0	-63.0	SAND, fine-grained; GRAVEL fine-grained, angular to subangular	MRPAM
-63.0	-74.0	SAND, light colored, fine-grained	64 K
-74.0	-79.0	CLAY, white	**
-79.0	-89.0	SAND, tine to coarse-grained; GRAVEL, fine-grained, subangular to subrounded; CLAY, red and white	MRPAM
-89.0	-110.0	CLAY, red and white; GRAVEL, fine-grained; angular to subangula	r -
-110.0	-130.0	CLAY, white and red; rock fragments; GRAVEL fine-grained, subro	unded; SAND MRPAL
-130.0	-140.0	CLAY, white and red; SAND, fine-grained	64
-140.0	-149.0	CLAY, red and white; SAND, medium to coarse-grained; GRAVEL fine to medium-grained, subangular to subrounded	"
-149.0	-153.0	CLAY, white and red; GRAVEL, fine grained, subangular to subrout	nded MRPAL
-153.0	-159.0	CLAY, red and white; GRAVEL, fine to medium-grained; SAND, fi	ne-grained WSCK
-159.0		BEDROCK	

Table 6. -Logs of selected wells and test boreholes in the vicinity of the Delaware River--continued.

			1	<u>SCENA</u>	RIÓ A					
			·	Wit	<u>hdrawals,</u>	by stress	period, in l	Mgal/d		
 Layer	Row	Column	10	11	12	13	14	15	16	
2	61	77	0.016	0.017	0.017	0.018	0.019	0.020	0.020	
2	70	77	.005	.005	.005	.005	.006	.006	.006	
2	77	90 54	.312	.326	.340	.354	.368	.382	.396	
LAYER	2 TOTAL		0.464	0.485	0.506	0.527	0.548	0.569	0.590	
		10	0.014	0.014	0.016	0.015	0.016	0.017	0.017	
3	12	21	0.014	0.014	0.015	0.013	0.010	004	.004	
3	18	22	.007	.007	.007	.008	.008	.008	.008	
3	iğ	17	.004	.004	.004	.004	.004	.005	.005	
3	19	23	.116	.122	.127	.132	.137	.143	.148	
3	19	24	.116	.122	.127	.132	.137	.143	.148	
3	20	22	.233	.244	.254	.205	.275	.280	.290	
3	20	23	.079	.709	127	132	.001	143	148	
3	21	23	.116	.122	.127	.132	.137	.143	.148	
3	21	24	.233	.244	.254	.265	.275	.286	.296	
3	22	22	.116	.122	.127	.132	.137	.143	.148	
3	22	23	.116	.122	.127	.132	.137	.143	.148	
3	23	22	.003	.003	.003	.004	.004	.004	.004	
3	23	26	.046	.048	.050	.053	.055	.057	.059	
3	33	6	.012	.012	.013	.013	.014	.014	.015	
3	35	25	.141	.147	.153	.160	.166	.172	.179	
3	36	7	.001	.001	.001	.001	.001	.001	.000	
3	38 40	20	.179	.187	.195	.203	.372	.386	.400	
1	40		199	106	205	213	272	230	230	
2	40	32	.188	.083	.087	.090	.094	.098	.101	
3	4i	33	.161	.168	.175	.183	.190	.197	.205	
3	41	65	.001	.001	.001	.001	.002	.002	.002	
3	43	31	.014	.014	.015	.015	.016	.017	.017	
3	43	34	.002	.002	.002	.002	.003	.003	.003	
3	43	56	.003	.004	.004	.004	.004	.004	.005	
3	43	62	.046	.048	.051	.053	.055	.057	.039	
3	44 44	30 79	.001	.001	.001	.001	.001	.002	.002	
3	45	102	107	.112	.117	.122	.127	.132	.137	
ž	47	51	.097	.101	106	.110	.114	.119	.123	
3	48	72	.235	.246	256	.267	.277	.288	.299	
3	49	28	.246	.257	.268	.279	.290	.301	.313	
3	51	33	.298	.312	.325	.339	.352	.366	.379	
3	52	25	.549	.574	.599	.624	.648	.673	.698	
3	52	31	.230	.241	.251	.262	.272	.282	.293	
3	52	4/	.007	.008	.008	.008	.009	.009	.009	
3	53	53	.539	.563	.587	.612	.636	.660	.684	
3	53	58	.380	.397	.414	.432	.449	.466	.483	
3	54	30	.232	.243	.253	.264	.274	.285	.295	
3	54	67	.015	.016	.016	.017	.018	.018	.019	
3	56 56	29 52	.236	.247	.257	.268 .005	.279	.289 .005	.300	
-			007	030	010	A21	017	024	035	
3 2	20 57	16	.027	029	.030	.051	.052	.068	.055	
3	57	47	.332	.346	.361	.376	,391	.406	.421	
ž	57	52	.280	.293	.305	.318	.330	.343	.356	
3	58	13	.166	.173	.181	.188	.196	.203	.211	

