

State of New Jersey Department of Transportation

GENERAL DESIGN CRITERIA AND STANDARD DRAWINGS FOR OVERHEAD AND CANTILEVER SIGN SUPPORT STRUCTURES

GENERAL NOTES

A. DESIGN CRITERIA

DESIGN SPECIFICATIONS

2001 AASHTO STANDARD SPECIFICATIONS FOR STRUCTURAL SUPPORTS FOR HIGHWAY SIGNS, LUMINAIRES AND TRAFFIC SIGNALS WITH CURRENT INTERIM.

NJDOT BRIDGES AND STRUCTURES DESIGN MANUAL, CURRENT EDITION.

DESIGN WIND VELOCITY ---- 80 MPH; (ABOVE AASHTO SPECIFICATIONS APPENDIX C) DESIGN ICE LOAD ----- 3 PSF

ALL STRUCTURAL DETAILS HAVE BEEN ANALYZED AGAINST FATIGUE CATEGORY HIMPORTANCE FACTOR VALUES AS DESIGNATED IN THE ABOVE AASHTO SPECIFICATIONS.

VARIABLE MESSAGE SIGN (VMS) STRUCTURES

REFER TO THE NJDOT BRIDGES AND STRUCTURES DESIGN MANUAL WHEN FURNISHING SUPPORT STRUCTURES FOR VARIABLE MESSAGE SIGNS (VMS).

CONCRETE DESIGN STRESSES

SPECIFIED COMPRESSIVE STRENGTH (f'c) (CLASS B) ---- 3,000 PSI EXTREME FIBER COMPRESSIVE STRESS (fc) ----- 1,200 PSI

REINFORCEMENT STEEL DESIGN STRESS

YIELD STRENGTH (fy) (A615, GRADE 60) ---- 60 KSI TENSILE STRESS (fs)

STRUCTURAL STEEL DESIGN STRENGTHS

YIELD STRENGTH (Fy): PIPES (A53, TYPE S OR TYPE E, GRADE B) --- 35 KSI (MIN.) * (API 5L, GRADE B) ---- REFER TO API SPECIFICATIONS

* FABRICATORS ARE ADVISED THAT REPAIRS TO THE MATERIALS WILL NOT BE PERMITTED, IF TEARING. CRACKING OR ANY DEFECT OCCURS, THE MATERIAL WILL BE REQUIRED TO BE REPLACED.

FOUNDATIONS

MAXIMUM FOUNDATION DESIGN BEARING PRESSURE ---- 2.5 KSF

FOOTINGS ARE DESIGNED SUCH THAT A MINIMUM OF 75 PERCENT OF THE FOOTING IS ALWAYS IN CONTACT: A MAXIMUM OF 25 PERCENT OF THE FOOTING IS IN UPLIFT.

BEARING PILES SHALL BE CAST-IN-PLACE CONCRETE PILES WITH A MINIMUM BEARING CAPACITY EQUAL TO 50 KIPS.

REFER TO THE NJDOT BRIDGES AND STRUCTURES DESIGN MANUAL FOR ALTERNATE FOUNDATION DESIGN CRITERIA.

PERMANENT CAMBER EQUAL TO L/1000 HAS BEEN PROVIDED IN ADDITION TO THE DEAD LOAD CAMBER. B. MATERIALS

I. STEEL

STEEL PIPE SHALL BE CERTIFIED BY MILL TEST REPORT TO MEET ASTM SPECIFICATION A53, TYPE E OR S, GRADE B WITH THE EXCEPTION THAT APISL, GRADE B MAY BE USED WHEN THE SPECIFIED WALL THICKNESS IS GREATER THAN 1/2" ONLY ELECTRICAL RESISTANCE WELDED (ERW) MANUFACTURED SINGLE SEAM PIPE IS PERMITTED HOWEVER, WHEN THE REQUIRED PIPE SIZE IS GREATER THAN 24", DOUBLE SEAM PIPE MAY BE USED. A MILL TEST REPORT MUST BE PROVIDED, CERTIFIED AND SIGNED BY THE PIPE MANUFACTURER, CONTAINING PHYSICAL AND CHEMICAL PROPERTIES AND THE MANUFACTURING PROCESS USED TO PRODUCE THE PIPE.

ALL OTHER STEEL SHALL CONFORM TO ASTM SPECIFICATION A709 (AASHTO M270) GRADE 36 OR GRADE 50. ALL SPECIFIED STEEL PLATES SHALL MEET SUPPLEMENTARY REQUIREMENTS FOR NOTCH TOUGHNESS (CHARPY TESTING, ZONE #2).

UPON COMPLETION OF FABRICATION, THE FABRICATOR SHALL PROVIDE A NOTARIZED CERTIFICATION OF COMPLIANCE AS PER THE REQUIREMENT OF THE NUDOT STANDARD SPECIFICATIONS FOR ROAD AND BRIDGE CONSTRUCTION, INCLUDING A LEGIBLE COPY OF ALL MILL TEST REPORTS FOR MATERIALS INCORPORATED INTO THE WORK ALSO, A COPY OF QC REPORTS SHALL BE PROVIED.

STEEL ANCHOR BOLTS, NUTS AND WASHERS SHALL CONFORM TO ASTM SPECIFICATION F1554, GRADE 36 OR 55. THE ANCHOR BOLTS SHALL BE HOT DIP GALVANIZED AS PER ASTM SPECIFICATION A153, CLASS C.

CHORD SPLICE ASSEMBLY FASTENERS SHALL BE HIGH STRENGTH STEEL BOLTS CONFORMING TO ASTM SPECIFICATION A325 AND SHALL BE HOT DIP GALVANIZED AS PER ASTM SPECIFICATION A153, CLASS C. ALL OTHER FASTENERS SHALL BE STAINLESS STEEL CONFORMING TO ASTM SPECIFICATION A320, GRADE B8, CLASS 1.

CAPS FOR THE ENDS OF CHORDS AND TOPS OF POSTS SHALL BE STEEL CONFORMING TO ASTM SPECIFICATION A709 (AASHTO M270) GRADE 36 OR 50 AND SHALL BE HOT DIP GALVANIZED IN ACCORDANCE WITH ASTM SPECIFICATION A123.

WELDING OF STEEL SHALL BE AS SPECIFIED IN AWS D1.1, CURRENT EDITION, AND IN THE NJDOT STANDARD SPECIFICATIONS.

AFTER COMPLETE FABRICATION, EACH STEEL SECTION SHALL BE HOT DIP GALVANIZED ACCORDING TO THE REQUIREMENTS OF ASTM SPECIFICATION A123, AND AS MODIFIED BY THE NJDOT STANDARD SPECIFICATIONS. A SINGLE DIP GALVANIZING PROCESS IS PREFERRED IF SIZE PERMITS.

REFER TO THE NJDOT STANDARD SPECIFICATIONS FOR CRITERIA ON FURNISHING MATERIALS OTHER THAN SPECIFIED ABOVE.

ALUMINUM SHALL CONFORM TO THE ASTM SPECIFICATIONS AND ALLOYS LISTED BELOW:

APPLICATION	ASTM SPECIFICATION	ASTM ALLOY
ROLLED OR EXTRUDED SHAPES	B308	6061 - T6
PLATES	B209	6061 - T6
DRAWN SEAMLESS TUBES	B210	6061 - T6
EXTRUDED TUBES	B221	6061 - T6

WELDING OF ALUMINUM SHALL BE AS SPECIFIED IN AWS D1.2, CURRENT EDITION, AND IN THE NJDOT STANDARD SPECIFICATIONS.

III. REINFORCEMENT STEEL

ALL REINFORCEMENT STEEL SHALL BE ASTM A615, GRADE 60.

IV. CONCRETE

ALL CONCRETE SHALL BE "CLASS B" AS DEFINED IN THE NJDOT STANDRAD SPECIFICATIONS, UNLESS OTHERWISE SPECIFIED BY THE DESIGNER.

V. SIGN LIGHTING

WHEN NECESSARY, AN APPROVED SIGN LIGHTING SYSTEM MAY BE USED AND THE DETAILS OF THE SYSTEM SHALL BE PROVIDED WITH THE WORKING DRAWING SUBMISSION N.IDOT TRAFFIC SIGNAL AND SAFETY ENGINEERING SHOULD BE CONTACTED FOR REQUIREMENTS REGARDING THE PROVISION OF SIGN LIGHTING OR REFLECTORIZED SIGN PANELS ON PROJECT TO PROJECT BASIS.

VI. SIGN PANEL AND LIGHTING SYSTEM SUPPORTS

SIGN HANGERS SHALL BE ALUMINUM OR STEEL. LUMINAIRE SUPPORTS SHALL BE ALUMINUM OR STEEL THE STEEL SHALL CONFORM TO ASTM A709 GRADE 36 OR GRADE 50 AND SHALL BE HOT DIP GALVANIZED IN ACCORDANCE WITH ASTM SPECIFICATION A123. STEEL SURFACES SHALL BE PREVENTED FROM COMING INTO CONTACT WITH ALUMINUM SURFACES BY MEANS OF APPROVED PADS PLACED BETWEEN THE DISSIMILAR METALS. PADS SHALL BE STAINLESS STEEL CONFORMING TO ASTM SPECIFICATION A240 TYPE 304 OR APPROVED EQUAL CONNECTING U BOLTS SHALL BE STAINLESS STEEL CONFORMING TO THE NJDOT STANDARD SPECIFICATIONS INSTALLATION OF SIGN LIGHTING SYSTEM SHALL BE ACCORDING TO THE MANUFACTURER'S SPECIFICATIONS.

THE PROVISION OF MAINTENANCE WALKWAYS IS NOT REQUIRED.

INSTRUCTIONS FOR DESIGNERS

- STEP #1: PREPARE A SIGN SUPPORT LOCATION PLAN AND ELEVATION VIEW FOR EACH STRUCTURE.
- STEP #2: ENTER THE SIGN SUPPORT NUMBER AND STATION IN THE SCHEDULE OF STRUCTURES ON SIGN STRUCTURE DRG. OH-D2 OF THE CONTRACT PLANS.
- STEP #3: DETERMINE THE TRUSS SPAN LENGTH AND HEIGHT OF THE STRUCTURE USING SIGN STRUCTURE DRG. OH-G2. RECORD THE ACTUAL TRUSS SPAN LENGTH IN THE SCHEDULE OF STRUCTURES ON SIGN STRUCTURE DRG. OH-D2 OF THE CONTRACT PLANS, ROUND THIS NUMBER TO THE NEXT HIGHER LISTED SPAN LENGTH IF THE TRUSS SPAN LENGTH IS OVER 165'-0". PROCEED TO STEP #17.
- STEP #4: DETERMINE THE SIGN DESIGN LENGTH USING SIGN STRUCTURE DRG. OH-G2. DIVIDE THE SIGN DESIGN LENGTH BY THE TRUSS SPAN LENGTH DETERMINED IN STEP #3 TO OBTAIN THE PERCENT SIGN DESIGN LENGTH. USE THE NEXT HIGHER PERCENT FROM THOSE LISTED (40%, 60%, 70%, OR 80%). IF THE PERCENT IS MORE THAN 80, PROCEED TO STEP #5. OTHERWISE, SKIP TO STEP #6.
- STEP #5: TO SELECT A STANDARD DESIGN, DIVIDE THE SIGN DESIGN LENGTH BY 80% AND ROUND THIS NUMBER TO THE NEXT HIGHER LISTED SPAN LENGTH IF THE NUMBER IS LESS THAN 165'-0', RETURN TO STEP #4. OTHERWISE, PROCEED TO STEP #17.
- STEP #6: HAVING OBTAINED THE TRUSS SPAN LENGTH (FROM STEP #3 OR STEP #5) AND THE PERCENT SIGN DESIGN LENGTH (FROM STEP #4), SELECT THE TRUSS SIZE AND THE TRUSS ELEMENT SIZES (I.E., CHORDS, DIAGONALS, AND STRUTS) USING THE APPROPRIATE DESIGN TABLES ON SIGN STRUCTURE DRGS. OH-G3 AND OH-G4. RECORD THE DATA IN THE SCHEDULE OF STRUCTURES ON SIGN STRUCTURE DRGS. OH-D2 OF THE CONTRACT PLANS.
- WITH THE TRUSS SPAN LENGTH KNOWN DETERMINE THE MAXIMUM CAMBER REQUIRED FOR THE TRUSS FROM THE CAMBER TABLE SHOWN ON SIGN STRUCTURE DRG. OH-G3. RECORD THIS CAMBER IN THE SCHEDULE OF STRUCTURES ON SIGN STRUCTURE DRG. OH-D2 OF THE CONTRACT DRAWINGS.
- STEP #8: WITH THE HEIGHT OF THE STRUCTURE OBTAINED IN STEP #3 AND USING THE ELEVATION OF THE BOTTOM OF BASE PLATE, DETERMINE THE ELEVATION OF THE CENTER LINE OF THE TRUSS AND THE DESIGN HEIGHT OF THE TOWERS. IF THE TOWERS ARE MORE THAN 40'-0", SKIP TO STEP #17. OTHERWISE, SELECT THE NEXT HIGHER NUMBER FROM THOSE LISTED (25, 30, OR 40 FEET). USING THE SAME TABLE USED IN STEP #6, SELECT THE SIZES OF THE TOWER ELEMENTS (I.E., SHAFTS, DIAGONALS, AND STRUTS). RECORD THE DATA IN THE SCHEDULE OF STRUCTURES ON SIGN STRUCTURE DRG. OH-D2 OF THE CONTRACT DRAWINGS.
- STEP #9: CHECK AVAILABILITY OF SHAPES SELECTED IN STEPS #6 AND #8.

