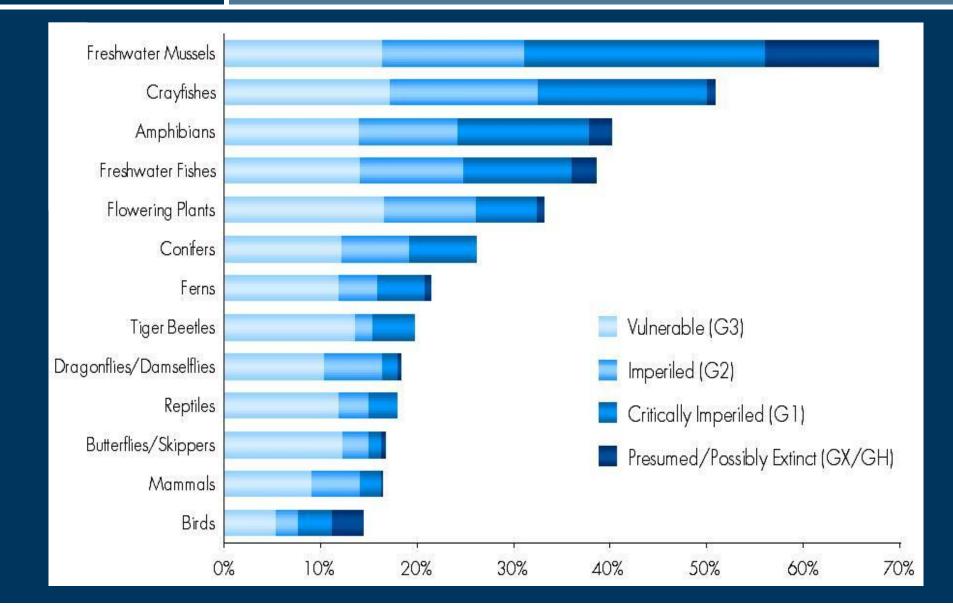

Defining Flow Needs for Pennsylvania's Riverine Ecosystems Tara Moberg

Wednesday, Nov. 7, 2012 – WRA of the Delaware Basin's 53RD Annual Conference

Presentation Summary

Riverine Scour and Shrubland CommunityUpper Delaware River© Gregory Podniesinski

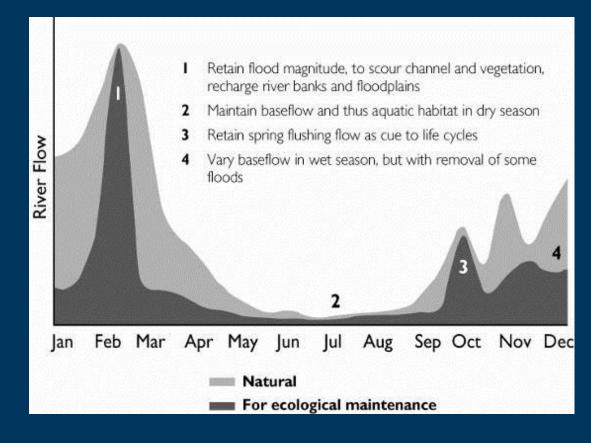
- Recent developments in instream flow management
- Overview of ecosystem flow studies in Pennsylvania's river basins



To conserve the lands and waters on which all life depends.

Proportion of U.S. Species at Risk

What are Ecosystem Flows?


The flow of water that sustains healthy ecosystems and the goods and services that humans derive from them.

TNC Ecosystem Flow Principles

The goal is *not* to create optimal conditions for all species all of the time; rather, adequate conditions *enough* of the time

Ecosystem Flow Prescriptions by River

Rivers for which environmental flows have been or are being prescribed

Ecological Limits of Hydrologic Alteration

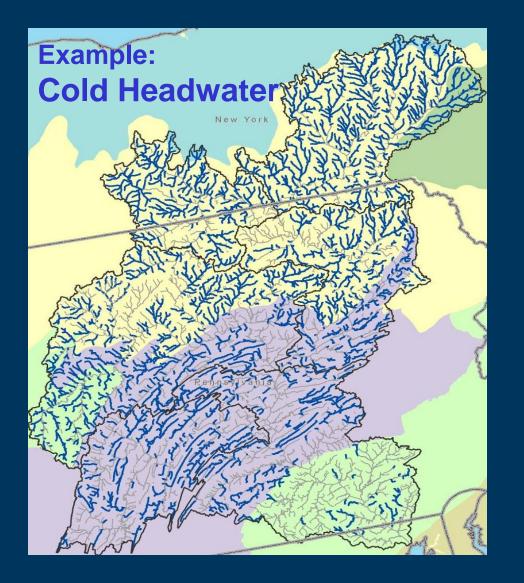
Headwaters Pond Run Creek Pike County

© George Gress

The Ecological Limits of Hydrologic Alteration (ELOHA, Poff et al. 2010)

