The Philadelphia Water **Department's** Cogeneration **Project:** Transforming **Biogas to Energy**

WATER RESOURCES ASSOCIATION OF THE DELAWARE RIVER BASIN

Presentation Overview

- Project Goals and Objectives
- Biogas Beneficial Use Options
- PWD Cogeneration Facility
- Project
 Implementation

Project Goal

Maximize the energy potential of the biosolids process by harnessing the untapped biogas waste stream. Reduce Energy Consumption, Greenhouse Gas Emissions, increase sustainability, and enhance environmental stewardship

Project Objectives

- Reduce Flaring
- Maximize the Energy Potential of Biogas Source
- Demonstrate Long-term
 Economic Benefit
- Affordable Project Delivery

Project Team

- Philadelphia Water Department Planning, Engineering, and Operations
- AECOM in association with Princeton Energy Systems (Feasibility Study)
- Specialty Design Subcontractors: Hunt Engineering and J. Blanco Associates
- Ameresco Energy (Project Implementation)

Biogas Production Overview

How it works...

Beneficial Use Options Considered

- Purify Biogas to Pipeline Quality
- Combust Biogas to Produce Energy/Heat

NEWPCP Biogas Quantity

- 1.5 MMscf/day avg production as byproduct of anaerobic digestion process
- 2.5 MMscf/day with anticipated future increase in production
- 43% currently consumed for process heating at boilers (57% wasted to flares)

NEWPCP Biogas Quality

- Inherent biogas characteristics at Municipal WWTPs:
 - High corrosivity (H₂S)
 - Saturated (water vapor)
 - Siloxanes compounds and other impurities

Purification Gas Quality Comparison

Constituent	Raw Biogas at Northeast WPCP	Pipeline Gas Requirements
Methane	61%	97% min
CO ₂	39%	1% max
Nitrogen	0.35%	2% max
Water	Saturated	7 lbs/MMcf max
H ₂ S	Up to 14 ppmv	4ppmv

Purification Concept

Combined Heat and Power

Beneficial Use Selection

Economic Analysis

- Construction/Operational Costs
- Energy Off-set/Savings (Co-gen Option)
- Gas Sales (Purification Option)
- Net Present Worth Analysis
- Return on Investment (Payback)

Other Considerations

- Operation and Maintenance
- Control of Assets
- Contractual Arrangements

COGENERATION OPTION SELECTED

Economic Benefits

20 Year Life Cycle Cost Analysis
\$28.5 M Capital Cost
\$24M Net Present Value
11% Return Rate
\$4.3M offset in electricity costs annually
Including O&M costs (5% of capital)
Does not include additional

incentives

•\$0.07/kWh

Northeast Water Pollution Control Plant

Online Since 1923

Capacity of 190 MGD

Anaerobic Digestion

1.5 MMcfd Digester Gas

~57% Flared to Waste

Cogeneration Facility Layout

Cogeneration Building Renderings

Cogeneration Facility Cross-Sections

Digester Gas

- Variable Seasonal Flows
- Supplemental Fuel Blending
- H₂S, Siloxanes, and Moisture Removal

Digester Gas Pretreatment

Moisture Removal: Multiple Locations
Siloxanes Removal: Carbon-based Media
H₂S Removal: Iron oxide-based Media

Siloxanes Removal System

H₂S Removal System

Pretreatment Process

Pretreatment Process

Pretreatment Process

H₂S Removal Layout

Cogeneration Facility Cross-Sections

Air Emissions

- Current Plant Emissions Regulated
- Primary air pollutants from IC engines: NOx and CO
- Potential to emit (lean-burn engines):
 - NOx: < 0.6 grams (as NO₂) per bhp-hr (or 250 mg/Nm³)
 - CO: < 3.3 grams per bhp-hr (or 1,375 mg/Nm³)
- Estimated Emission from the Proposed Cogeneration Facility

Criteria Pollutant	Annual PTE	
NOx (as NO2)	~ 41 tons/yr	
СО	~ 226 tons/yr	

- * Based on four 1,426 kW engines operating at 90% capacity 24/7, 365 days
- <u>Selective Catalytic Reduction (SCR) Systems</u>: installed at engine exhaust for NOx reduction of 75%, CO reduction of 83%

Selective Catalytic Reduction (SCR)

- Reduction of CO, NOx, VOC, and PM
- Urea Solution Injection
- Precious Metal-based Catalyst
- Driver for Pre-treatment Requirements

Project Implementation/Construction

- •Design-Build-Maintain Implementation
- •Public-private partnership (P³) between Ameresco and the City
- •General Contractor: AP Construction
- •16 Year Contract
- •ARRA funding made possible through P³

Project Benefits

- 90% of average electrical demand for plant
- 26,500 barrels of oil (foreign or other) annually saved
- Reduce CO₂
 emission by
- ~ 22,000 tons/year
- 4,833 cars removed from the roadways
- 5,390 Acres of Pine Forest planting

ACKNOWLEDGMENTS

Gene.DeStefano@aecom.com Julian.Chianelli@aecom.com