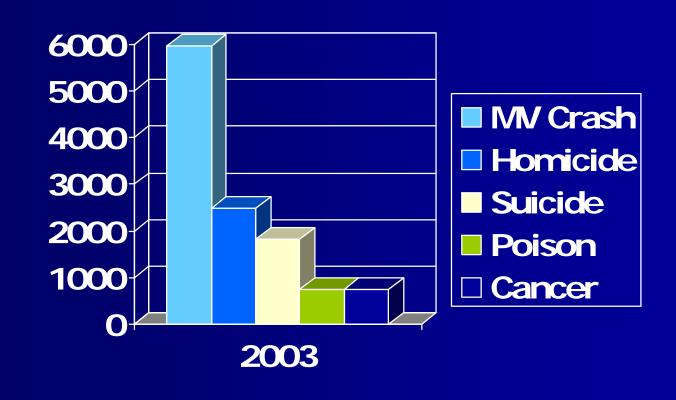
Teen Driving and Motor Vehicle Crashes

Crash Statistics

- 2006 Over 43,000 Killed In Crashes Nationwide
- 2006 Over 770 Killed In Crashes In NJ
- 2006 Over 300,000 Crashes Reported In NJ


Cause of Death Age 16-20

NHTSA 2003

- #1 MV Traffic Crashes (5,988)
- #2 Homicide (2,489)
- #3 Suicide (1,813)
- #4 Accidental Poisoning (752)
- #5 Cancer (749)

Cause of Death Age 16-20

NHTSA 2003

MV Crashes #1 Cause of Death for Youths 16-20

- Approx 1/3 Of All Deaths In This Age Group.
- More Than #2 #5 Combined
- Why?
 - Inexperience
 - Easily Distracted
 - Driver Inattention #1 Cause Of Fatal Collisions In NJ

What Can We Do?

The Three E's

- Engineering
- Enforcement
- Education

Avoiding Crashes

- We Must Know Our Limitations
- Human Limitations
- Vehicle Limitations

Human Limitations

Physical Limitations


Mental Limitations

Three Collisions

- Vehicle Collision
 - Initial Crash
- Human Collision
 - Body Into Interior Of Vehicle
- Internal Collision
 - Internal Injuries/Lacerations
 - Transection of Aorta
 - Brain Injuries

Cranial Cavity

Three Collisions

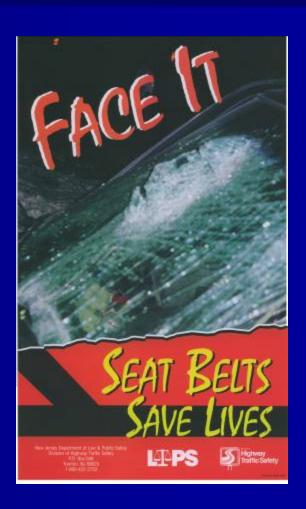
Three Collisions

- Speed Kills?
 - Sudden Stop
 - Tremendous Forces
 - Multiply Weight By Speed
 - Delta V (Velocity Change)
 - Occupant Restraints Increase Time
 During Delta V

Reducing Forces of the Human Collision

- Occupant Restraints
- Seat Belts
- Air Bags

Occupant Restraints

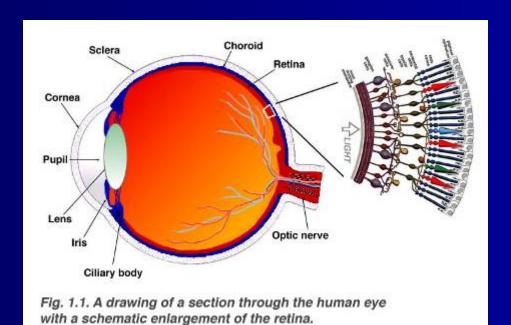

Reducing The Effect Of The Human Collision

- Decrease Injury By Increasing Delta V Time
- Hold Occupants In Place During Collision
- Unrestrained Occupants Act As Human Bullets

Occupant Restraints

Reducing The Effect Of The Human Collision

- Lap Belt
 - Hold Occupant In Position
- Shoulder Harness
 - Stops Jack Knife Effect
- Air Bag
 - Prevents Head Strikes


Perception And Reaction

- What Is It?
 - Time Needed To Perceive And React
 - No Instant Reactions
- How Long?
 - 1.5 Seconds Average
 - Daytime
 - Experienced Drivers

Visual Acuity

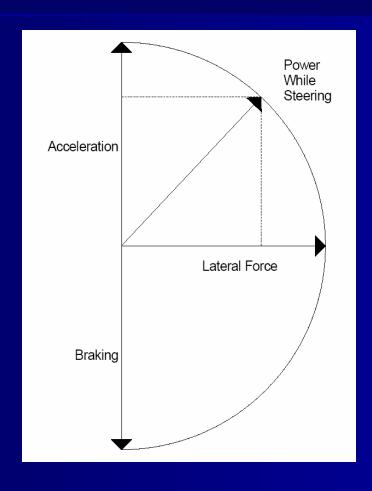
- Eye Function
 - Rods Vs Cones
 - Rods
 - Are More Sensitive
 - Not Sensitive To Color
 - Cones
 - Sensitive to Color
 - Fovea Centralis (All Cones)

Visual Acuity

Conspicuity At Night

- Reduced Lighting
 - Shades Of Grey
 - Over Driving Headlights
 - Pedestrian Visibility