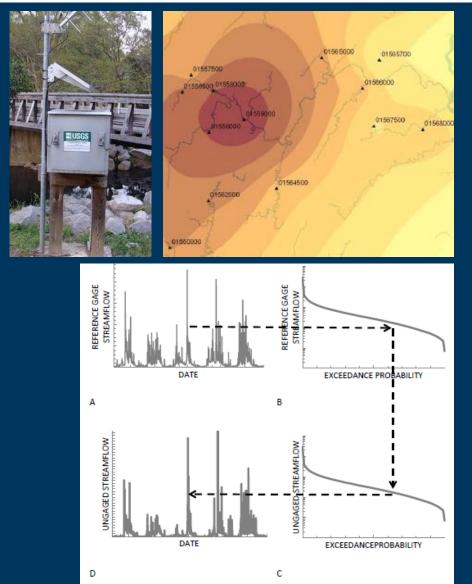
A framework for assessing environmental flow needs over broad geographic areas when sitespecific studies cannot be conducted for all rivers

Flow studies in Pennsylvania's basins

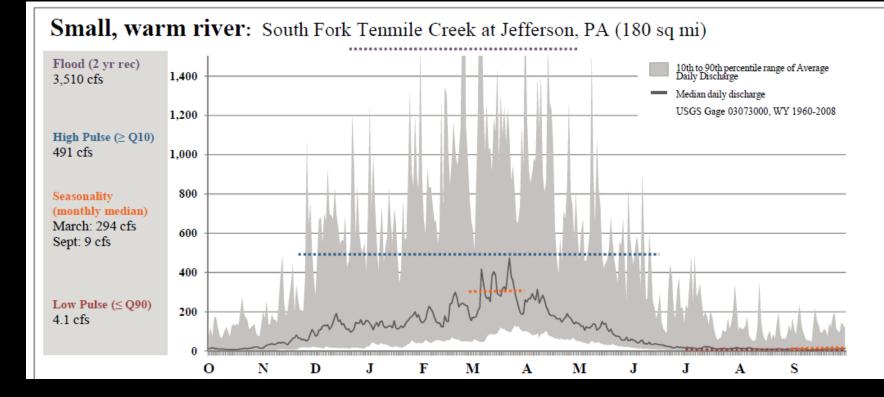

Objective:

develop <u>science-</u> <u>based</u> flow recommendations based on <u>existing</u> <u>information</u> that are <u>useful</u> to water managers.