.

.

•

[Mgal/d, million gallons per day]

	Withdrawals, by stress period, in Mgal/d								
 Layer	Row	Column	10	11	12	13	14	15	16
3	58	57	0.006	0.007	0.007	0.007	0.008	0.008	0.008
3	59	47	1.234	1.289	1.345	1.400	1.456	1.511	1.567
3	59	52	.668	.699	.729	.759	.789	819	849
3	60	47	1.220	1 275	1 330	1 385	1 430	1 404	1 \$40
3	60	59	.029	.030	.031	.033	.034	.035	.037
3	63	27	742	776	809	847	976	000	047
ž	64	ĩó	004	.,,,0	.607	.042	.0/0	.909	.943
ž	64	20	.004	.004	.005	.003	.003	.005	.006
2	64	57	.011	.011	.012	.012	.1013	.013	.014
3	65	37	.715	./4/ .491	.//9	.811	.844 554	.876	.908
							.554	.575	.577
3	66 66	27	.125	.130	.136	.142	.147	.153	.158
2	00	33	.052	.054	.056	.059	.061	.064	.066
2	00	57	.516	.539	.562	.585	.608	.632	.655
3	67	21	.007	.007	.007	.008	.008	.008	.009
3	67	59	.925	.967	1.008	1.050	1.092	1.133	1.175
3	68	38	.110	.115	.120	125	130	134	139
3	68	40	,536	560	584	608	632	656	680
3	68	98	156	161	171	170	102	000.	.000
ĩ	68	áõ	504	507	1/1.	.1/0	.165	.192	.199
1	60	22	.504	.521	.347	.312	CAC'	.018	.040
	07	23	.910	.957	.999	1.040	1.081	1.122	1.164
3	70	39	.763	.798	.832	.867	.901	.935	.970
5	70	51	.088	.092	.096	.100	.104	.108	.112
3	70	72	.465	.486	.507	.528	.549	.570	.591
3	71	42	.001	.001	.001	.001	.001	.002	.002
3	71	44	.818	.855	.892	.929	.965	1.002	1.039
3	72	73	447	461	181	4 01	531	641	563
ž	73	77	.445	.465	.401	.301	.521	.341	.301
2	74	22	.445	.405	.460	.506	.520	.546	.366
2	74	72	.223	.233	.240	.230	.200	.276	.286
2	74	72	.004	.004	.004	.004	.005	.005	.005
3	/4	/4	.009	.009	.010	.010	.010	110.	.011
3	74	77	.469	.491	.512	.533	.554	.575	.596
3	75	18	1.338	1.398	1.458	1.518	1.579	1.639	1.699
3	75	74	.556	.581	.606	.631	.657	.682	707
3	76	21	.165	.173	.180	.188	195	203	210
3	76	37	2.970	3.104	3.238	3.371	3.505	3.639	3.772
3	76	49	.333	348	363	378	303	408	473
3	76	76	.371	188	405	471	418	444	471
3	76	102	056	050	061	064	06 6 .	.433 A2A	.771
3	77	18	030	003	770	.007	.000	007	.0/1
3	11	49	.635	.664	.692	.700	.750	.820	.807
1	77	63	100	207					
2	,, 77	83 84	.58U 067	.397	.414	.431	.449	.466	.483
2	79	47	.007	.070	.073	.076	.079	.082	.085
2	70	40	.230	.240	.231	.201	.2/1	.282	.292
3	79	77	.270 734	.288 767	.301	515. 119	.326	.338	.351
	.,	* *	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.707	.000	£CO.	.000	.077	.932
3	80	55	.648	.677	.706	.736	.765	.794	.823
5	81	17	.022	.023	.024	.025	.026	.027	.028
5	81	53	.363	.379	.395	.412	.428	.444	.461
3	83	16	.563	.588	.613	.639	.664	.689	.715
LAYER	3 TOTAL		31.113	32.513	33.913	35.313	36.714	38.114	39.514
4	_	•							
4	/	3	1.011	1.056	1.102	1.147	1.193	1.238	1.284
4	8	3	.269	.281	.293	.305	.318	.330	.342
4	13	8	.046	.048	.050	.052	.054	.056	.058
4	16	16	.616	.643	.671	.699	.727	.754	.782
4	16	17	.736	.770	.803	.836	.869	902	935