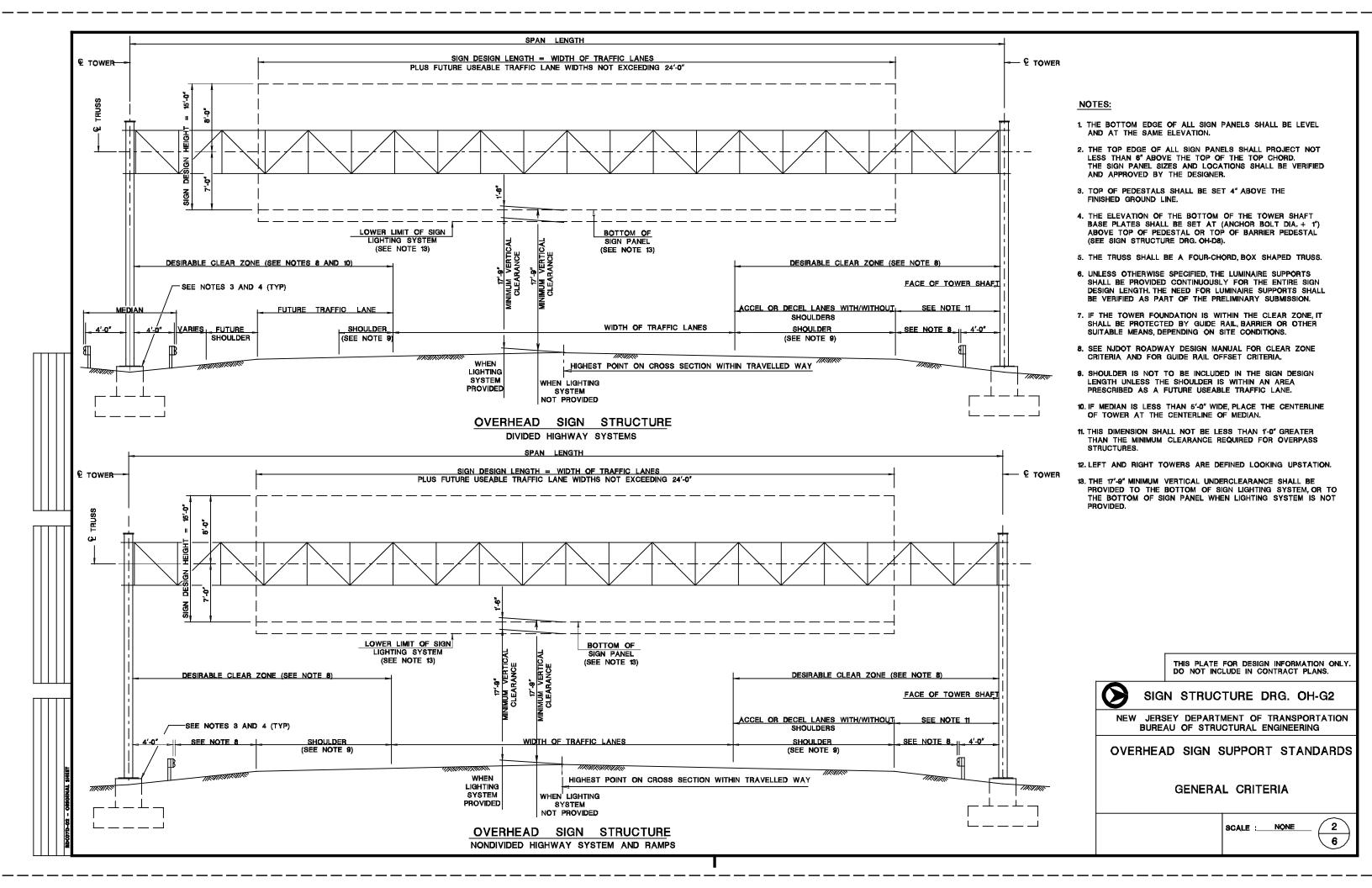
- STEP #10: USING SOIL TEST AND SOIL BORING INFORMATION, DETERMINE THE ALLOWABLE SOIL PRESSURE AND THE REQUIRED DEPTH OF FOOTINGS.
- STEP #11: DETERMINE THE PEDESTAL HEIGHT. IF THE PEDESTAL HEIGHT IS BETWEEN 4'-0" AND 6'-0", PROCEED TO STEP #12. OTHERWISE, SKIP TO STEP #17. THE PREFERRED PEDESTAL HEIGHT OF 4'-6' IS TO BE USED WHENEVER POSSIBLE, WHEN USING A BARRIER PEDESTAL, THE "COVERED" HEIGHT MUST BE 3'-0". OTHERWISE, SKIP TO STEP # 17
- STEP #12: DETERMINE THE REQUIRED FOOTING SIZES USING THE DESIGN TABLES ON SIGN STRUCTURE DRGS. OH-G3 AND OH-G4. RECORD THE DATA IN THE SIGN SUPPORT FOUNDATION TABLE ON SIGN STRUCTURE DRG. OH-D3 OF THE CONTRACT PLANS.
- STEP #13: DETERMINE THE REQUIRED FOOTING DESIGN DATA USING SIGN STRUCTURE DRG. OH-96. RECORD THIS DATA IN THE SIGN SUPPORT FOUNDATION TABLE ON SIGN STRUCTURE DRG. OH-D3 OF THE CONTRACT PLANS. IF THE ALLOWABLE SOIL PRESSURE IS GREATER THAN 2.5 KSF, SKIP TO STEP #15. OTHERWISE, PROCEED TO STEP #14.
- STEP #14: SELECT THE NUMBER OF CAST-IN-PLACE CONCRETE PILES NEEDED TO SUPPORT THE STRUCTURE USING SIGN STRUCTURE DRG. OH-GG. RECORD THE DATA IN THE SIGN SUPPORT FOUNDATION TABLE ON SIGN STRUCTURE DRG. OH-D3 OF THE CONTRACT PLANS.
- STEP #15: DETERMINE WHETHER A PEDESTAL OR BARRIER PEDESTAL IS TO BE USED FOR THE FOUNDATION. SELECT ALL PEDESTAL OR BARRIER PEDESTAL DATA FROM SIGN STRUCTURE DRG. OH-G5. RECORD THE DATA IN THE SIGN SUPPORT FOUNDATION TABLE ON SIGN STRUCTURE DRG. OH-D3 OF THE CONTRACT PLANS.
- STEP #18: THE DESIGN OF THE OVERHEAD SIGN SUPPORT STRUCTURE IS COMPLETE DISREGARD STEP #17.
- STEP #17: THE PARAMETERS OF THE SIGN SUPPORT STRUCTURE EXCEED THE RESTRICTIONS RELATED TO THESE STANDARD DESIGN TABLES. DESIGN THE SIGN SUPPORT STRUCTURE ON AN INDIVIDUAL BASIS.

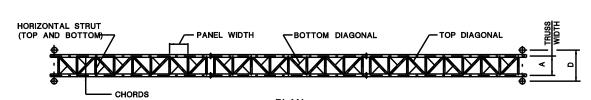
	INDEX OF DRAWINGS
DRG. NO.	DESCRIPTION
OH-G1	GENERAL INFORMATION
OH-G2	GENERAL CRITERIA
OH-G3	DESIGN TABLES - STEEL TRUSSES AND STEEL TOWERS (SPAN LENGTH 45' TO 75')
OH-G4	DESIGN TABLES - STEEL TRUSSES AND STEEL TOWERS (SPAN LENGTH 85' TO 165')
OH-G5	PEDESTAL AND BARRIER PEDESTAL DESIGN TABLES AND DETAILS
OH-G6	FOOTING DESIGN TABLES AND DETAILS

THIS PLATE FOR DESIGN INFORMATION ONLY. DO NOT INCLUDE IN CONTRACT PLANS.

SIGN STRUCTURE DRG. OH-G1

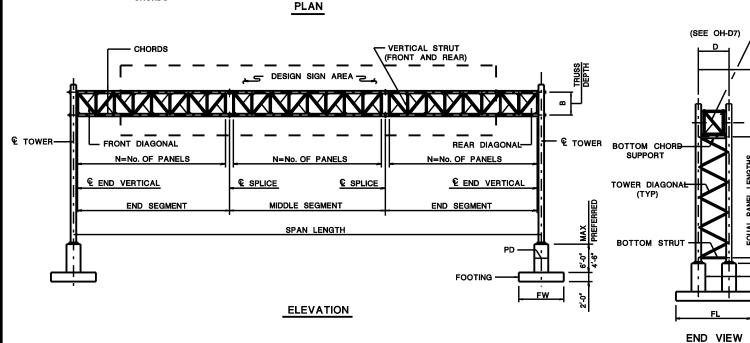
NEW JERSEY DEPARTMENT OF TRANSPORTATION BUREAU OF STRUCTURAL ENGINEERING


OVERHEAD SIGN SUPPORT STANDARDS


GENERAL INFORMATION

SCALE :____NONE

- 1. THE NUMBER OF SPLICES AND PANELS SHOWN IN THE TABLE ARE OPTIONAL ONE OR MORE SPLICES IN THE TRUSS MAY BE ADDED OR ELIMINATED AT THE OPTION OF THE FABRICATOR. THE FABRICATOR MUST MAINTAIN A TRUSS UNIT LENGTH WHICH CAN BE GALVANIZED IN ONE PIECE. A MINIMUM OF ONE SPLICE IS REQUIRED FOR OBTAINING CAMBER.
- 2. END STRUTS ARE DEFINED AS THE TWO HORIZONTAL AND TWO VERTICAL STRUTS LOCATED IMMEDIATELY ADJACENT TO THE TOWERS (SEE DRG. OH-D5).


CROSS BRACING-ALTERNATING IN DIRECTION AT MAXIMUM SPACING

OF 3 PANEL LENGTHS

© TOWER SHAFT

PEDEST

SIGN DESIGN LENGTH X 100 3. % SIGN LENGTH = SPAN LENGTH

€ TRUSS		145	155	155
		155	165	165
_				
	(CAN	1 B E	R
	SPAN LE		REQUIR	RED CAMBER (IN)
	45			1 1/4
	55			1 ½
	65			2
	75			2 3/4
BOTTOM OF	85			2 3/4
BASE PLATE	95			3
	105			3 ³/4
AL	115			4 1/4
	125			5 1/4
	135	·		5 %
	145			7
	155	•		7 3/4
	165	•		9
·				

	SUGO	GESTED	STEEL	TRU	ss ı	UNITS			ALT	ERN	ATIV	E
No. ACTUAL		DESIGN	No. OF	No.	OF	No. OF F	PANELS	No. OF	No	. OF		TOTAL
FROM	то	SPAN	SPLICES	SEGI	MENTS	EACH SEGMENT	TOTAL	SPLICES	SEGN	MENTS	MIN	NELS MAX
(FT)	(FT)	(FT)	No.	END	MIDDLE	No.	No.	No.	END	MIDDLE	No.	No.
1	45	45	1	2	0	6	12	1	2	0	10	14
45	55	55	1	2	0	7	14	1	2	0	12	18
55	65	65	2	2	1	5	15	1	2	0	14	22
65	75	75	2	2	1	6	18	1	2	0	16	24
75	85	85	2	2	1	7	21	1	2	0	18	28
85	95	95	3	2	2	6	24	2	2	1	20	30
95	105	105	3	2	2	6	24	2	2	1	22	33
105	115	115	3	2	2	7	28	2	2	1	25	37
115	125	125	4	2	3	6	30	2	2	1	27	40
125	135	135	4	2	3	6	30	2	2	1	29	43
135	145	145	4	2	3	7	35	3	2	2	31	46
145	155	155	5	2	4	6	36	3	2	2	33	49
155	165	165	5	2	4	6	36	3	2	2	35	53

THIS PLATE FOR DESIGN INFORMATION ONLY DO NOT INCLUDE IN CONTRACT PLANS.