Basin Study Questions

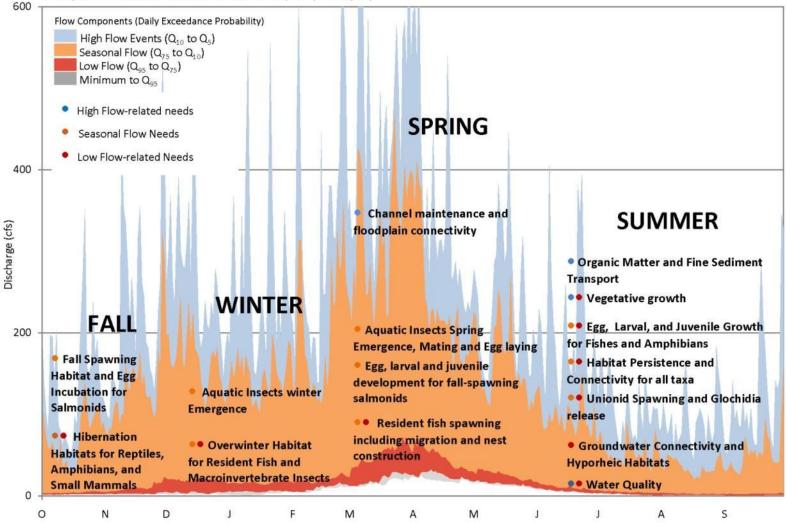


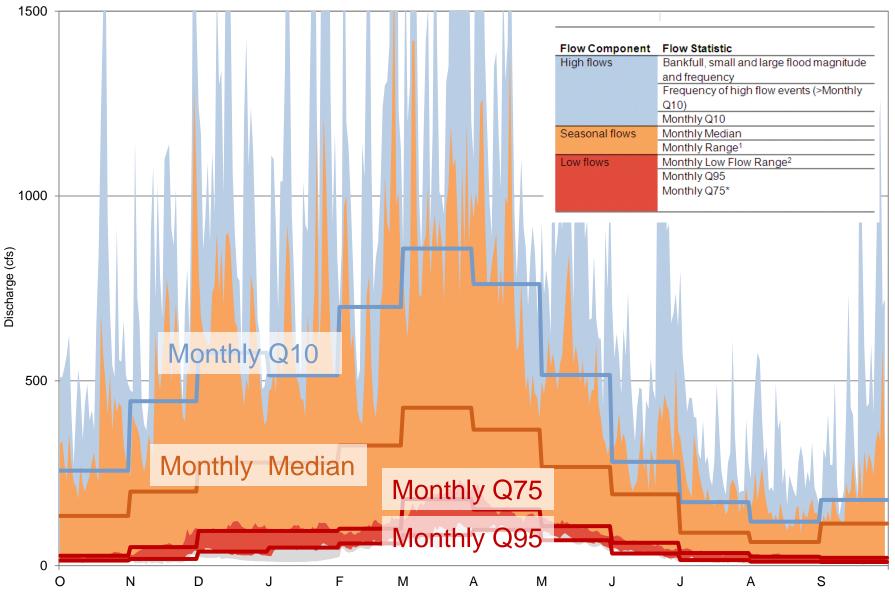
What are the variety of hydro-ecological settings (river types)?


Within each, how do flow conditions affect species and ecological processes throughout the year?

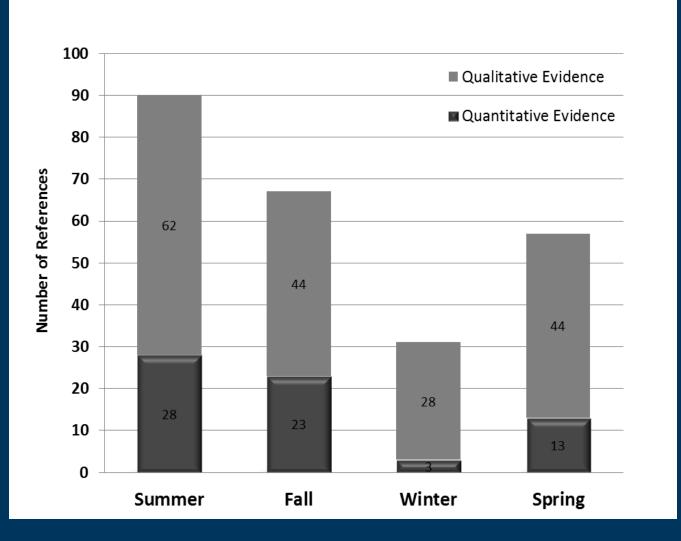


Characterizing hydrology for each setting

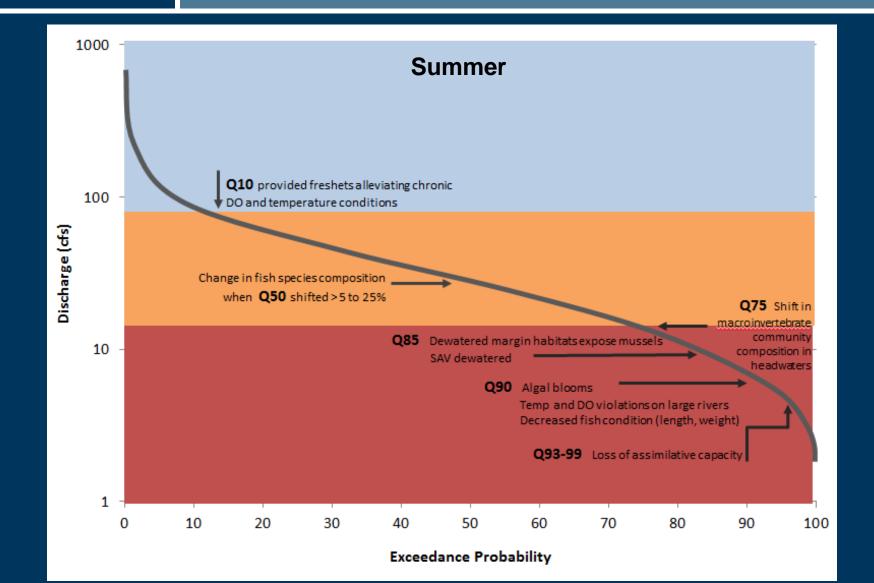

- Minimally altered stream gages
- USGS BaSE tool to estimate daily streamflow at ungaged locations
- TNC's Indicators of Hydrologic Alteration software