SCENARIO A (continued)

•

			<u></u>	Withdrawals, by stress period, in Mgal/d						
Layer	Row	Column	10	11	12	13	14	15	16	
 4	18	17	0.205	0.214	0.223	0.232	0.242	0.251	0.260	
4	18	18	.005	.005	.005	.006	.006	.006	.006	
4	19	18	.099	.104	.108	.113	.117	.122	.126	
4	20	4	.073	.076	.080	.083	.086	.090	.093	
4	22	21	.290	.303	.317	.330	.343	.356	.369	
4	22	94	.676	.706	.737	, .767	.798	.828	.859	
4	23	18	.342	.357	.373	.388	.403	.419	.434	
4	23	22	.290	.303	.317	.330	.343	.356	.369	
4	25	4	.387	.405	.422	.440	.457	.475	.492	
4	25	50	.135	.141	.147	.153	.159	.165	.172	
4	25	81	.041	.043	.045	.047	.049	.051	.053	
4	26	8	.019	.019	.020	.021	.022	.023	.024	
4	26	19	.324	.338	.353	.367	.382	.396	.411	
4	26	89	.001	.001	.001	.001	.001	.001	.000	
4	27	21	.143	.149	.156	.162	.169	.175	.181	
4	28	23	.210	.220	.229	.239	.248	.258	.267	
4	28	97	,427	.446	,465	.485	.504	.523	.542	
4	29	93	.681	.712	.742	.773	.804	.834	.865	
4	30	22	.559	.584	.609	.634	.660	.685	.710	
4	30	61	1.122	1.172	1.223	1.273	1.324	1.374	1.425	
4	30	83	.297	.310	.323	.337	.350	.364	.377	
à	30	84	005	006	.006	.006	007	.007	.007	
· 4	30	98	1016	1 062	1.108	1.154	1.199	1.245	1.291	
Å	Ň	77	500	523	545	568	590	.613	.635	
4	31	85	.391	.409	.427	.444	.462	.480	.497	
4	31	94	1 305	1 364	1 423	1.481	1.540	1.599	1.658	
4	31	98	602	.629	.657	.684	.711	.738	.765	
Å	32	63	003	004	.004	.004	.004	.004	.004	
à	32	96	.005	.005	.006	.006	.006	.006	.007	
4	34	24	.029	.030	.031	.033	.034	.035	.037	
4	34	97	.008	.009	.009	.010	.010	.010	.011	
À	35	79	849	887	.926	964	1.002	1.040	1.079	
4	35	91	007	007	008	008	.008	.009	.009	
Ā	35	<u>92</u>	918	959	1.000	1 042	1.083	1.124	1.166	
4	35	105	.212	.221	.231	.240	.250	.259	.269	
٨	36	106	080	084	087	091	094	098	102	
4	35	00	575	601	627	653	678	704	730	
4	36	05	418	437	456	475	403	512	531	
** A	36	106	.418	.437	040	051	053	055	057	
4	38	5	.259	.271	.282	.294	.306	.317	.329	
	41	0.7	880	030	040	1.000	1.040	1.080	1 1 20	
4	41	92	.889	.929	.707	1.009	1.049	1.007	1,127	
4	41	5 C C C C C C C C C C C C C C C C C C C	.030	.0/9	./09	./30	./0/	./90	.020	
4	42	27	./18	./21	./83	.813	.040 276	.000	.712	
4	44 44	92	.028	.555	.031	.001	.023	.049	.075	
	, -	00	220	000	000		010		011	
4	45	80	.009	.009	.009	.010	.010	.011	.011	
4	45	101	.0//	.081	.084	.088	.091	.093	.098	
4	46	27	./18	./51	./85	.815	.848	.880	.912	
4 4	46 46	42 101	.360 .012	.376	.392	.409 .014	.425 .014	.441 .015	.457 .016	
								104	•••	
4	46	102	.158	.165	.172	.179	.186	.193	.200	
4	4/	84	.029	.037	.080	./14	./42	.//1	./99	
4	48	15	دده.	.8/1	.908	.940	.783	1.021	1.039	
4	49	39	.149	.133	.102	.109	.[/3	.184	.107	
4	50	62	.139	.145	.151	.157	. 104	.170	.170	

