

Water Use Trends of the Energy Industry in the Delaware River Basin

David Sayers

Supervisor, IT and Water Use Section

Kent Barr

Water Resources Analyst, Planning and IT Branch

Delaware River Basin Commission

WRA 2012 Annual Conference:

Energy, Water and the Environment in the Delaware River Basin

November 7, 2012

OVERVIEW:

- Data Sources
- Water Use in the DRB: The Big Picture
- Trends in Water Use: Power, PWS, Industry
- Water Use for Power Generation:
 - Water Withdrawals
 - Consumptive Use
 - Water Use by Cooling Type
 - Electricity Generation in the DRB
 - MWh produced per gallon
- Future Trends
 - Water Use for Natural Gas hydrofracking
 - Cooling Type changes; Clean Water Act: §316(b)
 - Projections

DATA SOURCES:

- Water Use Data:
 - States' reports to DRBC
 - DRBC's Surface Water Charging Program
- Energy Production Data (MWh):
 - DoE Energy Information Administration

http://www.eia.gov/

Delaware River Watershed Facts

- Approx. 15 million people (almost 5% of the U.S. population) rely on the waters of the basin
- Drains 13,539 mi² (34,659 km²), or 0.4% of the continental U.S. land area
 Flows 330 miles from Hancock, NY to Delaware Bay

DAILY WATER WITHDRAWS, MAJOR EXPORTS AND CONSUMPTIVE USE IN THE DRB, 2007

Water Withdrawals for

Public Water Supply (PWS)

Aggregated Withdrawals of 40 Public Water Supply Systems in the DRB (MGD)

Trendlines 1990 - 2007: Approximately **15% decline** in withdrawals Approximately **13% increase** in population

Water Withdrawals for

Industry

Industrial Withdrawals in the DRB

Water Withdrawals and Consumptive Use for

Power Generation

ENERGY GENERATION FACILIITES IN DRB:

- 141 facilities generate energy (EIA - MWh)
- 37 "facilities" require significant water source
- >99% of MWh
 produced require
 dedicated water
 source

Total Withdrawals for Thermoelectric Facilities in the DRB

Total Consumptive Use for Thermoelectric Facilities in the DRB

Total <u>Withdrawals</u> for Thermoelectric Facilities with <u>Once Through Cooling</u> Systems

Total <u>Consumptive Use</u> for Thermoelectric Facilities with <u>Once Through Cooling</u> Systems

Total <u>Withdrawals</u> for Thermoelectric Facilities with <u>Cooling Tower</u> Systems

Total Consumptive Use for Thermoelectric Facilities with Cooling Tower Systems

WATER USE TRENDS:

- Once Through (OT) cooling plants reduced withdrawals (~1BGD) and consumptive use (~8MGD)
- Some OT plants taken off line (e.g, Exelon Cromby)
- Evaporative Cooling plants have increased withdrawals (~30MGD) and consumptive use (~25MGD)
- What about MWh generated?

Monthly MWh generated in the DRB (EIA data)

Annual MWh generated in the DRB (EIA data)

Total Consumptive Use and MWh Produced for Thermoelectric Facilities in the DRB

TOP 10 WATER USERS AND MWh GENERATORS (2011)

Facility Name	Cooling Type	Primary Fuel Type	Consumptive Use (MGD)	% of Total	Cumu	lative %	50%	100%
Exelon - Limerick	EC	Nuclear	32.9	33%	33%			
PSEG - Salem	ОТ	Nuclear	19.5	20%	53%			
PSEG - Hope Creek	EC	Nuclear	16.2	16%	69%			
FPL Energy - Marcus Hook	EC	Nat. Gas & Other Gases	4.2	4%	73%			
Fairless Energy, LLC	EC	Nat. Gas & Other Gases	4.1	4%	77%			
Calpine Corporation - Hay Road 4&8	Mixed	Nat. Gas & Other Gases	3.1	3%	80%			
Calpine Corporation- Bethelehem	Mixed	Solid Renewable Fuels	2.4	2%	83%			
Liberty Electric Power	EC	Nat. Gas & Other Gases	1.8	2%	85%			
PPL - Lower Mount Bethel Energy	EC	Petroleum Products	1.8	2%	86%			
PPL Ironwood, LLC	EC	Nat. Gas & Other Gases	1.6	2%	88%			

Facility Name	Cooling Type	Primary Fuel Type	MWh	% of Total	Cumul	ative %	50%	100%
Exelon - Limerick	EC	Nuclear	18,462,503	23%	23%			
PSEG - Salem	ОТ	Nuclear	17,833,246	22%	45%			
PSEG - Hope Creek	EC	Nuclear	10,474,891	13%	58%			
Fairless Energy, LLC	EC	Nat. Gas & Other Gases	7,214,065	9%	67%			
PPL Ironwood, LLC	EC	Nat. Gas & Other Gases	4,741,290	6%	73%			
FPL Energy - Marcus Hook	EC	Nat. Gas & Other Gases	4,038,084	5%	78%			
Calpine Corporation - Hay Road 4&8	Mixed	Nat. Gas & Other Gases	3,915,575	5%	83%			
Liberty Electric Power	EC	Nat. Gas & Other Gases	3,095,061	4%	86%			
Genon Energy, Inc Portland	ОТ	Coal	1,165,848	1%	88%			
Veolia Energy - Phila. Grays Ferry	ОТ	Nat. Gas & Other Gases	1,016,991	1%	89%			

Gallons (consumed) /MWh - by Cooling Type

Gallons (consumed) / MWh - by Primary Fuel Type

Calpine Corporation – Hay Road (DE) Natural Gas Plant

PROJECTED WATER NEEDS: NATURAL GAS DRILLING

Over 10-20 years:

- 5 million gallons per horizontal well stimulated
- 21-90 BG (less w/recycling)
- Approx. 5 12 MGD
- Consumptive Use, in headwater location

Home > Electricity > NERC Regions

North American Electric Reliability Corporation (NERC) Regions

NPCC - Northeast Power Coordinating Council

RFC - Reliability First Corporation

ReliabilityFirst Corporation (RFC) is one of the eight Federal Energy Regulatory Commission (Commission)approved regional reliability organizations responsible for ensuring the reliability of the North American bulk power system, pursuant to the Energy Policy Act of 2005.

Note: The Alaska Systems Coordinating Council (ASCC) is an affiliate NERC member. Source: North American Electric Reliability Corporation.

TRE - Texas Regional Entity

WECC - Western Electricity Coordinating Council

Projected Electricity Generation (Reliability First Corporation / East)

12% increase in Electricity Generation 2011 – 2035

Should we expect same for consumptive water use?

Conclusions

- Trend away from Once Through Cooling to Evaporative Cooling
- Clean Water Act: §316(b)
 - Reduce I&E impacts
 - No more OT cooling plants constructed?
- Evaporative Cooling potentially allows consumptive use to move upstream/tributaries (compared to Once-Through)
- Better Understanding of Gallons / MWh
 - Cooling Type
 - Fuel Type
- Electricity Generation expected to increase
- Consumptive water use (for thermoelectric) also expected to increase

Thank you for your interest in this presentation

David Sayers

Supervisor, IT and Water Use Section

David.sayers@drbc.state.nj.us

609 883 9500 x236

Kent Barr

Water Resources Analyst, Planning and IT Branch

Kent.barr@drbc.state.nj.us

609 883 9500 x237

Delaware River Basin Commission

Water Resources Association of the Delaware River Basin November 7th 2012 Bordentown, NJ.