SIGN STRUCTURE DRG. OH-G3

NEW JERSEY DEPARTMENT OF TRANSPORTATION BUREAU OF STRUCTURAL ENGINEERING

OVERHEAD SIGN SUPPORT STANDARDS **DESIGN TABLES**

STEEL TRUSSES AND STEEL TOWERS (SPAN LENGTH 45'-0" TO 75'-0")

PENDING 09/10/2015 SCALE :_ NONE

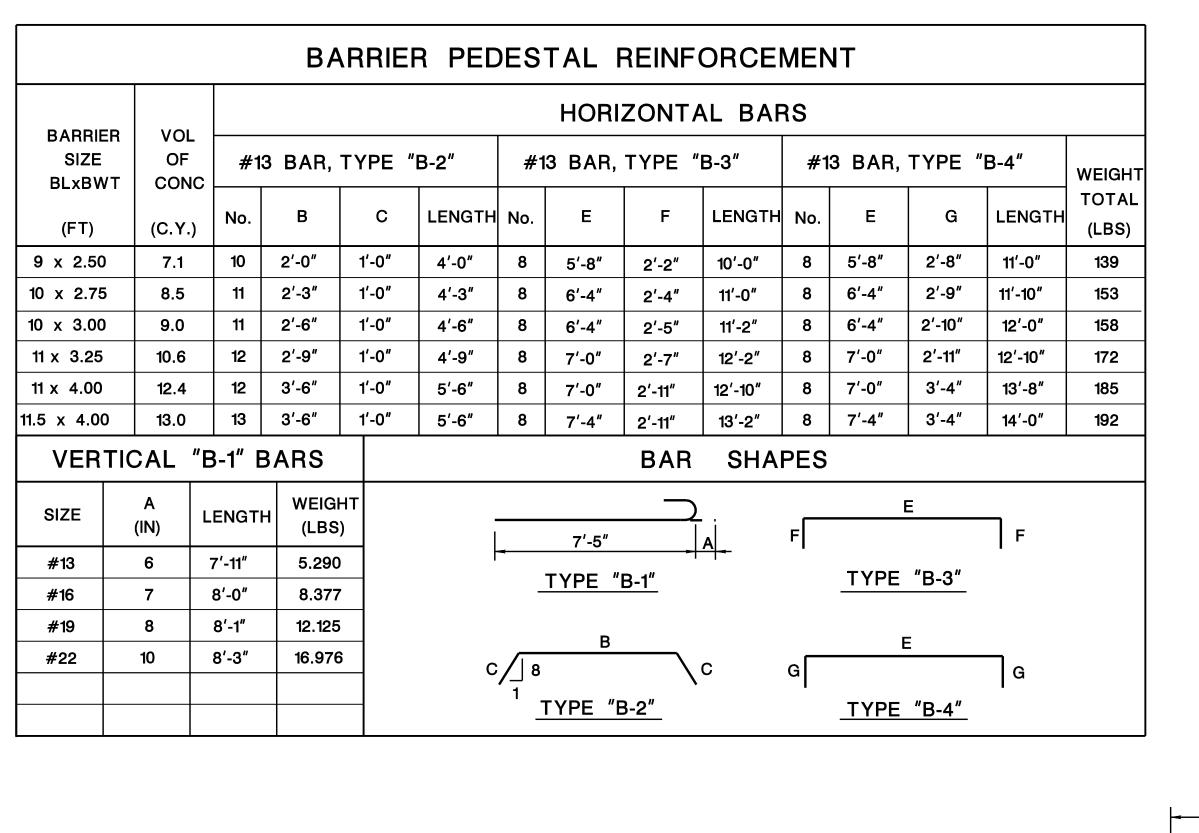
LENGTH	IZE		TRUSS I	MEMBER	S			TOW	ER MEM	IBERS			F	OOTING	S		F	EDE	STAL	S			BAR	RIER P	EDEST	ALS		SIZE	
		CHORDS	DIAGONALS	STRUTS	END STRUTS	H =	25 FT	H =	30 FT	H =	40 FT	STRUTS	H = 25 F	TH = 30 F	H = 40 F	H =	25 FT	H =	30 FT	H =	40 FT	H = 2	5 FT	H = 30) FT	H = 4	0 FT	۳ ي	
SPAN	TRU	Q.D.xTHICK	O.D.xTHICK	O.D.×THICK	O.D.xTHICK	SHAFT Q.D.xTHICK	DIAGONAL O.D.xTHICK	SHAFT O.D.xTHICK	DIAGONAL O.D.xTHICK	SHAFT O.D.xTHICK	DIAGONAL O.D.xTHICK	Q.D.xTHICK	FLxFW	FLxFW	FLxFW	PD	VERT REBARS No. &	PD	VERT REBARS No. &	PD	VERT REBARS No. &	BLxBWT	VERT REBARS No. &	BLxBWT	VERT REBARS No. &	BLxBWT	VERT REBARS No. &	TRUS SIGN	SPAN
(FT) (%)		(IN)	(IN)	(IN)	(IN)	(IN)	(IN)	(IN)	(IN)	(IN)	(IN)	(IN)	(FT)	(FT)	(FT)	(FT)	SIZE	(FT)	SIZE	(FT)	SIZE	(FT)	SIZE	(FT)	SIZE	(FT)	SIZE	%	(FT) د)
40		4.500x.237	2.875×.203	2.875x.203	3.500x.216	10.750x.365	3.500x.300	12.75 0 x.375	3.500x.300	14. 000 x.375	5.5 6 3x.25 8	3.500x.300	16 x B	18 x 8	20 x 9	3.00	10-#22	3.25	10-#22	3.50	11-#22	9 x 2.50	23-#16	9 x 2.50	26-#16	10 x 2.75	30-#16	40	5
85 60		5.5 6 3x.25 8	2.875×.203	2.875x.203	3.500x.216	12.750x.375	3.500x.300	14.000x.375	5.5 6 3x.25 8	16.000x.375	5.563x.258	3.500x.300	19 x 8	20 x 9	21 x 9	3.25	11-#22	3.50	12-#22	3.75	10-#25	9 x 2.50	29-#16	10 x 2.75	30-#16	10 x 3.00	23-#19	60	85 I
70		5.5 6 3x. 258	2.875x.203	2.875x.203	3.500x.216	12.750x.375	3.500x.300	16.000x.375	5.563x.258	16.000x.500	5.563x.258	3,500x,300	20 x 9	20 x 10	22 x 10	3.25	12-#22	3.75	10-#25	3.75	11-#25	9 x 2.50	31-#16	10 x 3.00	32-#16	10 x 3.00	26-#19	70	기 ~
80]	5.5 6 3x. 258	2.875x.203	2.875x.203	3.500x.216	14.000x.375	5.5 6 3x.25 8	16.000x.375	5.5 63 x.25 8	16.000x.500	5.563x.258	3.500x.300	21 x 9	21 x 10	23 x 10	3.50	12-#22	3.75	11-#25	3.75	12-#25	10 x 2.75	32-#16	10 x 3.00	35-#16	10 x 3.00	28-#19	80	ر (
40	_	5.5 6 3x. 258	2.875x.203	2.875x.203	3.500x.216	12.750x.375	3.500x.300	12.750x.375	3.500x.300	16.000x.375	5.563x.258	3.500x.300	18 x 8	19 x 9	21 x 9	3.25	10-#22	3.25	11-#22	3.75	12-#25	9 x 2.50	26-#16	9 x 2.50	29-#16	10 x 3.00	23-#19	40	
95 60		5.5 63 x.25 8	2.875x.203	2.875x.203	3.500x.216	12.750x.375	3.500x.300	16.000x.375	5.563x.258	16.000x.500	5.563x.258	3.500x.300	19 x 9	20 x 10	22 x 10	3.25	11-#22	3.75	10-#25	3.75	11-#25	9 x 2.50	31-#16	10 x 3.00	32-#16	10 x 3.00	26-#19	60	95
70		6.625×.280	2.875x.203	2.875x.203	3.500x.216	14.000x.375	5.5 6 3x.25 8	16.000x.375	5.5 6 3x.25 8	16.000x.500	5.5 6 3x.258	3.500x.300	20 x 9	21 x 10	23 x 10	3.50	12-#22	3.75	10-#25	3.75	12-#25	10 x 2.75	32-#1 6	10 x 3.00	26-#19	10 x 3.00	28-#19	70	
80		6.625x.280	2.875x.203	2.875x.203	3.500x.216	14.000x.500	5.5 6 3x.25 8	16.000x.500	5.5 6 3x.25 8	18.000x.500	6.625x.280	3.500x.300	21 x 10	22 x 10	24 x 11	3.50	10-#25	3.75	11-#25	4.00	12-#25	10 x 2.75	25-#19	10 x 3.00	28-#19	11 x 3.25	29-#19	80	
40		5.5 6 3x.25 8	2.875x.203	2.875x.203	3.500x.216	12.750x.375	3.500x.300	14.000x.375	5.5 6 3x.25 8	16.000x.375	5.5 6 3x.25 8	3.500x.300	18 x 9	19 x 9	21 x 9	3.25	10-#22	3.50	11-#22	3.75	12-#22	9 x 2.50	26-#16	10 x 2.75	30-#16	10 x 3.00	23-#19	40	_
105		6.625x.280	2.875×.203	2.875x.203	3.500x.216	14.000x.375	5.5 6 3x.25 8	16.000 x.375	5,5 63 x, 258	16.000x.500	5.563x.258	5.5 6 3x.25 8	20 x 9	21 x 10	23 x 10	3.50	12-#22	3.75	10-#25	3.75	12-#25	10 x 2.75	21-#19	10 x 3.00	25-#19	10 x 3.00	28-#19	60	105
70		6.625x.280	2.875×.203	2.875x.203	3.500x.216	14.000x.500	5.5 6 3x.25 8	16.000x.500	5.5 6 3x.25 8	18.000x.500	6.625x.280	5.563x.258	21 x 10	21 x 11	23 x 11	3.50	10-#25	3.75	11-#25	4.00	12-#25	10 x 2.75	25-#19	10 x 3.00	28-#19	11 x 3.25	29-#19	70	
80		8.625x.322	2.875x.203	2.875x.203	3.500x.216	14.000x.500	5.5 6 3x.25 8	16.000x.500	5.563x.258	18.000x.500	6.625x.280	5.5 63 x.25 8	22 X 10	22 x 11	24 x 11	3.50	10-#25	3.75	12-#25	4.00	13-#25	10 x 2.75	26-#19	10 x 3.00	31-#19	11 x 3.25	33-#19	80	
40		6.625x.280	2.875x.203	2.875x.203	3.500x.216	14.000x.375	5.5 6 3x.25 8	14.000x.375	5.563x.258	16.000x.375	5.5 6 3x.25 8	5.563x.258	19 x 9	20 x 9	21 x 10	3.50	10-#22	3.50	12-#22	l	10-#25	10 x 2.75	30-#16	10 x 2.75	30-#16	10 x 3.00	23-#19	40	
115 60		8.625x.322	2.875x.203	2.875x.203	3.500x.216	14.000x.375	5.5 6 3x.25 8	16.000x.375	5.563x.258	18.000x.375	6.625x.280	5.563x.258	20 x 10	21 x 10	23 x 11	3.50	12-#22	3.75	10-#25	4.00	12-#25	10 x 2.75	23-#19	10 x 3.00	26-#19	11 x 3.25	28-#19	60	115
70		8.625x.322	2.875x.203	2.875x.203	3.500x.216	14.000x.500	5.5 6 3x.25 8	16.000x.500	5.563x.258	18.000x.500	6.625x.280	5.563x.258	21 x 10	22 x 11	24 x 11	3.50	10-#25	3.75	11-#25	4.00	13-#25	10 x 2.75	26-#19	10 x 3.00	28-#19	11 x 3.25	33-#19	⊋ 70	_
80	Į Ē	8.625x.322	2.875x.203	2.875x.203	3.500x.216	14.000×.500	5.5 6 3x.25 8	16.000x.500	5.563x.258	18.000x.500	6.625x.280	5.563x.258	22 x 10	23 x 11	25 x 11	3.50	11-#25	3.75	13-#25	4.00	15-#25	10 x 2.75	28-#19	10 x 3.00	31-#19	11 x 3.25	25-#22	<u>F</u> 80	
40	🖟	8.625x.322	2.875x.203	2.875x.203	3.500x.216	14.000x.375	5.5 63 x.25 8	16.000x.375	5.5 6 3x.258	16.000x.500	5.5 6 3x.25 8	5.563x.258	20 x 9	20 x 10	22 x 10	3.50	11-#22	3.75	12-#22	3.75	10-#25	10 x 2.75	30-#16	10 x 3.00	23-#19	10 x 3.00	26-#19	40	
125 60	2, (1	8.625x.322	2.875x.203	2.875x.203	3.500x.216	14.000x.500	5.5 63 x .258	16.000x.500	5.563x.258	18.000x.500	6.625x.280	5.563x.258	21 x 10	23 x 10	24 x 11	3.50	10-#25	3.75	11-#25	4.00	12-#25	10 x 2.75	25-#19	10 x 3.00	28-#19	11 x 3.25	29-#19	и 60	— 125 l
70	×	8.625x.322	2.875x.203	2.875x.203	3.500x.216	14.000x.500	5.563x.258	16.000x.500	5.563x.258	18.000x.500	6.625x.280	5.5 6 3x.25 8	22 x 10	23 x 11	25 x 11	3.50	11-#25	3.75	12-#25	4.00	14-#25	10 x 2.75	28-#19	10 x 3.00	31-#19	11 x 3.25	33-#19	全 70	_
80	Ę	8.625x.322	2.875x.203	2.875x.203	3.500x.216	16.000x.500	5.563x.258	18.000x.500	6.625x.280	20.000x.500	6.625x.280	5.563x.258	23 x 10	24 x 11	25 x 12	3.75	11-#25	4.00	13-#25	4.25	15-#25	10 × 3.00	28-#19	11 x 3.25	32-#19	11 x 4.00	25-#22	<u>5</u> 80	
40		8.625x.322	2.875x.203	2.875x.203	3.500x.216	14.000x.375	5.563x.258	16.000x.375	5.5 6 3x.258	16.000x.500	5.5 6 3x.25 8	5.5 6 3x.25 8	20 x 10	21 x 10	22 x 11	3.50	11-#22	3.75	10-#25	3.75	11-#25	10 x 2.75	30-#16	10 x 3.00	23-#19	10 x 3.00	27-#19	≥ 40 	_
135 60	,4	10.750x.365	2.875x.203	2.875x.203	3.500x.216	14.000x.500	5.563x.258	16.000x.500	5.583x.258	18.000x.500	6.625x.280	5.5 6 3x.258	22 x 10	23 x 11	25 x 11	3.50	10-#25	3.75	12-#25	4.00	13-#25	10 x 2.75	27-#19	10 x 3.00	31-#19	11 x 3.25	33-#19	` 60	— 135
70		10.750x.365	2.875x.203	2.875x.203	3.500x.216	14.000x.500	5.5 6 3x.25 8	18.000x.500	6.625×.280	20.000x.500	6.625x.280	5.5 6 3x.25 8	22 x 11	24 x 11	25 x 12	3.50	11-#25	4.00	12-#25	4.25	14-#25	10 x 2.75	28-#19	11 x 3.25	31-#19	11 x 4.00	25-#22	70	
80	4	10.750x.365	2.875x.203	2.875x.203	3.500x.216	16.000x.500	5.563x.258	18.000x.500	6.625x.280	20.000x.500	<u> </u>	5.563x.258	23 x 11	25 x 11	26 x 12	3.75	12-#25	4.00	14-#25	4.25	15-#25	10 x 3.00	31-#19	11 x 3.25	32-#19	11 x 4.00	27-#22	80	
40	-	10.750x.365	3.500x.216	3.500x.216	3.500x.216	14.000x.375	5.5 63 x.25 8	16.000x.375	5.563x.258	16.000x.500		5.5 6 3x.25 8	20 x 10	22 x 10	23 x 11	3.50	11-#22	3.75	10-#25	3.75	11-#25	10 x 2.75	21-#19	10 x 3.00	1	10 x 3.00	28-#19	40	
145	-	10.750x.365	3.500x.216	3.500×.216	3.500x.216	14.000×.500	5.5 63 ×.25 8	16.000x.500	5.563x.258	18.000x.500		5.5 6 3x.25 8	23 x 10	24 x 11	25 x 12	3.50	11-#25	3.75	13-#25	4.00	14-#25	10 x 2.75	28-#19	10 x 3.00	31-#19	11 x 3.25	25-#22	60 70	
70		10.750x.365	3.500x.216	3.500x.216	3.500x.216	16.000x.500	5.5 63 x.25 8	18.000x.500	6.625x.280	20.000x.500		5.563x.258	23 x 11	24 x 12	26 x 12	3.75	11-#25	4.00	13-#25	4.25	15-#25	10 x 3.00	28-#19	11 x 3.25	32-#19	11 x 4.00	27-#22		_
80	-	10.750x.365	3.500x.216	3.500x.216	3.500x.216	16.000x.500	5.563x.258	18.000x.500	6.625x.280	20.000x.500		5.563x.258	24 x 11	24 x 12	27 x 12	3.75	12-#25	4.00	14-#25	4.25	13-#29	10 × 3.00	31-#19	11 x 3.25	35-#19	11 x 4.00	29-#22	80	
40	-	10.750x.365	3.500x.216	3.500x.216	3.500x.216	14.000x.375	5.563x.258	16.000×.500	5.563x.258	18.000x.500		5.5 6 3x.25 8	21 x 10	22 x 10	23 x 11	3.50	12-#22	3.75	10-#25	4.00	11-#25	10 x 2.75	23-#19	10 x 3.00	27-#19	11 x 3.25	28-#19	40	
155 60	-	12.750x.375	3.500x.216	3.500x.216	3.500x.216	16.000x.500	5.563x.258	18.000x.500	6.625x.280	20.000x.500		5.5 6 3x.258	23 x 10	24 x 11	26 x 12	3.75	11-#25	4.00	12-#25	4.25	14-#25	10 x 3.00	28-#19	11 x 3.25	32-#19	11 x 4.00	25-#22	60	155
70	-	12.750x.375	3.500x.216	3.500x.216	3.500x.216	16.000x.500	5.563x.258	18.000x.500	6.625x.280			5.563x.258	23 x 11	24 x 12	27 x 12	3.75	12-#25	4.00	14-#25	4.25	15-#25	10 x 3.00	23-#22	11 x 3.25	35-#19	11 x 4.00	27-#22	70	 -
80	-	12.750x.375	3.500x.216	3.500x.216	3.500x.216	16.000x.500	5.5 6 3x.25 8	20.000x.500	6.625×.280	24.000x.500		5.5 6 3x.25 8	24 x 11	25 x 12	27 x 13	3.75	13-#25	4.25	14-#25	4.75	13-#29	10 x 3.00	25-#22	11 x 4.00	+	11.5 x 4.00	30-#22	80	
40		12.750x.375	3.500x.216	3.500x.216	3.500x.216	14.000x.500	5.5 63 x.25 8	16.000x.500	5.563x.258			5.563x.258	21 x 10	23 x 10	24 x 11	3.50	12-#25	3.75	10-#25	4.00	12-#25	10 x 2.75	25-#19	10 x 3.00	28-#19	11 x 3.25	29-#19	40	
165	-	12.750x.375	3.500x.216	3.500x.216	3.500x.216	16.000x.500	5.563x.258	18.000x.500	6.625x.280	20.000x.500	6.625x.280	5.563x.258	23 x 11	24 x 12	27 x 12	3.75	11-#25	4.00	13-#25	4.25	15-#25	10 x 3.00	28-#19	11 x 3.25	32-#19	11 x 4.00	27-#22	60	165
70	-	14.000x.375	3.500x.216	3.500x.216	3.500x.216	16.000x.500	5.5 63 ×.25 8	18.000x.500	6.625x.280	24.000x.500		5.5 6 3x.25 8	24 x 11	24 x 13	27 x 13	3.75	13-#25	4.00	15-#25	4.75	15-#25	10 x 3.00	25-#22	11 x 3.25		11.5 x 4. 00	30-#22	70	
80		14.000x.375	3.500x.216	3.500x.216	3.5 00 x.216	18.000x.500	6.625x.280	20.000x.500	6.625x.280	24.000x.500	6.625x.280	5.5 6 3x.258	24 x 12	24 x 13	27 x 13	4.00	13-#25	4.25	12-#25	4.75	14-#29	11 x 3.25	25-#22	11 x 4.00	27-#22	11.5 x 4.00	32-#22	80	1