SCENARIO A (continued)

٠

 $\overline{}$

			<u> </u>	Withdrawals, by stress period, in Mgal/d						_
 Layer	Row	Column	10	н	12	13	14	15	16	•
4	54	67	0.229	0.240	0.250	0.260	0.271	0.281	0.291	
4	56	95	.052	.055	.057	.059	.062	.064	.067	
4	57	35	.430	.449	.468	.488	.507	.526	.546	
4	59	52	.603	.630	.657	.684	.711	.738	.766	
4	61	61	.485	.507	.529	.551	.573	.595	.616	
4	62	99	.932	.974	1.016	1.058	1.100	1.142	1.184	
4	63	98	.414	.433	.452	.470	.489	.508	.526	
4	64	69	3.256	3.402	3.549	3.695	3.842	3.988	4.135	
4	65	57	.541	.566	.590	.614	.639	663	687	
4	65	78	.052	.054	.056	.059	.061	.063	.066	
4	68	99	.557	.582	.607	.632	.657	.682	.707	
4	77	104	.494	.517	.539	.561	.583	.606	.628	
LAYER	A TOTAL		3.210	31.570	32.929	34.289	35.648	37.008	38.367	
4	17	26	0.000	0.000	0.007	0.100	0.104	0.100		
2	17	23	0.088	0.092	0.096	0.100	0.104	0.108	0.112	
2	19	70	14.596	15.253	15.909	16.566	17.223	17.880	18.537	
5	21	24	.334	.349	.364	.379	.394	.409	.424	
5	21	61	.003	.003	.003	.004	.004	.004	.004	
5	22	23	.558	.583	.608	.633	.658	.683	.708	
5	22	60	.930	.972	1.014	1.056	1.097	1.139	1.181	
2	22	61	.519	.543	.566	.589	.613	.636	.660	
5	22	62	1.049	1.096	1.144	1.191	1.238	1.285	1.332	
5	22	64	.152	.159	.166	.173	.180	.187	.194	
5	22	68	6.255	6.537	6.818	7.099	7.381	7.662	7.944	
5	23	23	.047	.049	.051	.053	.055	.057	.059	
5	23	26	.225	.235	.245	.255	.265	.276	.286	
5	23	58	.001	.001	.001	.001	.001	.001	.000	
5	24	27	.364	.380	397	.413	429	446	462	
5	24	76	.526	.550	.574	.597	.621	.645	.669	
5	25	72	1.383	1.445	1.507	1.570	1.632	1.694	1.756	
5	26	83	.629	.657	.686	.714	.742	.770	.799	
5	26	86	.084	.088	091	095	099	103	107	
5	27	76	037	038	040	042	043	045	047	
5	27	85	.001	,001	.001	.001	.001	.001	.001	
5	28	55	.001	.001	.001	.001	.001	.001	.001	
5	28	97	.774	.809	844	879	914	949	984	
5	29	35	317	331	346	360	374	180	403	
Š	30	28	360	376	392	408	474	441	457	
5	30	83	.806	.842	.878	.914	.951	.987	1.023	
5	21	44	1 201	1 443	1 606	1 547	1 4 2 0	1 401	1 764	
5	21	74	1.301	1.993	1.303	1.307	1.029	1.071	1.734	
2	21	13	.397	.624	.631	.678	.705	.732	.759	
2	51	77	.359	.375	.391	.407	.423	.440	.456	
5	32	38	.643	.672	.700	.729	.758	.787	.816	
5	32	39	.501	.524	.546	.569	.591	.614	.637	
5	32	40	.388	.406	.423	.441	.458	.476	.493	
2	32	/0	2.173	2.270	2.368	2.466	2.564	2.662	2.759	
5	33	38	.601	.628	.655	.683	.710	.737	.764	
5	33 33	39 40		.476 586	.496 611	.517 617	.537	.558	.578 כוד	
-							.002	.007		
2	33	00	1.258	1.315	1.372	1.428	1.485	1.542	1.598	
5	34	24	.424	.443	.462	.481	.500	.519	.538	
5	34	41	.279	.291	.304	.316	.329	.341	.354	
5	34	48	1.631	1.704	1.777	1.851	1.924	1.998	2.071	
5	34	57	1.343	1.404	1.464	1.525	1.585	1.646	1.706	