Flow Components and Needs: Cold and Cool Headwaters and Small Streams

Example: 01547700 Marsh Creek at Blanchard, PA (44.1 sq mi)


Flow Components and Flow Statistics

Example: 01555500 East Mahantango Creek near Dalmatia, PA (162 sq mi) - Warm headwater stream



Existing Data and Literature

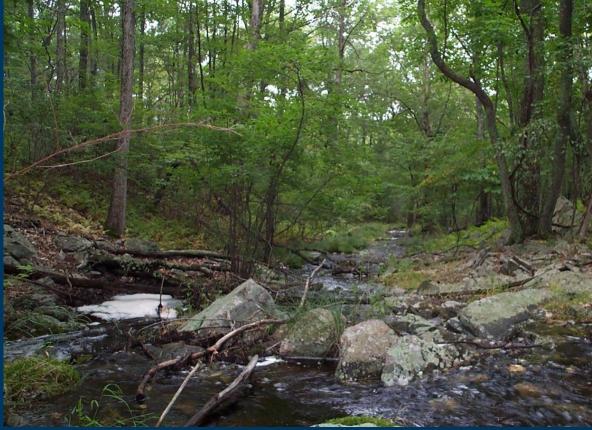
Existing Data and Literature

Season	Flow Component	Flow Statistic	Flov	w Recommendations	
			Headwater streams < 50 sq mi	Streams and small rivers (50 – 200 sq mi)	Major tributaries and mainstream (>200 sq mi)
Annual and Interannual Events	High Flows	Large flood	Maintain magnitude and frequency of annual Q0.05 (20-yr flood)	Same for all streams	Same for all streams
		Small flood	Maintain magnitude and frequency of annual Q0.2 (5-yr flood)	Same for all streams	Same for all streams
		Bankfull	Maintain magnitude and frequency of annual Q0.5 (Approx. 1 to 2-yr flood)	Same for all streams	Same for all streams
All Months	High flows	Monthly Q10	<10% change to magnitude of monthly Q10	Same for all streams	Same for all streams
	Seasonal flows	Monthly Median	Between 45 th and 55 th percentiles	Same for all streams	Same for all streams
		Monthly Range	≤ 20% change to area under curve between Q10 and Q75	Same for all streams	Same for all streams
	Low flows	Monthly Low Flow Range	No change to area under curve between Q75 and Q99	≤ 10% change to area under curve between Q75 and Q99	≤ 10% change to area under curve between Q75 and Q99
		Monthly Q75 Monthly Q95	No change	No change	No change
Fall	High flows	Frequency of events > Monthly Q10	NA	NA	1-5 events
Summer		Frequency of events > Monthly Q10	2-8 events	2-8 events	2-8 events

Table 5.1 Flow recommendations for the Susquehanna River ecosystem.

\bigcirc	less than 10% change OR Within
\bigcirc	10 to 20% change
\bigcirc	20 to 50% change
	more than 50% change OR Outside

How does a given policy support ecosystem flow recommendations?


What is the effect of withdrawing a specific amount of water each day?

What is the effect with a 20% ADF passby requirement?

		High	Seasonal	Seasonal	Low Flow	Flow Magnit
		Flows	Median	Range	Range	
	Statistic	Monthly	Monthly Median	Monthly Range	Monthly Q75 to	Monthly Q95
		Q10	Median of Monthly Medians	(Q75 to Q10)	Q99: Sheds > 50 sqmi	Sheds > 50 sq mi
	Flow	≤ 10%	Between the 45th	≤ 20% change to	≤ 10% change to	No Change
	Recommendation	change to	and 55th Percentiles	area under curve	area under curve	
		Q10		between Q10 and Q75	between Q75 and Q99	
		% change				
Scenarios	Month	to Q10	Within/Outside	% change to area	% change to area	Within/Outside
Headwater	Oct	0	•	•		•
188 sqm	Nov	0	•	•	0	•
5.35 mgd	Dec	0		•	0	
withdrawal - no min	Jan	0	•	•	0	
	Feb	0		•	0	
	Mar	0		•	•	
	Apr	•	•	•	•	
	May	•	•	•	0	
	Jun	•	•	•	0	•
	Jul	0		0	•	•
	Aug	0		0	•	•
	Sep	0		0		
Headwater	Oct					
188 sqm	Nov					
5.35 mgd 20% ADF passby	Dec Jan					
20% ADF passuy	Feb					
	Mar					
	Apr May					
	Jun					
	Jul					
	Aug					
	Sep	ĕ	ĕ	ĕ	ĕ	ŏ