NOTE:

END STRUTS ARE DEFINED AS THE TWO HORIZONTAL AND TWO VERTICAL STRUTS LOCATED IMMEDIATELY ADJACENT TO THE TOWERS (SEE DRG. OH-D5).

THIS PLATE FOR DESIGN INFORMATION ONLY. DO NOT INCLUDE IN CONTRACT PLANS.

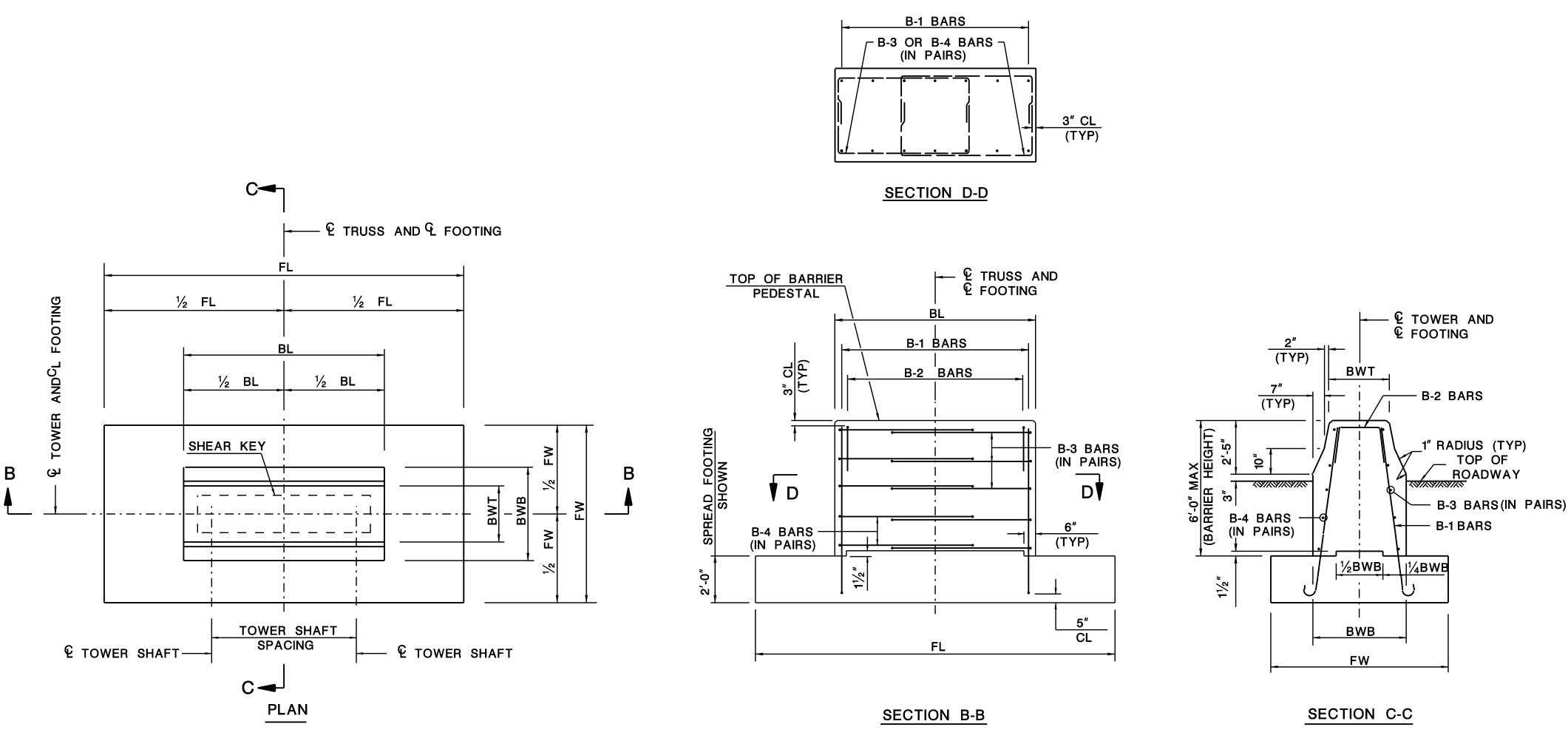
SIGN STRUCTURE DRG. OH-G4

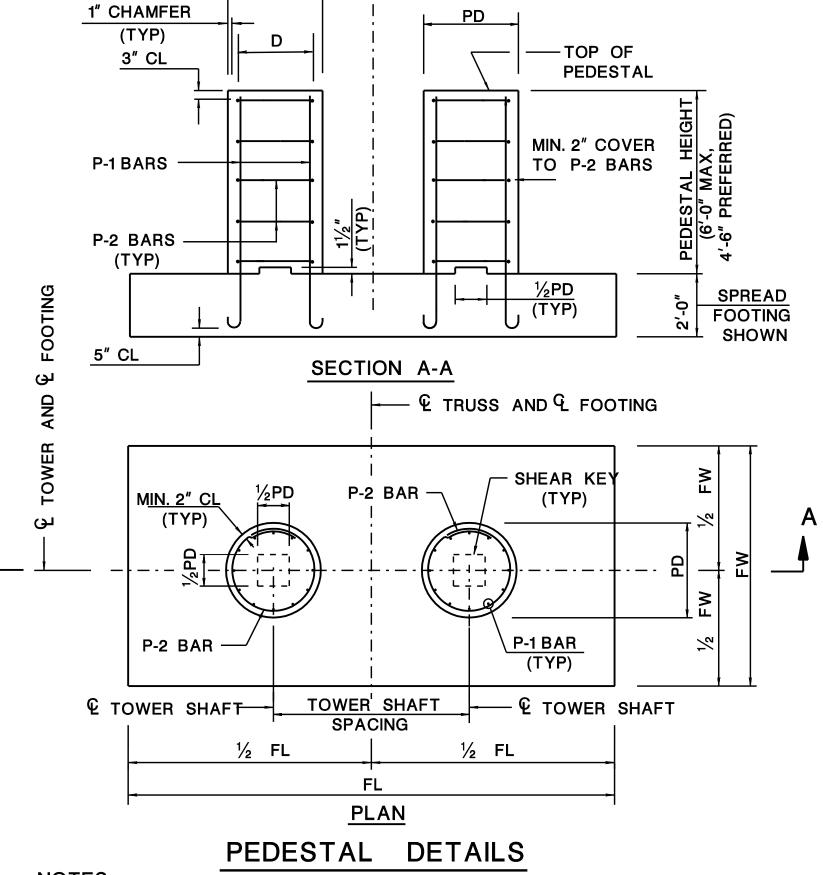

NEW JERSEY DEPARTMENT OF TRANSPORTATION BUREAU OF STRUCTURAL ENGINEERING

OVERHEAD SIGN SUPPORT STANDARDS
DESIGN TABLES

STEEL TRUSSES AND STEEL TOWERS (SPAN LENGTH 85'-0" TO 165'-0")

SCALE : NONE




				PEDE	STAL	REIN	IFORC	EMEN	Т
PEDESTAL DIAMETER	VOL OF	VE	RTICA	AL BAF	RS	НО	RIZ BA	ARS	
	CONC		TYPE	"P-1"			ARS, TYPE SPACING		BAR SHAPES
PD (FT)	(C.Y.)	SIZE (NOTE 9)	Α	LENGTH	WEIGHT (LBS)	D	LENGTH	WEIGHT (LBS)	OTTAL EG
3'-0"	1.6	#19	0'-8"	8'-1"	11.9	2'-8"	10'-0"	46.7	
3'-0"	1.6	#22	0'-10"	8'-3"	16.8	2'-8"	10'-0"	46.7	
3'-3"	1.8	#19	0'-8"	8'-1"	11.9	3'-0" *	11'-0"	51.6	7'-5" A
3'-3"	1.8	#22	0'-10"	8'-3"	16.8	3'-0" *	11'-0"	51.6	TYPE "P-1"
3'-6"	2.1	#22	0'-10"	8'-3"	16.8	3'-2"	11'-6"	53.8	
3'-6"	2.1	#25	0'-11"	8'-4"	22.3	3'-2"	11'-6"	53.8	1'-6"
3'-9"	2.5	#22	0'-10"	8'-3"	16.8	3'-4"	12'-0"	56.2	
3'-9"	2.5	#25	0'-11"	8'-4"	22.3	3'-4"	12'-0"	56.2	
4'-0"	2.8	#25	0'-11"	8'-4"	22.3	3′-8″	13'-0"	61.1	D >
4'-3"	3.2	#25	0'-11"	8'-4"	22.3	4'-0" *	14'-1"	65.9	
4'-3"	3.2	#29	1'-3"	8'-8"	29.3	4'-0" *	14'-1"	65.9	
4'-9"	3.9	#25	0'-11"	8'-4"	22.3	4'-4"	15'-1"	70.8	TYPE "P-2"
4'-9"	3.9	#29	1'-3"	8'-8"	29.3	4'-4"	15'-1"	70.8	

* HORIZONTAL BAR DIAMETER (D) SHALL BE

ADJUSTED TO PROVIDE A MIN. 2" CONCRETE COVER.