.

.

SCENARIO A (continued)

•

				Withdrawals, by stress period, in Mgal/d							
L	ayer	Row	Column	10	11	12	13	14	15	16	
	5	34	58	0.971	L.015	1.058	1.102	1.146	£.189	1.233	
	5	35	25	239	250	260	271	282	293	304	
	š	36	45	330	345	360	375	390	405	420	
	š	36	53	101	.545	.500	.575	.570	492	500	
	5	30	74	.373	214	.427	241	.404	.462		
	3	30	70	.300	.314	.327	.941	.333	.308	.302	
	5	37	36	.124	.130	.136	.141	.147	.153	.158	
	5	37	76	.863	.902	.940	.979	1.018	1.057	1.096	
	5	38	38	.573	.599	.625	.650	.676	.702	.728	
	5	38	43	.656	.685	.715	.744	.774	.804	.833	
	5	39	43	.163	.171	.178	.185	.193	.200	.207	
	Ś	42	28	273	786	208	310	377	335	347	
	š	12	45	0.50	062	065	067	070	073	075	
	ś	42	22	1 105	.002	1.002	1.254	1 204	1 254	1.402	
	5	42	13	1.105	1.133	1.204	1.234	1.304	1.554	1.403	
	2	44	46	.373	.389	.406	.423	.440	.457	.473	
	5	44	56	.263	.275	.287	.299	.311	.323	.335	
	5 ·	44	59	.032	.033	.035	.036	.037	.039	.040	
	5	44	68	.089	.093	.097	.101	.105	.109	.113	
	5	45	34	204	213	223	232	241	250	259	
	š	45	56	700	731	763	794	876	857	889	
	5	45	57	267	294	.705	.,,,,	.020	.057	.007	
	3	43	16	.307	.304	.400	.417	.4.34	.430	.407	
	5	45	67	.094	.098	.102	.106	.110	.115	.119	
	5	46	102	.904	.945	.986	1.026	1.067	1.108	1.148	
	5	47	51	.220	.230	.240	.250	.260	.270	.280	
	5	48	46	.899	.940	.980	1.021	1.061	1.101	1.142	
	5	48	72	.573	.598	.624	.650	.676	.702	.727	
	5	50	63	114	110	124	120	134	140	145	
	5	52	57	002	1027	1 001	1154	1 1 7 1	1 214	1 240	
	2	52	33	1 10	1.03/	1.002	1.140	1.171	1.210	1.200	
	5	33	26	1.181	1.234	1.28/	1.340	1.393	1.440	1.500	
	2	57	15	.484	.506	.528	.549	.3/1	.593	.615	
	5	59	47	.576	.602	.628	.654	.680	.706	.732	
	5	59	77	.861	.900	.939	.977	1.016	1.055	1.094	
	5	60	78	764	.798	.833	.867	.901	.936	.970	
	5	61	61	2 852	2 982	3 110	3 238	3 367	3 495	3 674	
	š	71	56	3 004	2 212	3 372	3 511	3 651	3 700	3 070	
	Ś	72	55	1 720	1 709	1 975	1.052	2 020	2.170	3 1 95	
	J	14	22	1.720	1.798	_ 1.875 	1.933	2.030	2.107	2.185	
	LAYER	5 TOTAL		66.071	69.045	72.018	74.991	77.964	8.938	83.911	
										==== =	
	SCENAR TOTAL	NO A		127.861	133.614	139.368	145,122	15.876	156.629	162.383	

SCENARIO A (continued)

٠

SCENARIO B

NOTE: Scenario B withdrawals for stress periods 10 through 16 are equal to the withdrawals for Scenario A's stress period 10.