Delaware River Basin Ecosystem Flow Study

Headwater stream, Pike County

© George Gress

- Funded by DRBC
- Technical study
- Project area
- Based on existing information
- Complete 2013
- WaterSmart

Thank you

Tara Moberg, tmoberg@tnc.org

Flow-sensitive groups and processes

Fishes

Cold headwater Slow spring fed Riffle-obligates Riffle-spawners Nest builders Potadromous Great river

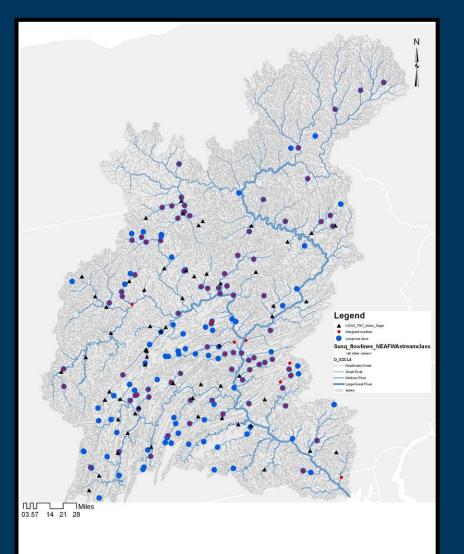
Mussels

Mod gradient, small river Moderate to swift Slow, low gradient Great rivers (mainstem)

Reptiles and Amphibians Aquatic lotic Semi-aquatic lotic

Riparian and floodplain habitat spp.

Floodplain and Aquatic Vegetation Submerged and emergent beds Riparian forest and shrub Low scour floodplain Scour-dependent floodplain Aquatic Insects and Crayfish Habitat associations Trophic traits Species assemblages Birds and Mammals Rely on stream-derived food and habitat


Water Quality

Floodplain and Channel Maintenance

Table X.	Long-term me	ream typ	es												
	Туре	Stream name	Drainage area				Me	edian N	lonthly	Strean	nflow (d	cfs)			
			sq mi	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov
Head	waters	North Fork Bens Creek at North Fork	3.5	7.3	6.4	7.5	13	11	7	3.6	2.2	1.7	1.4	1.8	4.9
		Clear Run near Buckstown, Pa.	3.7	5.4	5.1	6	12	9.2	5.5	2.7	1.3	0.8	0.6	0.9	3.6
		Lick Run at Hopwood, Pa.	3.8	6.4	5.6	7.2	11	9.4	5.4	2.2	1.0	0.7	0.5	0.9	3.7
		Abers Creek near Murrysville, Pa.	4.4	4.1	4	5.3	8.3	6.2	3.9	2.1	1.3	0.9	0.9	1.3	2.6
Creek	S	Little Pine Creek near Etna, Pa.	5.8	4.2	4.2	6	9.1	7	4.1	1.8	1.0	0.6	0.6	0.9	2.2
		Little Yellow Creek near Strongstown	7.4	12	11	13	23	18	10	5.4	3.0	2.1	2.0	2.7	8.4
		Big Run nr Sprankle Mills, Pa.	7.4	13	9.2	10	20	16	9.4	4.8	2.7	2.0	2.0	3.2	8.5
		Sevenmile Run near Rasselas, Pa.	7.8	13	9	9	18	20	12	5.3	2.4	1.9	1.6	4.8	12.0
		Poplar Run near Normalville, Pa.	9.3	18	16	19	33	27	15	5.7	2.7	1.7	1.8	2.6	13.0
	Cool-cold	Brush Run near Buffalo, PA	10	8	9.4	13	19	14	8.7	3.8	2.0	1.0	0.8	1.3	3.8
		Jackson Run near North Warren, Pa.	13	23	15	15	32	29	15	6.6	4.1	3.5	3.5	6.5	19
		Georges Creek at Smithfield, Pa.	16	19	19	25	35	29	16	6.4	3.4	2.1	1.7	2.6	9.6
		Montour Run at Scott Station	25	24	25	34	50	43	29	16	11	7.4	6.5	8.5	15
		Woodcock Creek at Blooming Valley, Pa.	31	51	37	40	72	63	35	17	9.5	7.4	7	14	37
Small	Rivers	French Creek near Wattsburg, Pa.	92	190	127	139	296	240	106	46	26	22	25	55	169
		Oswayo Creek at Shinglehouse, Pa.	99	147	98	97	218	243	125	60	33	21	18	30	109
	Clasistad	Little Shenango River at Greenville, Pa.	104	130	103	110	195	150	92	45	27	20	20	30	79
	Glaciated	Sugar Creek at Sugarcreek, Pa.	166	280	203	219	399	350	210	110	66	54	48	76	202
		Pymatuning Creek near Orangeville, Pa.	169	203	144	163	353	247	128	49	25	18	18	30	108
		Kinzua Creek near Guffey, Pa.	39	76	56	52	104	109	64	33	20	15	15	25	61
	Cool	Casselman River at Grantsville	63	105	105	118	198	155	95	45	23	16	12	18	65
	Cool	West Branch Clarion River at Wilcox, Pa.	63	121	83	76	174	185	106	52	31	24	21	36	100
		Laurel Hill Creek at Ursina, Pa.	121	235	210	233	418	341	199	89	49	35	30	44	176
		Deckers Creek at Morgantown	63	115	115	130	186	152	96	45	23	17	11	19	65
	Marm	Tenmile Creek near Clarksville, Pa	133	106	125	170	238	191	111	47	24	13	12	19	50
	Warm	Buffalo Creek near Freeport, Pa.	137	170	140	170	280	204	128	63	33	22	19	31	84
		South Fork Tenmile Creek at Jefferson, Pa	180	219	189	229	476	344	163	55	23	14	11	21	134
Mediu	m Tributaries	Tionesta Creek at Lynch, Pa	233	440	300	265	620	648	370	17/	100	79	68	125	3/11