BARRIER PEDESTAL DETAILS

F--- E TRUSS AND E FOOTING

NOTES:

- 1. FOUNDATION DESIGN CONFORMS TO THE 2001 AASHTO STANDARD SPECIFICATIONS FOR STRUCTURAL SUPPORTS FOR HIGHWAY SIGNS, LUMINAIRES AND TRAFFIC SIGNALS, SECTION 13. REFER TO THE NJDOT BRIDGES AND STRUCTURES DESIGN MANUAL FOR ALTERNATE FOUNDATION DESIGN CRITERIA.
- 2. FOR PEDESTAL AND BARRIER PEDESTAL DIMENSIONS AND REINFORCEMENT, SEE DESIGN TABLES ON SIGN STRUCTURE DRGS. OH-G3 AND OH-G4.
- 3. ALL REINFORCEMENT IN PEDESTALS AND BARRIER PEDESTALS SHALL BE CORROSION PROTECTED.
- CONTROLON THOTEOTED.

4. EXPOSED CONCRETE EDGES SHALL BE CHAMFERED 1"x 1" UNLESS NOTED OTHERWISE.

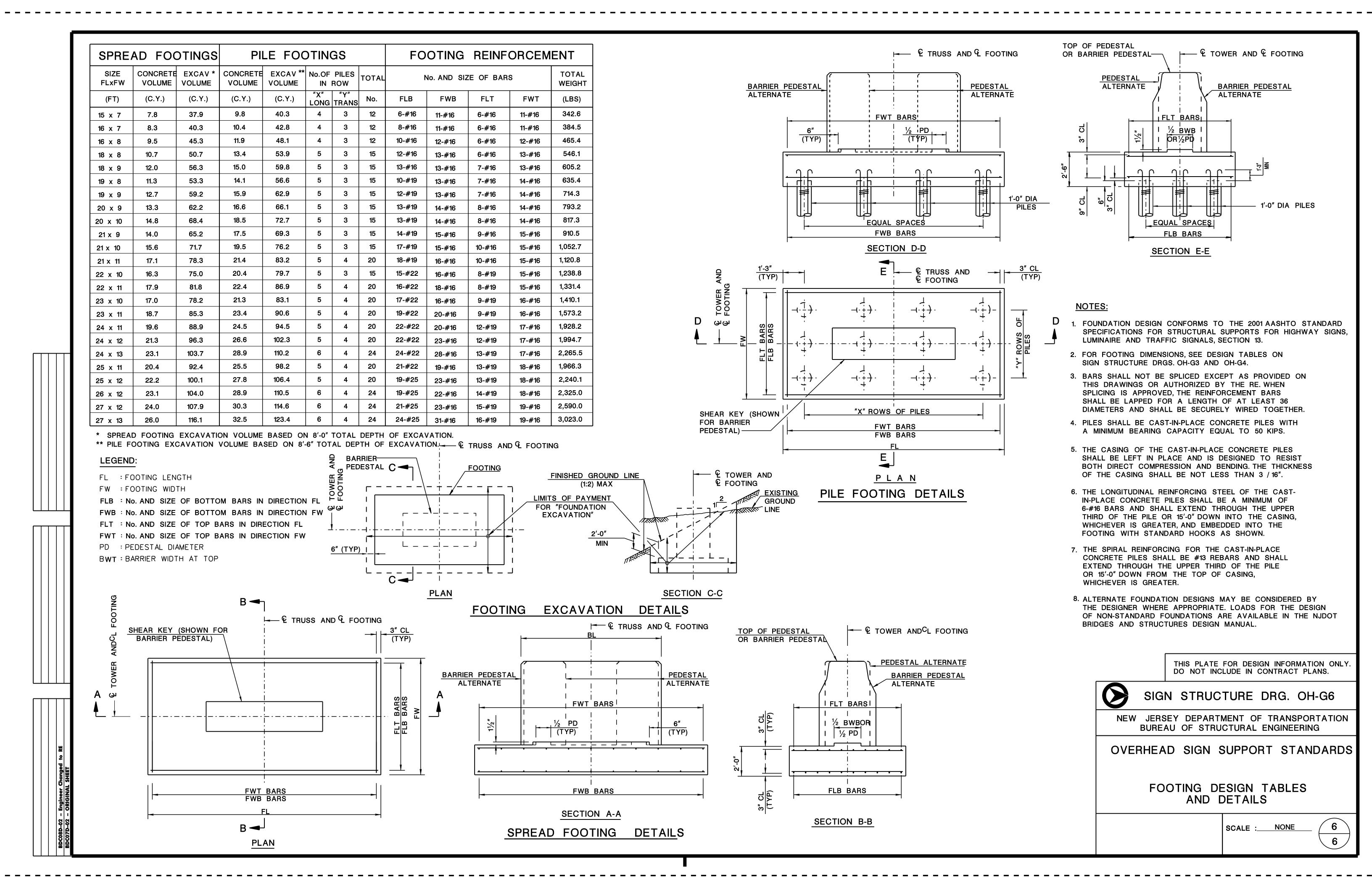
- 5. BARS SHALL NOT BE SPLICED EXCEPT AS PROVIDED ON THIS DRAWING OR AUTHORIZED BY THE RE. WHEN SPLICING IS APPROVED, THE REINFORCEMENT BARS SHALL BE LAPPED FOR A LENGTH OF AT LEAST 36 DIAMETERS AND SHALL BE SECURELY WIRED TOGETHER.
- 6. LENGTH OF BARS SHOWN IN TABLE ALREADY CONSIDER BENDS.
 DIMENSIONS DESCRIBED IN BAR SHAPES TABLE ARE OUT-TO-OUT OF BAR.
- 7. CONCRETE VOLUMES AND REINFORCEMENT SHOWN IN TABLES ARE FOR A 6'-0" HIGH PEDESTAL OR 6'-0" HIGH BARRIER PEDESTAL.
- 8. WEIGHT SHOWN IN TABLE FOR B-1 AND P-1 BARS IS FOR ONE BAR ONLY. TOTAL WEIGHT OF BARS TO BE DETERMINED BY THE DESIGNER.

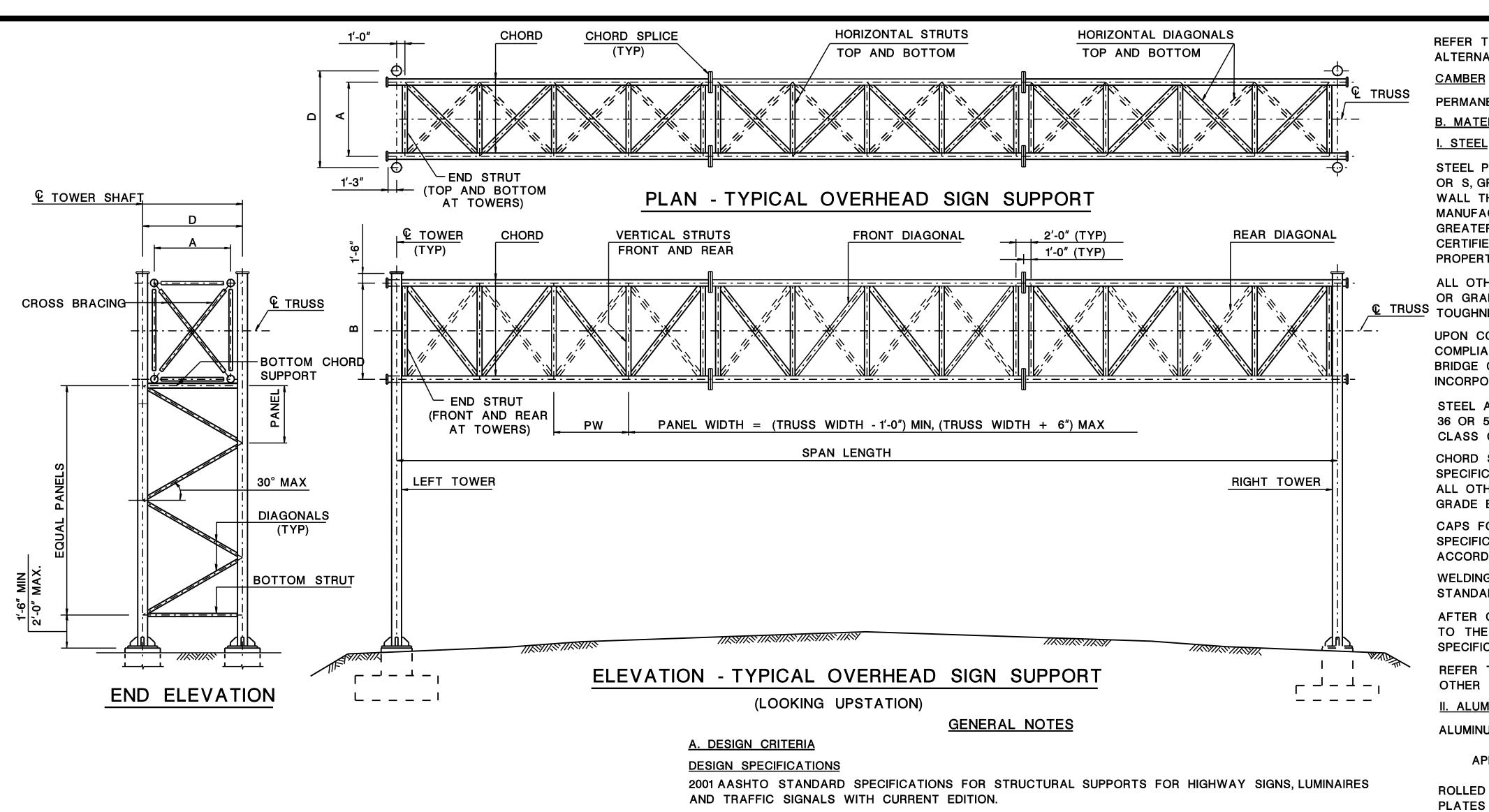
9. REFER TO THE NJDOT BRIDGES AND STRUCTURES DESIGN MANUAL FOR CLARIFICATION OF

THIS PLATE FOR DESIGN INFORMATION ONLY. DO NOT INCLUDE IN CONTRACT PLANS.

REINFORCEMENT STEEL DESIGNATION.

SIGN STRUCTURE DRG. OH-G5


NEW JERSEY DEPARTMENT OF TRANSPORTATION BUREAU OF STRUCTURAL ENGINEERING


OVERHEAD SIGN SUPPORT STANDARDS

PEDESTAL AND BARRIER PEDESTAL DESIGN TABLES AND DETAILS

SCALE : NONE

 $-\frac{5}{6}$

NJDOT BRIDGES AND STRUCTURES DESIGN MANUAL, CURRENT EDITION. DESIGN LOADS

DESIGN WIND VELOCITY ---- 80 MPH; (ABOVE AASHTO SPECIFICATIONS APPENDIX C) DESIGN ICE LOAD ----- 3 PSF

FATIGUE LOADS

DRG NO.

OH-D1

OH-D2

OH-D3

OH-D4

OH-D5

OH-D6

OH-D7

OH-D8

OH-D9

OH-D10

INDEX OF DRAWINGS

GENERAL NOTES, PLAN AND ELEVATIONS

SCHEDULE OF STRUCTURES

STEEL TRUSS DETAILS - SHEET 1

STEEL TRUSS DETAILS - SHEET 2

TYPICAL ELECTRICAL DETAILS

FOUNDATION DETAILS

STEEL TOWER DETAILS

DESCRIPTION

TOWER SHAFT BASE AND TRUSS SEAT DETAILS

SIGN AND LIGHTING SYSTEM SUPPORT DETAILS

SCHEDULE OF FOUNDATIONS AND MISCELANEOUS DETAILS

ALL STRUCTURAL DETAILS HAVE BEEN ANALYZED AGAINST FATIGUE CATEGORY II IMPORTANCE FACTOR VALUES AS DESINATED IN THE ABOVE AASHTO SPECIFICATIONS.

VARIABLE MESSAGE SIGN (VMS) STRUCTURES

REFER TO THE NJDOT BRIDGES AND STRUCTURES DESIGN MANUAL WHEN FURNISHING SUPPORT STRUCTURES FOR VARIABLE MESSAGE SIGNS (VMS).