.

.

.

SCENARIO C

			-	Wi	thdrawals.	by stress p	eriod, in i	Mgal/d		
 Layer	Row	Column	10	11	12	13	14	15	16	
3 3 3 3 3 3	18 18 19 19 20	21 22 23 24 22	0.002 .005 .098 .098 .197	Stress stress	period 11 - period 10 w	l 6 withdrawa ithdrawals.	als are equ	al to		
3 3 3 3 3	20 21 21 21 21 22	23 22 23 24 23	.197 .098 .098 .197 .098							
3 3 3 3 3	23 33 35 37 38	22 6 25 20 98	.002 .011 .278 .000 .135					v		
3 3 3 3 3	40 41 41 42 43	20 32 65 14 31	.250 .201 .001 .011 .007							
3 3 3 3 3	43 44 44 45 47	56 30 79 102 51	.000 .291 .001 .043 .178							
3 3 3 3 3	48 49 50 51 52	72 28 63 33 25	.405 .260 .257 .229 .334							
3 3 3 3 3	52 52 53 54 54	31 53 58 30 58	.169 .638 .181 .155 .006							
3 3 3 3 3	56 56 56 56 56	29 52 80 85 106	.162 .027 .001 .027 .000							
3 3 3 3 3	57 57 57 58 58	16 52 101 13 85	.001 .132 .027 .110 .016							
3 3 3 3 3	60 63 64 64 65	59 27 10 39 37	.025 .217 .054 .077 .398							
3 3 3 3 3	66 66 67 67 68	27 53 21 59 38	.092 .063 .002 .094 .095							

Withdrawals, by stress period, in Mgal/d Layer Row Column П 68 69 69 0.399 Stress period 11 - 16 withdrawals are equal to 23 95 stress period 10 withdrawals. .654 .359 .130 73 42 3 70 71 71 .332 .014 3 .001 74 74 74 75 72 74 77 .163 .001 .004 .407 .498 .373 1.726 .292 .300 76 76 76 76 3 .033 77 77 77 77 78 .619 .273 3 3 .037 .210 .250 79 77 55 53 16 .072 3 3 .629 .371 .381 3 83 .346 LAYER 3 TOTAL 16.588 4 0.740 13 8 17 .241 .026 18 .207 .252 22 22 23 23 .047 .234 4 18 22 .189 .122 .234 .366 .085 .043 .012 25 25 26 26 81 19 .158 26 27 27 28 .000 .021 .093 23 4 .552 .081 29 30 .485 .397 .474 .705 .227 4 4 4 22 30 83

SCENARIO C (continued)

SCENARIO C (continued)

	Withdrawals, by stress period, in Mgal/d						
	Layer	Row	Column	10	11 12 13 14 15 16		
-	Δ	30	84	0.013	Stress period 11 - 16 withdrawals are equal to		
	4	30	98	497	stress period 10 withdrawals		
	4	31	77	435	sucas period to winderweis.		
	4	31	85	250			
	4	31	94	468			
	•	5.					
	4	31	98	.217			
	4	32	93	.006			
	4	32	96	.011			
	4	34	24	.027			
	4	.)4	93	.017			
	4	34	97	.009			
	4	35	79	.684			
	4	35	91	.007			
	4	35	92	.612			
	4	35	105	.116			
	4	35	106	040			
	4	36	90	369			
	4	36	95	282			
	4	36	105	.018			
	4	36	106	.063			
				_			
	4	38	5	.171			
	4	41	92	,590			
	4	41	93	.517			
	4	44	37	.400			
	4	44	92	.027			
	4	45	80	.012			
	4	45	101	.036			
	4	46	27	.255			
	4	46	42	.274			
	4	40	101	.009			
	4	46	102	.337			
	4	47	84	.379			
	4	48	75	.698			
	4	49	59	.174			
	4	54	67	.430			
	4	56	95	.040			
	4	56	99	000			
	4	57	35	.599			
	4	59	52	1.345			
	4	59	75	.002	•		
	4	()	00	473			
	4	02 41	99 75	.4/2			
	4 1	61	99	2002			
	4	64	70 60	2 696			
	4	65	57	1.219			
				•			
	4	65	78	.001			
	4	68	99	.500			
	4	11	104	.033	·		
	1 475			22 261			
	LATE	101AL	•	22.301			
	_		<u></u>				
	5	17	25	0.143			
	2	19	70	7.033			
	2	21	24	.133			
	5	21 77	22	.020 200			
	5		23	.207			

