Eutrophication Model Expert Panel Meeting

DRBC Offices November 2 and 3, 2016

Recommendations and Tasks

Expert Panel Members

Dr. Steven Chapra, Tufts University
 Dr. Carl Cerco, US Army COE (retired)
 Dr. Vic Bierman, LimnoTech
 Dr. Robert Chant, Rutgers University

□ Tim Wool, U.S. EPA Region 4 (to be appointed)

Discussed Topics

- * Hydrodynamic Model Selection Process
- * Complexity of WQ Model
- * Model Calibration Period
- * Data Collection (temporal, spatial, state variables)
- * Data Compilation
- * Data Assessment

Model Selection Process

- * Hydrodynamic model capability
 - Wetting-drying capability
 - Overall CPU time
- * Readily available water quality model -
 - Use 1 WQ model focus on WASP8
 - Water quality model capability
 - CBOD vs. carbon
 - Sediment diagenesis
 - Multiple algae (speciation) if necessary
 - Sediment transport 1 class at minimum
- * Technical support availability

3-D Hydrodynamic Model Next Steps

- * Use of the most recent bathymetry (45' channel deepening);
- * Use of NAVD88 datum;
- Evaluate CH3D-Z model coding (hard-wired for the Delaware Estuary specific model);
- * Resolve water elevation phase lags at Philadelphia;
- * Data
 - Identify data sources of tidal elevation and salinity for open boundaries
 - Current velocity data
 - Salinity profile (vertical and lateral)
- * Validate CH3D-Z and DYNHYD5/TOXI5 with other timeframe;

Establish 1-D WQ Screening Model

- * Use existing 1-D DYNHYD5 Model
- * Link with WASP8 version and evaluate as a screening model (need to resolve source code availability);
- * Check Dr. James Martin for sediment diagenesis subroutine if older version (WASP5) is used;
- Start with 1 class ISS and net burial rate to maintain
 ISS in water column → light extinction coefficient will be a function of ISS, Chl_a, and shading.

Calibration Period and NPS

- Model calibration approach
 - Select a data-rich time period to develop model calibration (For example: PWD's model: 4/1/2012 ~10/1/2012 & 4/1/2013 ~10/1/2013);
 - EP recommended to run a two continuous year simulation;
 - Use Year 2018 with intensive monitoring for another calibration/verification of the model;
- No watershed model will be developed most of non-point sources will be captured by tributary monitoring location – EP recommended to contact PWD for SWWM model applicability;

* Loads from the rest of the area will be estimated; Presented to an advisory committee of the DRBC. Contents should not be published or reposted in whole or in part without the permission of the author(s) or the committee.

Planned Monitoring

* 2017:

- Bi-weekly monitoring at Trenton (COD, Chloride, Ammonia (Dist. as N), NO2 + NO3 (as N), TKN (as N), Orthophosphate, Alkalinity, Total Phosphorus, TOC, DOC, corrected chlorophyll_a, TSS, TVS, sulfate, silica)
- * Monthly Boat Run year-round

* 2018

- * Weekly monitoring at Trenton
- * Monthly or higher frequency BoatRun year-round
- * 26 tributaries 8 times (COD, Chloride, Ammonia (Dist. as N), NO2 + NO3 (as N), TKN (as N), Orthophosphate, Alkalinity, Total Phosphorus, TSS, Silica, corrected chlorophyl_a, CBOD5, TOC, DOC, TSS, TVS, sulfate, silica)

Data Collection Recommendations

- Measure primary production in Zones 2, 3, 4, and upper 5 with an emphasis on respiration rates (2018);
- * Measure point discharge organic carbon TOC (2018);
- * Extend sulfate measurement to full boat run (2017 2018);
- During intensive-monitoring period, perform even more intensive monitoring during critically important period for nutrient control for temperate rivers (2018);
- Post meeting (inferred from general feedback);
 - * Add VSS to Boat Run to determine ISS (2017 2018);
 - * Add organic carbon to Delaware at Trenton twice per month sampling (2017 2018).

Data Compilation

- Continue to develop existing data catalog.
 Add items including:
 - SOD data;
 - Cape May-Lewes Ferry salinity data;
 - Rutgers PAR profiling;
 - Rutgers Suna nitrate profiles;
 - * Rutgers / PWD dye study results;
 - Rutgers boat based nutrient monitoring;
 - * Phytoplankton species composition data including:
 - * Marshall phytoplankton data, 1990's (Old Dominion);
 - * Pembrook seasonal variations in Delaware Bay phytoplankton community structure;
 - * Most recent bathymetry data (channel deepening project in Delaware).
- * Look for historical data-rich years

Data Assessment / Evaluation

- Provide plots / assessments for Expert Panel feedback.
 Including:
 - * Plot Zone 2 production as a function of flow
 - Compare loadings & concentrations of CBOD5 and TOC look at ratios;
 - Contact Chapra to obtain formulas to represent CBOD-5 as carbon;
 - * Overplot nutrient concentrations / chlorophyll a / DO;
 - Overplot Secchi / turbidity / TSS / PAR. Chapra can provide equations re light extinction using PAR/Secchi depth/turbidity;