CONCRETE DESIGN STRESSES

SPECIFIED COMPRESSIVE STRENGTH (f'c) (CLASS B) ---- 3,000 PSI EXTREME FIBER COMPRESSIVE STRESS (fc) ----- 1,200 PSI

REINFORCEMENT STEEL DESIGN STRESS

YIELD SYTRENGTH (fy) (A615, GRADE 60) ---- 60 KSI TENSILE STRESS (fs) ---- 24 KSI

STRUCTURAL STEEL DESIGN STRENGTHS

YIELD STRENGTH (Fy)

PIPES (A53, TYPE S OR TYPE E, GRADE B) ---- 35 KSI (MIN.) * API 5L. GRADE B ---- REFER TO API SPECIFICATIONS

* FABRICATORS ARE ADVISED THAT REPAIRS TO THE MATERIALS WILL NOT BE PERMITTED. IF TEARING. CRACKING OR ANY DEFECT OCCURS, THE MATERIAL WILL BE REQUIRED TO BE REPLACED.

FOUNDATIONS

MAXIMUM FOUNDATION DESIGN BEARING PRESSURE ---- 2.5 KSF FOOTINGS ARE DESIGNED SUCH THAT A MINIMUM OF 75 PERCENT OF THE FOOTING IS ALWAYS IN CONTACT; A MAXIMUM OF 25 PERCENT OF THE FOOTING IS IN UPLIFT.

BEARING PILES SHALL BE CAST-IN-PLACE CONCRETE PILES WITH A MINIMUM BEARING CAPACITY EQUAL TO 50 KIPS.

REFER TO THE NJDOT BRIDGES AND STRUCTURES DESIGN MANUAL FOR ALTERNATE FOUNDATION DESIGN CRITERIA.

PERMANENT CAMBER EQUAL TO L/1000 HAS BEEN PROVIDED IN ADDITION TO THE DEAD LOAD CAMBER. **B. MATERIALS**

STATE | FEDERAL PROJECT NO

N.J.

I. STEEL

STEEL PIPE SHALL BE CERTIFIED BY MILL TEST REPORT TO MEET ASTM SPECIFICATION A53. TYPE E OR S, GRADE B WITH THE EXCEPTION THAT API5L, GRADE B MAY BE USED WHEN THE SPECIFIED WALL THICKNESS IS GREATER THAN 1/2". ONLY ELECTRICAL RESISTANCE WELDED (ERW) MANUFACTURED SINGLE SEAM PIPE IS PERMITTED, HOWEVER, WHEN THE REQUIRED PIPE SIZE IS GREATER THAN 24", DOUBLE SEAM PIPE MAY BE USED. A MILL TEST REPORT MUST BE PROVIDED, CERTIFIED AND SIGNED BY THE PIPE MANUFACTURER, CONTAINING PHYSICAL AND CHEMICAL PROPERTIES AND THE MANUFACTURING PROCESS USED TO PRODUCE THE PIPE.

ALL OTHER STEEL SHALL CONFORM TO ASTM SPECIFICATION A709 (AASHTO M270) GRADE 36 OR GRADE 50. ALL SPECIFIED STEEL PLATES SHALL MEET SUPPLEMENTARY REQUIREMENTS FOR NOTCH © TRUSS TOUGHNESS (CHARPY TESTING, ZONE #2).

UPON COMPLETION OF FABRICATION, THE FABRICATOR SHALL PROVIDE A NOTARIZED CERTIFICATION OF COMPLIANCE AS PER THE REQUIREMENT OF THE NJDOT STANDARD SPECIFICATIONS FOR ROAD AND BRIDGE CONSTRUCTION, INCLUDING A LEGIBLE COPY OF ALL MILL TEST REPORTS FOR MATERIALS INCORPORATED INTO THE WORK, ALSO, A COPY OF QC REPORTS SHALL BE PROVIDED.

STEEL ANCHOR BOLTS, NUTS AND WASHERS SHALL CONFORM TO ASTM SPECIFICATION F1554, GRADE 36 OR 55. THE ANCHOR BOLTS SHALL BE HOT DIP GALVANIZED AS PER ASTM SPECIFICATION A153. CLASS C.

CHORD SPLICE ASSEMBLY FASTENERS SHALL BE HIGH STRENGTH STEEL BOLTS CONFORMING TO ASTM SPECIFICATION A325 AND SHALL BE HOT DIP GALVANIZED AS PER ASTM SPECIFICATION A153, CLASS C. ALL OTHER FASTENERS SHALL BE STAINLESS STEEL CONFORMING TO ASTM SPECIFICATION A320, GRADE B8. CLASS 1.

CAPS FOR THE ENDS OF CHORDS AND TOPS OF POSTS SHALL BE STEEL CONFORMING TO ASTM SPECIFICATION A709 (AASHTO M270) GRADE 36 OR 50 AND SHALL BE HOT DIP GALVANIZED IN ACCORDANCE WITH ASTM SPECIFICATION A123.

WELDING OF STEEL SHALL BE AS SPECIFIED IN AWS D1.1, CURRENT EDITION, AND THE NJDOT STANDARD SPECIFICATIONS.

AFTER COMPLETE FABRICATION, EACH STEEL SECTION SHALL BE HOT DIP GALVANIZED ACCORDING TO THE REQUIREMENTS OF ASTM SPECIFICATION A123, AND AS MODIFIED BY THE NJDOT STANDARD SPECIFICATIONS. A SINGLE DIP GALVANIZING PROCESS IS PREFERRED IF SIZE PERMITS.

REFER TO THE NJDOT STANDARD SPECIFICATIONS FOR CRITERIA ON FURNISHING MATERIALS OTHER THAN SPECIFIED ABOVE.

II. ALUMINUM

ALUMINUM SHALL CONFORM TO THE ASTM SPECIFICATIONS AND ALLOYS LISTED BELOW:

APPLICATION	ASTM SPECIFICATION	ASTM ALLOY
ROLLED OR EXTRUDED SHAPES	B308	6061 - T6
PLATES	B209	6061 - T6
DRAWN SEAMLESS TUBES	B210	6061 - T6
EXTRUDED TUBES	B221	6061 - T6

WELDING OF ALUMINUM SHALL BE AS SPECIFIED IN AWS D1.2, CURRENT EDITION, AND THE NJDOT STANDARD SPECIFICATIONS.

THE SIGN PANEL SHALL BE INSTALLED LEVEL. THE CONTRACTOR MAY FIELD DRILL THE SIGN SUPPORTS AS REQUIRED TO ACHIEVE THIS.

III. REINFORCEMENT STEEL

ALL REINFORCEMENT STEEL SHALL BE ASTM A615. GRADE 60.

IV. CONCRETE

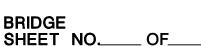
SPECIFICATIONS.

ALL CONCRETE SHALL BE "CLASS B" AS DEFINED IN THE NJDOT STANDARD SPECIFICATIONS, UNLESS OTHERWISE SPECIFIED BY THE DESIGNER

V. SIGN LIGHTING SYSTEM SUPPORTS

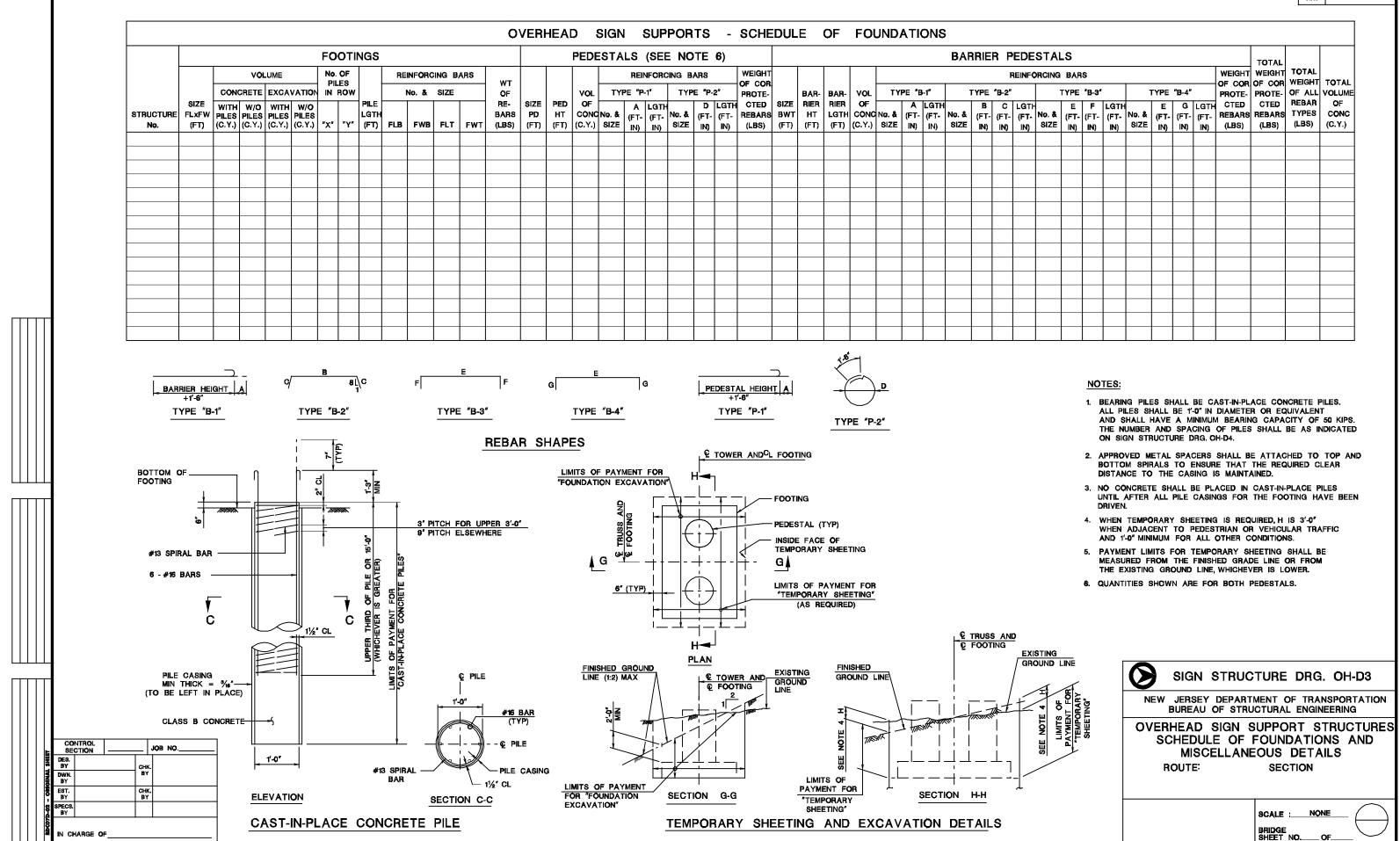
SIGN HANGERS SHALL BE ALUMINUM OR STEEL. LUMINAIRE SUPPORTS SHALL BE ALUMINUM OR STEEL THE STEEL SHALL CONFORM TO ASTM

A709 GRADE 36 OR GRADE 50 AND SHALL BE HOT DIP GALVANIZED IN ACCORDANCE WITH ASTM SPECIFICATION A123. STEEL SURFACES SHALL BE PREVENTED FROM COMING INTO CONTACT WITH ALUMINUM SURFACES BY MEANS OF APPROVED PADS PLACED BETWEEN THE DISSIMILAR METALS. PADS SHALL BE STAINLESS STEEL CONFORMING TO ASTM SPECIFICATION A240, TYPE 304 OR APPROVED EQUAL. CONNECTING U BOLTS SHALL BE STAINLESS STEEL CONFORMING TO THE NJDOT STANDARD SPECIFICATIONS. INSTALLATION OF SIGN LIGHTING SYSTEM SHALL BE ACCORDING TO THE MANUFACTURER'S



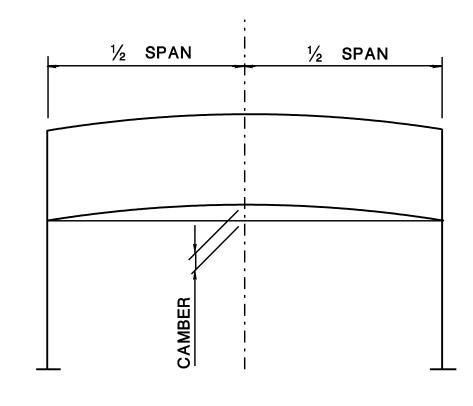
NEW JERSEY DEPARTMENT OF TRANSPORTATION BUREAU OF STRUCTURAL ENGINEERING

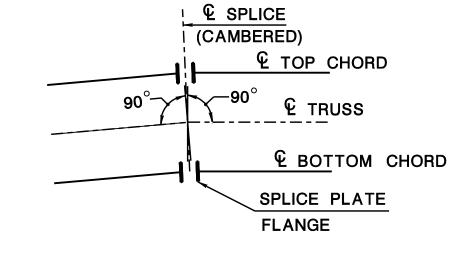
OVERHEAD SIGN SUPPORT STRUCTURES GENERAL NOTES, PLAN AND ELEVATIONS


> SECTION: ROUTE:

> > NONE SCALE :___

N.J. FEDERAL PROJECT N

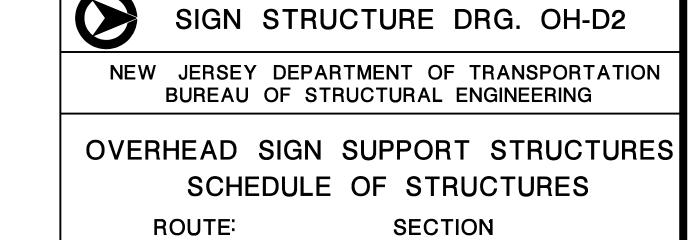

STATE	FEDERAL	PROJECT	NO.
N.J.			