Linking species with river types

Riffle-obligates – Margined madtom, longnose dace, central stoneroller, northern hog sucker, fantail darter Riffle-spawners– White

sucker, shorthead redhorse

How does the ecosystem depend on flow?

Selected more than 60 species (20 species groups) and 7 Physical and Chemical processes

• Fishes

illustrations by Ted Walke, PFBC

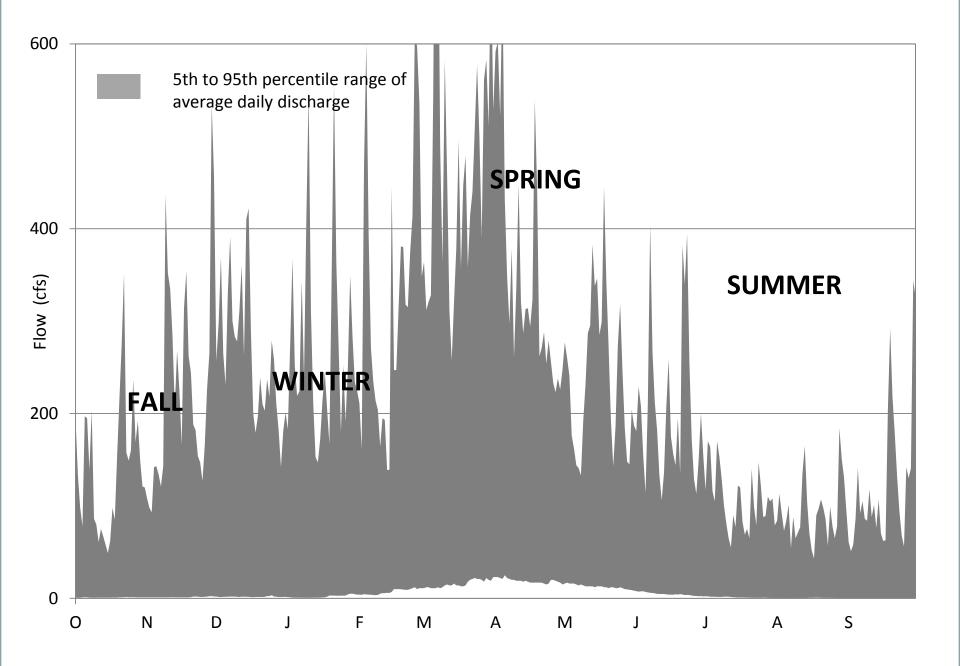
Cold headwater – brook trout, brown trout, Cottus spp