				SCENARIO C (continued) Withdrawals, by stress period, in Mgal/d							
	Layer	Row	Column	10	П	12	13	14	15	16	
	5 5 5 5 5	22 22 22 22 22 22 22	55 60 61 62 64	0.147 .576 .399 .751 .126	Stress stress	period 11 period 10 v	- 16 withdra withdrawals	awals are co 3.	qual to		
	5 5 5 5 5	22 24 24 25 25	68 27 76 72 77	2.515 .462 .119 .905 .022							
	5 5 5 5 5	26 26 27 27 27 27	83 86 56 76 85	.309 .320 .401 .035 .000							
	5 5 5 5 5	28 28 28 29 30	55 56 97 35 83	.000 1.400 .637 .220 .638							
,	5 5 5 5	31 31 32 32 32 32	64 75 38 39 40	.775 .502 .707 .184 .118							
	5 5 5 5 5	32 33 33 33 33 33	70 38 39 40 66	1.446 .511 .400 .037 .792							
	5 5 5 5 5	34 34 34 34 35	24 41 48 57 25	.073 .172 1.507 1.611 .202							
	5 5 5 5 5	36 36 37 37 38	45 76 36 76 38	.214 .226 .021 .464 .472		,					
	5 5 5 5 5	38 42 42 42 42 44	43 28 45 73 46	.459 .152 .094 .405 .236							
	5 5 5 5 5	44 44 45 45	56 59 68 34 56	.260 .021 .217 .116 .537							
	5 5 5 5 5	45 46 48 48 55	57 102 46 72 58	.158 .320 .555 .405 .588							

1

	Layer	Row	Column	Withdrawals, by stress period, in Mgal/d								
				10	1	1 12	13	14	15	16		
	5 5 5 5 5 1 4 7 8	57 59 60 61 71 R 5 TOTAL	75 47 78 61 56	0.100 2.327 .889 2.381 2.575 	•	Stress period 1 stress period 1	1 - 16 withd 0 withdrawa	lrawals are e ils.	qual to			
			:									
	SCENARIO C TOTAL			82.359								

SCENARIO C (continued)

GEOLOGICAL SURVEY REPORT GSR 38 PLATE 1

D′

-333

'n

SURFACE

AQUIFER

AQUIFER

AQUIFER

15-312

15-313

LAND

5-770

UPPER - AQUIFER -OUTCROP

ŝ

NEW JERSEY

UPPER F

MIDDLE

LOWER

30,000

5-772

Delaware

River

FEET

_ 100

Sea Level

- -100

-200

-300

-400

1

20,000 FEET

FEET

¥.

FEET

HYDROSTRATIGRAPHIC SECTIONS A-A' TO E-E' THROUGH THE POTOMAC-RARITAN-MAGOTHY AQUIFER SYSTEM

IN THE VICINITY OF THE DELAWARE RIVER, CAMDEN AREA, NEW JERSEY

By

Anthony S. Navoy and Glen B. Carleton

1995

GEOLOGICAL SURVEY REPORT GSR 38 PLATE 2

FEET

5

F¹ FEET

F²

HYDROSTRATIGRAPHIC SECTIONS F-F' THROUGH THE POTOMAC-RARITAN-MAGOTHY AQUIFER SYSTEM IN THE VICINITY OF THE DELAWARE RIVER, CAMDEN AREA, NEW JERSEY

Ву

Anthony S. Navoy and Glen B. Carleton

1995