			OVEF	RHEAD	SIGN	I SUF	PORTS	(STEEL	TRUSSE	S AND S	TEEL	TOWE	ERS)			
SIGN	SUPPORTS	EL	EVATIO	NS					TRUSSES					TO	WERS	
STRUCTURE	STATION	ှင့် TRUSS	вот ог в	ASE PLATE	SPAN LENGTH	АхВ	CHORDS O.D.xTHICK	DIAGONALS O.D.xTHICK	STRUTS O.D.xTHICK	END STRUTS O.D.xTHICK	No. OF TRUSS	CAMBER	D	SHAFTS O.D.xTHICK	DIAGONALS O.D.xTHICK	STRUTS O.D.xTHICK
No.	STATION	Ψ 111000	LEFT	RIGHT	(FT)	(FT)	(IN)	(IN)	(IN)	(IN)	UNITS	(IN)	(FT-IN)	(IN)	(IN)	(IN)

NOTES:

- 1. ALL ELEVATIONS SHALL BE VERIFIED IN THE FIELD PRIOR TO FABRICATION AND CONSTRUCTION.
- 2. LEFT AND RIGHT TOWERS ARE DEFINED LOOKING UPSTATION.
- 3. THE NUMBER OF TRUSS UNITS SHOWN IN THE SCHEDULE OF STRUCTURES IS OPTIONAL. ALTERNATES MAY BE SUBMITTED TO THE RE FOR APPROVAL.
- 4. THE DIAGONALS ON EACH FACE OF THE TRUSS MUST FORM CONTINUOUS TRUSSING BETWEEN TOWERS (SEE TYPICAL PLAN AND ELEVATION VIEWS ON SIGN STRUCTURE DRG. OH-D1).

		SUMMARY OF QUANTITIES		
PAY ITEM NO.	STADARD ITEM NO.	DESCRIPTION	UNIT	CONTRACT QUANTITY

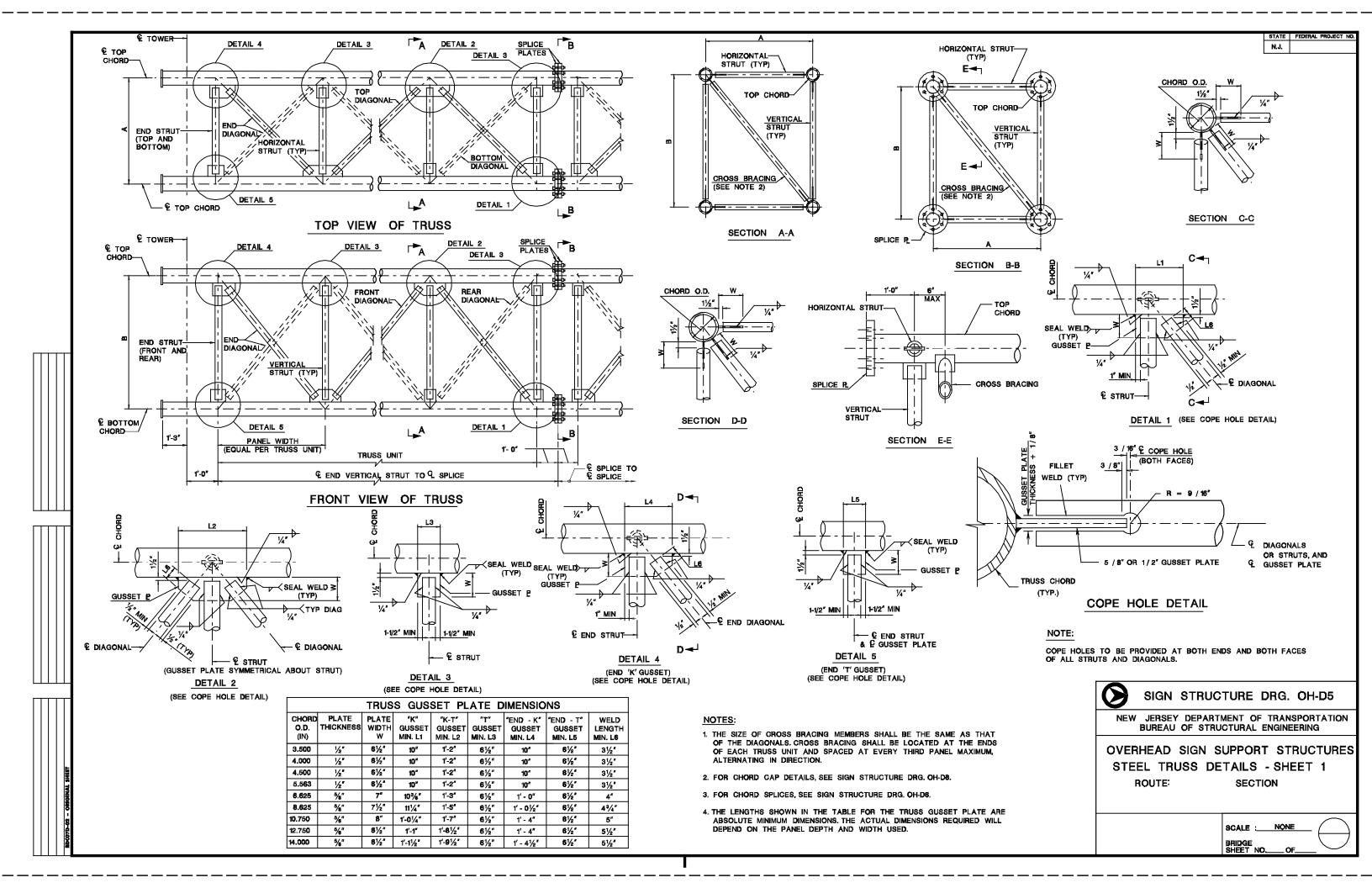


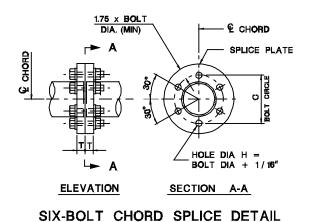
CAMBER DETAIL

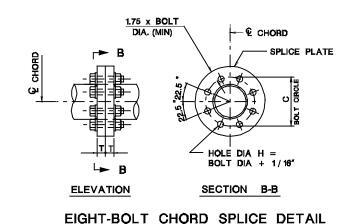
CAMBER REQUIRED

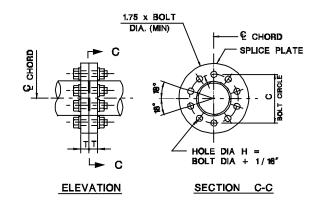
CAMBER NOTE:

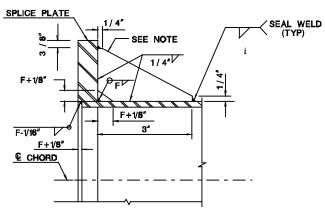

CAMBER SHALL BE OBTAINED BY INCREASING THE TOP CHORD LENGTH AND DECREASING THE BOTTOM CHORD LENGTH AS SHOWN. CHORD SPLICE FLANGES SHALL BE SKEWED TO THE ANGLE SO OBTAINED BEFORE WELDING TO CHORDS. NO FORCE SHALL BE APPLIED IN PROVIDING CAMBER. AN ALTERNATE METHOD OF OBTAINING CAMBER MAY BE USED AS APPROVED BY THE RE.




SCALE : NONE


BRIDGE
SHEET NO. OF.


	Æ						
	ed to	_		NTROL CTION		,	JOB NO
	Changed	SHEET	DES. BY			снк.	
		INAL	DWN. BY			ВҮ	
	Engineer	ORIGINAL	EST. BY			CHK. BY	
	-02 -	-02	SPECS. BY				
	3DC08D-02	DC07D-02	IN CH	HARGE O	F		



TEN-BOLT CHORD SPLICE DETAIL

CHORD SPLICE WITH STIFFENERS (SIX-BOLT SPLICE SHOWN)

-E**rs** -

CHORD SPLICE WELD DETAIL

NOTES:

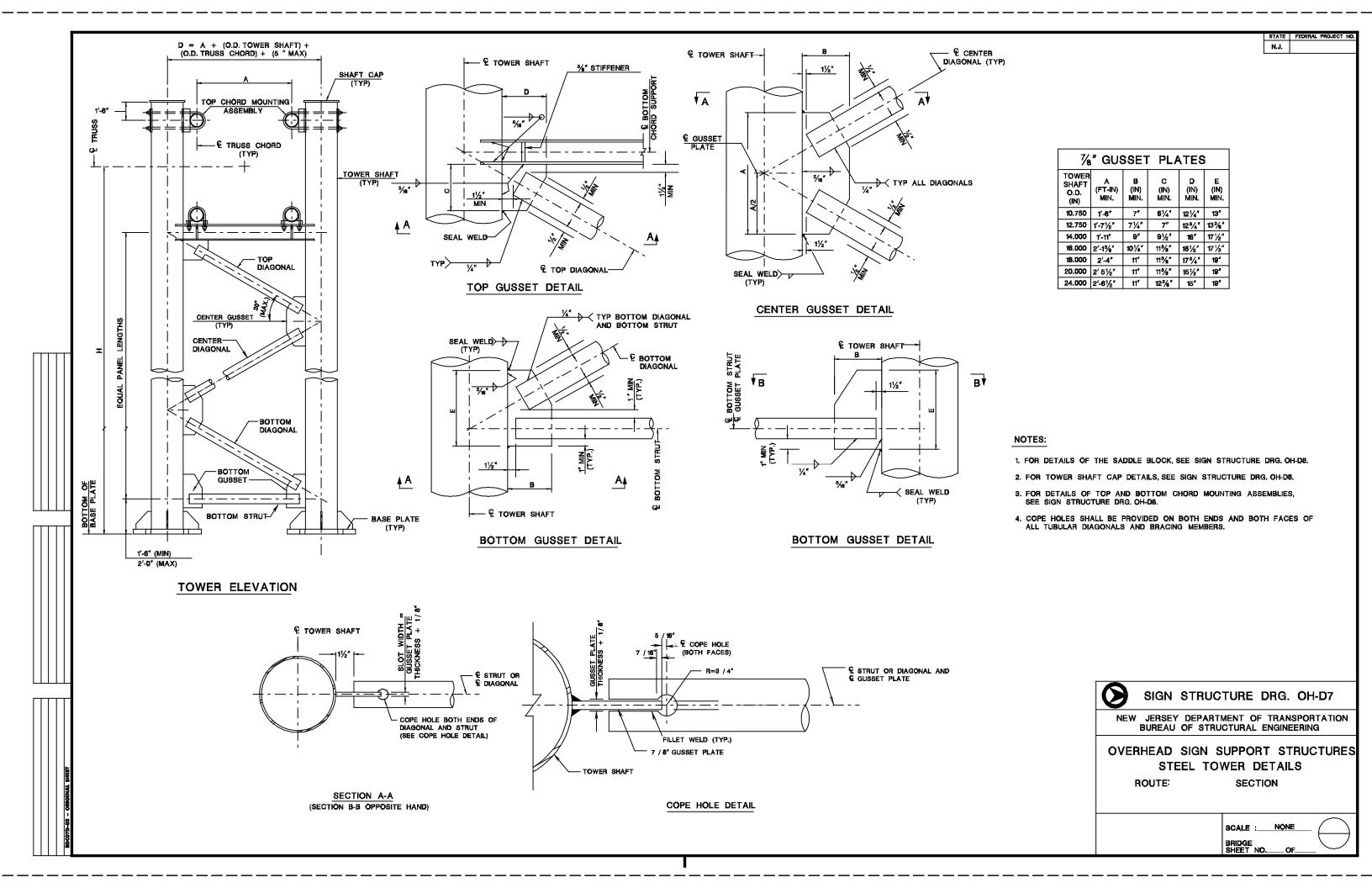
- CHORD SPLICE STIFFENER PLATES ARE TO BE USED FOR CHORD SPLICES LOCATED AT MIDSPAN (CENTERLINE) OF TRUSS ONLY (I.B. 2-SEGMENT, 4-SEGMENT AND 6-SEGMENT SPANS). (SEE CHORD SPLICE ASSEMBLY WELD DETAIL FOR MORE INFORMATION).
- 2. CHORD SPLICE STIFFENER PLATES ARE SHOWN HORIZONTAL. STIFFENER PLATES MAY BE REPOSITIONED, AS NECESSARY, TO PROVIDE SUFFICIENT CLEARANCE FOR BOLTING OF THE SPLICE, BUT THEY SHALL ALWAYS BE POSITIONED OPPOSITE TO EACH OTHER AS SHOWN.