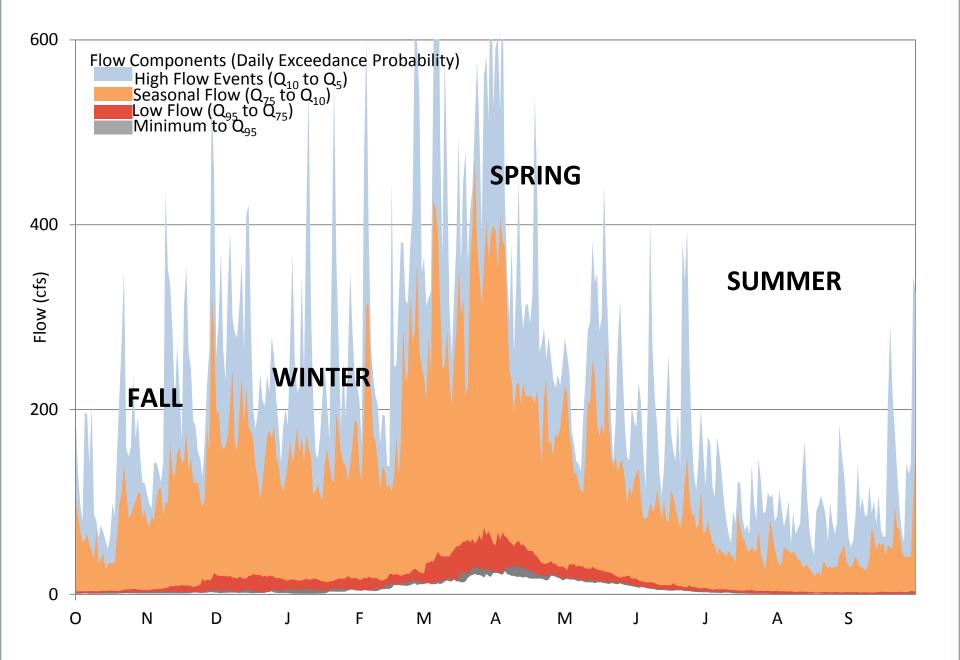
Riffle-obligates – Margined madtom, longnose dace, central stoneroller, fantail darter

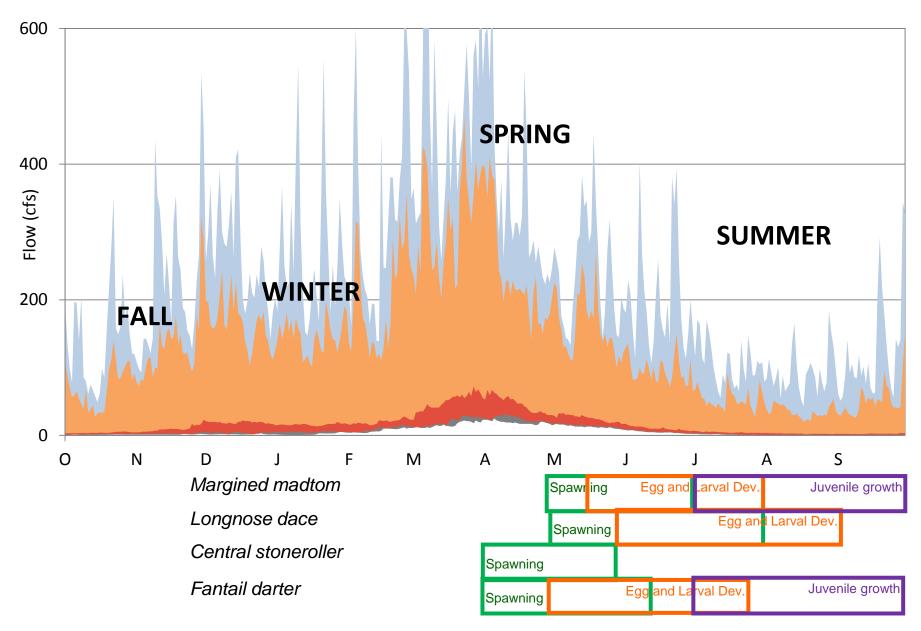
Riffle-associates – White sucker, northern hog sucker, shorthead redhorse