Vehicle Limitations


- Traction
- Braking
- Lateral Acceleration (Cornering)

Vehicle Handling

- Friction And Handling
 - Friction Circle
- Straight Roads
- Curves
 - Inertial Forces
 - Critical Curve Speed

Friction Circle

Limitations

- Human
- Vehicle (Mechanical)
- Driving Is A Learned Behavior
- New Drivers Need More Time To React
- More Time
 - Increased Following Distances
 - Reduced Speeds

Perception And Reaction

- What Is It?
 - Time Needed To Perceive And React
 - No Instant Reactions
- How Long?
 - 1.5 Seconds Average
 - Daytime
 - Experienced Drivers

Perception And Reaction

- More Time Needed For:
 - Night
 - Inexperienced Drivers
 - Adverse Weather
- Following Distance
 - 2 Seconds
 - More For New Drivers

- Speed Is A Contributing Factor In Most Serious And Fatal Crashes
- Speed Increases Stopping Distance
 - Perception/Reaction
 - Braking
- Speed Decreases Percep/React Time
- Speed + Reduced Visibility = Bad
 - Night, Rain, Snow, Fog

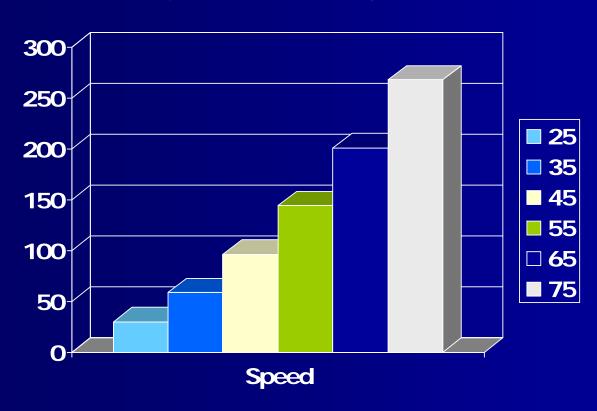
- How Fast Are We Really Going
- MPH or FPS
- MPH * 1.466 = FPS

- MPH vs. FPS
- \blacksquare 25mph = 36.65fps
- \blacksquare 35mph = 51.31fps
- 45mph = 65.97fps
- 55mph = 80.63fps
- 65mph = 95.29fps
- 75mph = 109.95fps

- Perception/Reaction Distance
- Speed * 1.466 * 1.5 sec
- 25mph 54.9 Feet
- 35mph 76.9 Feet
- 45mph 98.9 Feet
- 55mph 120.9 Feet
- 65mph 142.9 Feet
- 75mph 164.9 Feet

- Braking Distance
- Dependent on Speed and Surface Friction
- Lower Friction Increases Braking Distance
- Dry Roads Have Highest Friction

- Roadway Friction Values (Approx)
- Dry Pavement f=0.6 to 0.8
- Wet Pavement f=0.45 to 0.65
- Snow Covered f=0.3 to 0.55
- Ice Covered f=0.05 to 0.2

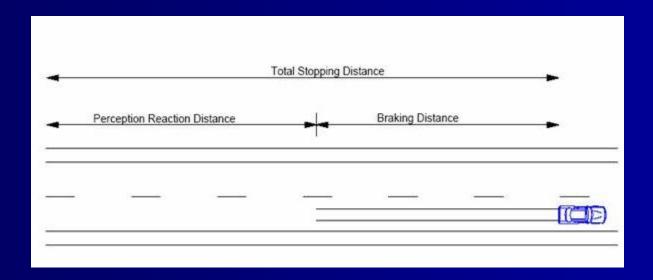


Braking Distance Formula

$$D = \frac{S^2}{30f}$$

- Dry Pavement Braking (f=0.7)
- 25mph 29.7 Feet
- 35mph 58.3 Feet
- 45mph 96.4 Feet
- 55mph 144 Feet
- 65mph 201.1 Feet
- 75mph 267.8 Feet

Dry Pavement Braking (f=0.7)



- Slide to Stop
- Different Surfaces at 45mph

■ Ice
$$-337.5$$
 Feet (f=0.2)

Total Stopping Distance

- Combine
 - Perception/Reaction Distance
 - Braking Distance

Stopping Distance

Dry Pavement

- Percep/React + Braking=Total Stop D
- 25mph 84.6 Feet
- 35mph 135.2 Feet
- 45mph 195.3 Feet
- 55mph 264.9 Feet
- 65mph 344 Feet
- 75mph 432.7 Feet

Big Brother Is Watching

- Crash Reconstruction
- Calculating Speed From:
 - Tire Marks
 - Crush Damage
 - Momentum Analysis
 - Computer Modeling
- Air Bag Module
- Car Chip

$$S = \sqrt{30dfn}$$

$$S = 3.86\sqrt{Rf}$$

$$R = \frac{C^2}{8M} + \frac{M}{2}$$

$$V_{2} = \frac{W_{1}V_{3}Sin\theta}{W_{2}Sin\varphi} + \frac{V_{4}Sin\phi}{Sin\varphi}$$

Legal Consequences

- Tickets
- Suspension
- Increased Insurance Costs
- Criminal Consequences
 - Accident While Suspended
 - Vehicular Assault
 - Vehicular Homicide

In 2005 Over 43,200 People Were Killed In Motor Vehicle Collisions Nationwide