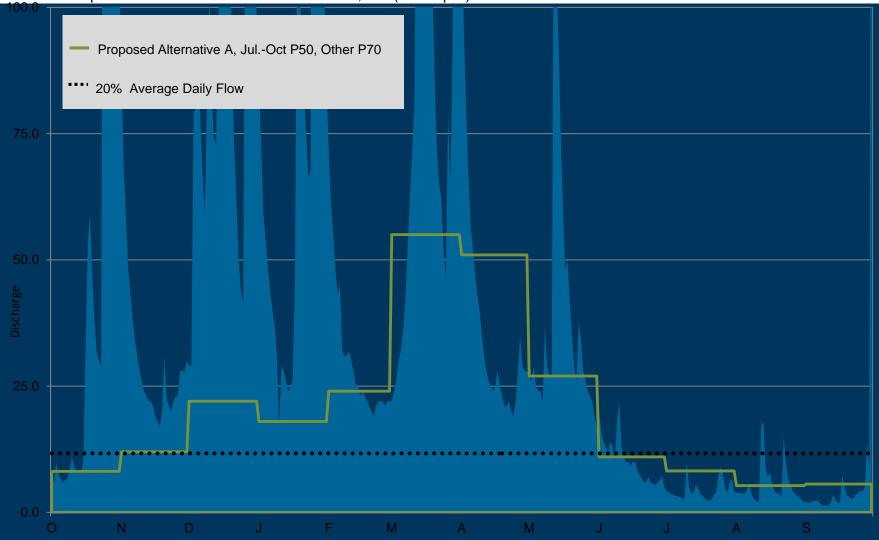
Nest-builders – Fallfish, creek chub, river chub, redbreast sunfish, smallmouth bass

Diadromous – American shad, alewife, American eel

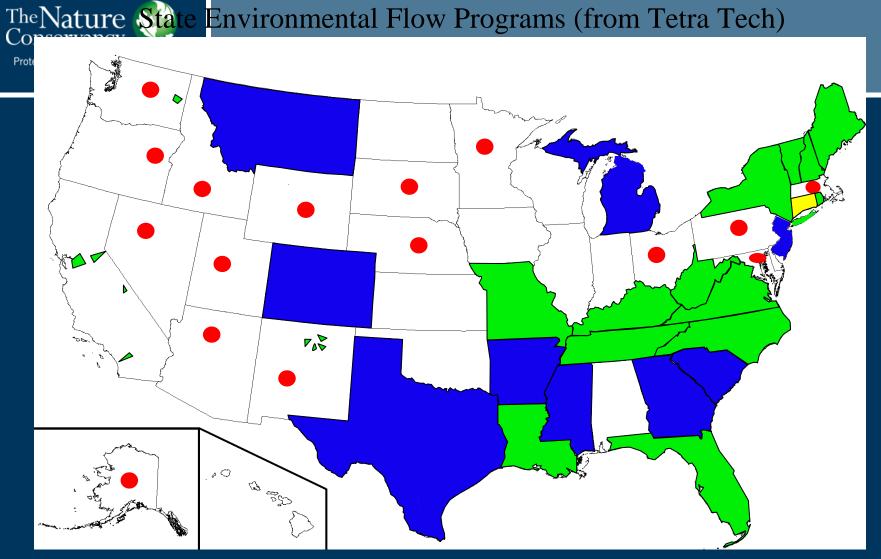

How does the ecosystem depend on flow?


- Represent taxa, communities, and habitats characteristic of basin stream types
- Group species with shared flowdependencies
- Capture range of traits
 - distribution mobility habitat associations feeding and spawning habits longevity


Photo by Western Pennsylvania Conservancy


Life history of riffle fishes

Protecting nation of the passby: Class I Aquatic Resource


Example: 01547700 Marsh Creek at Blanchard, PA (44.1 sq mi)

MONTH	AQUATIC RESOURCE CLASS 1	AQUATIC RESOURCE CLASS 2	AQUATIC RESOURCE CLASS 3 Monthly P90		
January	Monthly P70	Monthly P80			
February	Monthly P70	Monthly P80	Monthly P90		
March	Monthly P70	Monthly P80	Monthly P90		
April	Monthly P70	Monthly P80	Monthly P90		
May	Monthly P70	Monthly P80	Monthly P90		
June	Monthly P70	Monthly P80	Monthly P90		
July	Monthly P50	Monthly P70	Monthly P85		
August	Monthly P50	Monthly P70	Monthly P85		
September	Monthly P50	Monthly P70	Monthly P85		
October	Monthly P50	Monthly P70	Monthly P85		
November	Monthly P70	Monthly P80	Monthly P90		
December	Monthly P70	Monthly P80	Monthly P90		

Table 2. Monthly Passby Flow/Conservation Release Schedule

http://www.srbc.net/pubinfo/businessmeeting.htm

- Green States/Tribes = Narrative or Numeric Water Quality Standards that address Flow
- Yellow States/Tribes = proposing Ecological Flow language for Water Quality Standards
- Dark Blue States = statewide Programs include Ecological Flows, not in CWA Programs
- Red circle = States that have Ecological Flow projects underway



TNC Environmental Flow Principles

Restore and maintain the natural hydrologic regime and its natural variability to the greatest extent possible