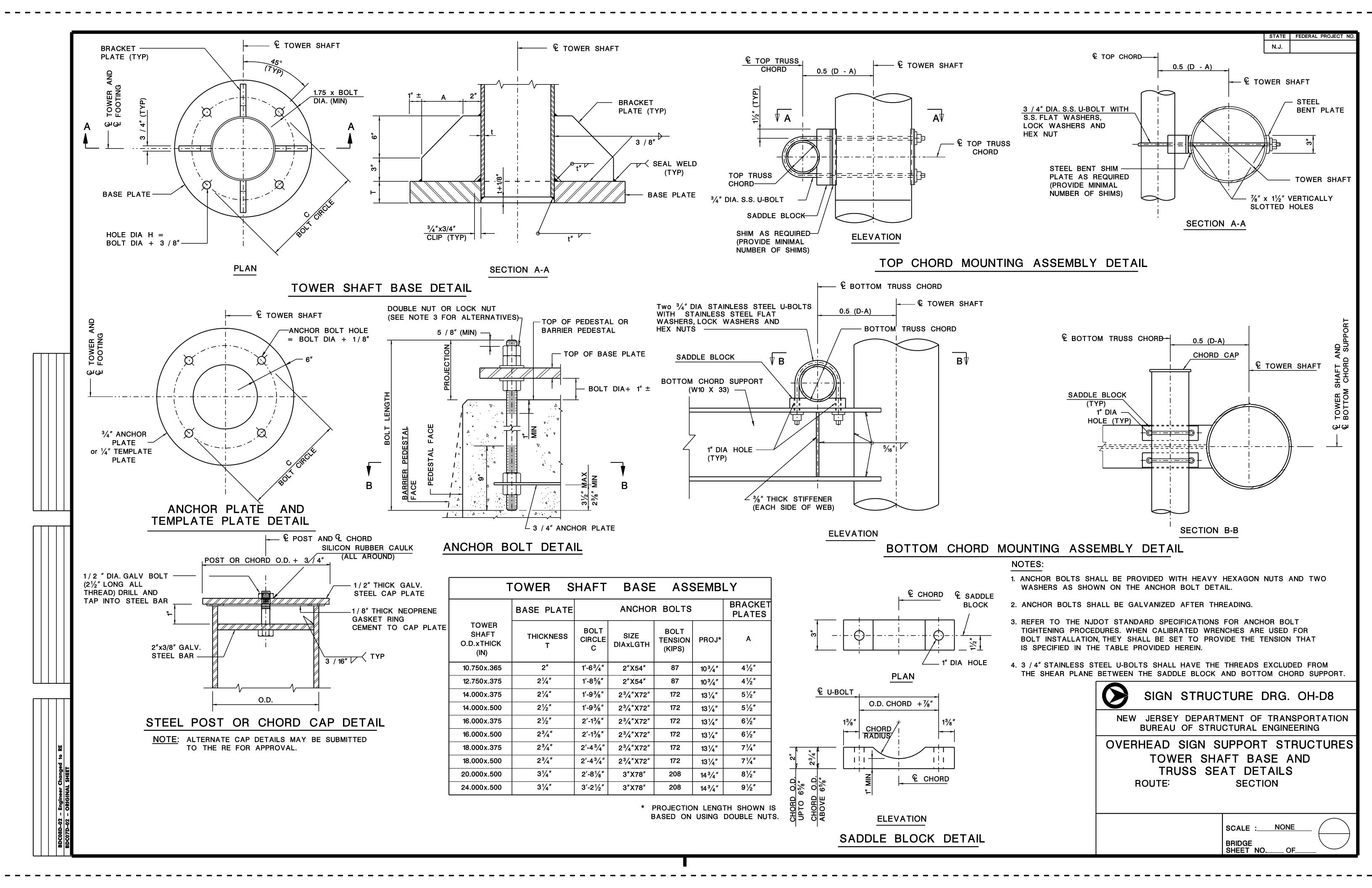
	TRUS	S CHOR	D S	PLICE	S					
	SPLICE	PLATES	SPLICE BOLTS							
CHORD O.D.XTHICK (IN)	THICKNESS T	WELD SIZE	No. OF BOLTS	BOLT CIRCLE C	DIAMETER	BOLT TENSION (KIPS)				
3.500x.216	11/2"	1/4"	6	61/6"	3/4"	28				
4.000x.226	11/2"	1/4"	6	65%*	3/4"	28				
4.500x.237	11/2"	1/4"	6	71/6"	3/4"	28				
5.5 6 3x.25 8	11/2"	9/32"	6	9"	1"	51				
6.625x.280	2"	5/32"	8	101/6"	1″	51				
8.625x.322	2"	5/16"	8	1′-1″	11/4"	71				
10.750x.365	2"	11/32 "	8	1'-4"	11/2"	103				
12.750x.375	2"	%*	10	1'-6"	1½"	103				
14.000x.375	2"	%*	10	1'-71/4"	1½"	103				

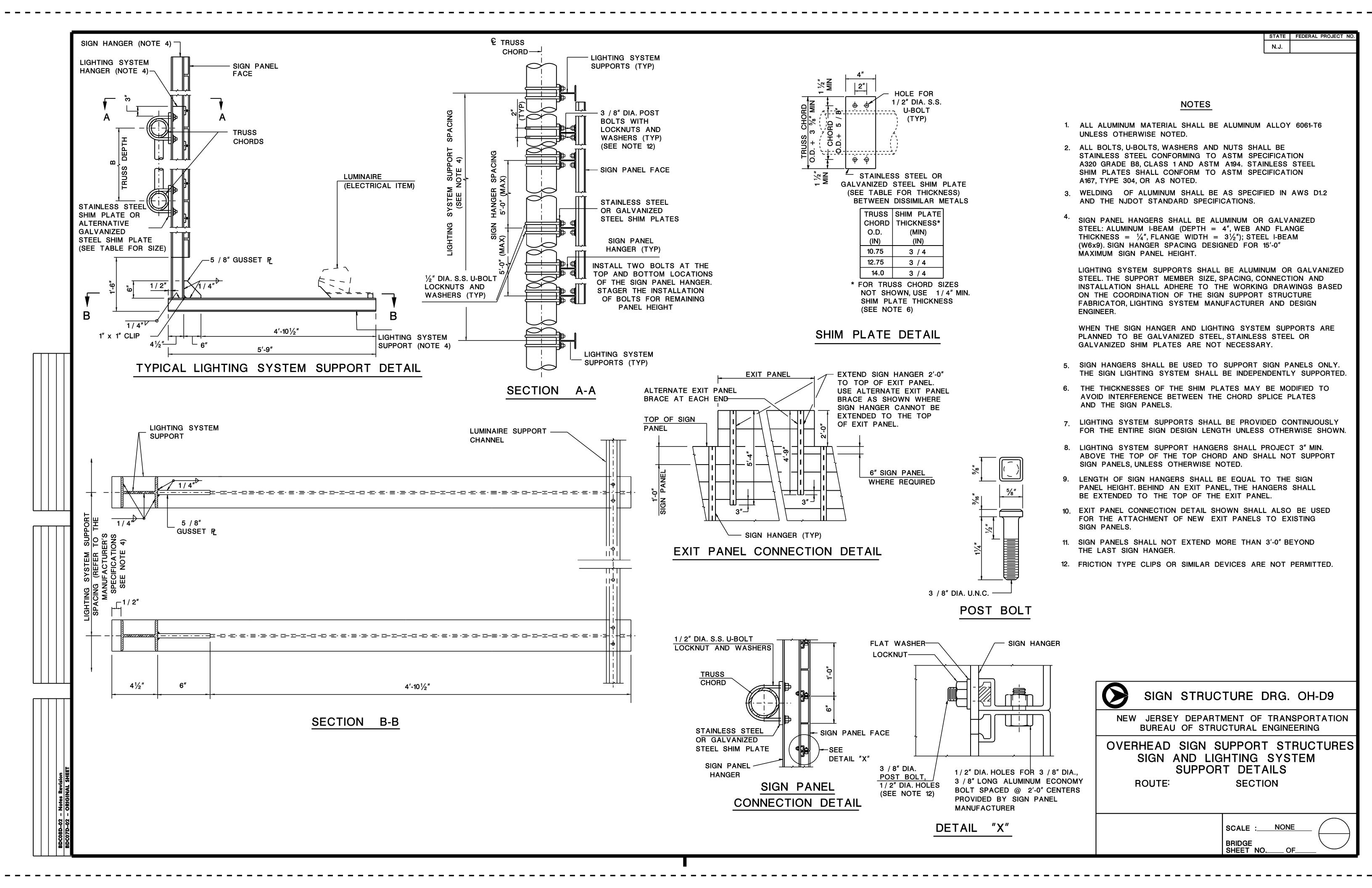
NOTES:

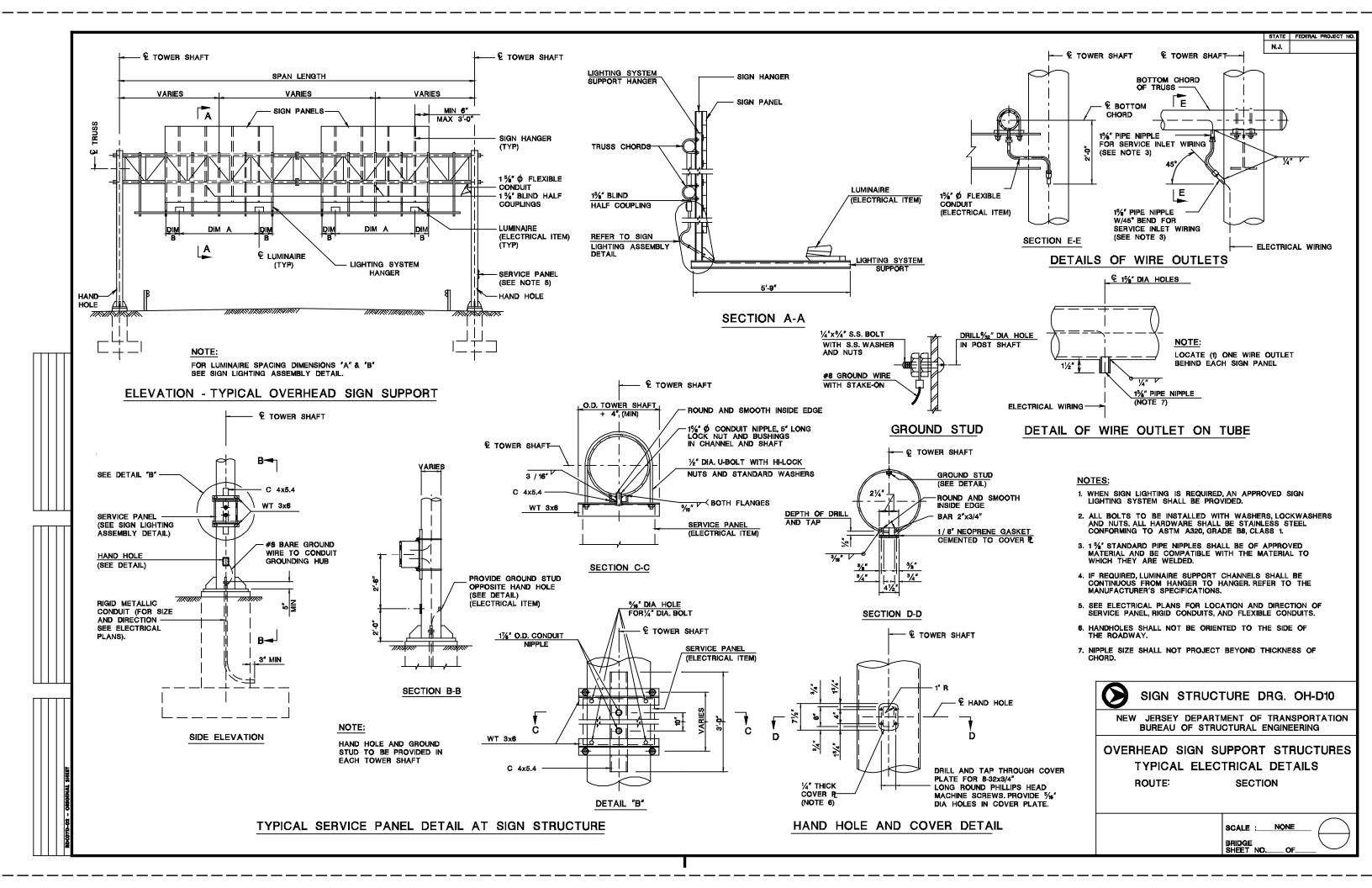
- 1. ASTM A325 SPLICE BOLTS SHALL BE HEAVY HEXAGON TYPE AND SHALL BE FURNISHED WITH HEAVY HEXAGON NUTS AND WASHERS.
- 2. THE THREADED PORTION OF THE SPLICE BOLTS SHALL BE EXCLUDED FROM THE SHEAR PLANE OF THE SPLICE.
- 3. THE PROVISIONS OF THE NJDOT STANDARD SPECIFICATIONS SHALL BE FOLLOWED IN FURNISHING THE REQUIRED CHORD SPLICE ASSEMBLY
- 4. REFER TO THE NJDOT STANDARD SPECIFICATIONS FOR SPLICE BOLT TIGHTENING PROCEDURES. WHEN CALIBRATED WRENCHES ARE USED FOR BOLT INSTALLATION, THEY SHALL BE SET TO PROVIDE THE TENSION THAT IS SPECIFIED IN THE TABLE PROVIDED HEREIN.

SIGN STRUCTURE DRG. OH-D6


NEW JERSEY DEPARTMENT OF TRANSPORTATION BUREAU OF STRUCTURAL ENGINEERING


OVERHEAD SIGN SUPPORT STRUCTURES
STEEL TRUSS DETAILS - SHEET 2
ROUTE: SECTION


SCALE : NONE


BRIDGE
SHEET NO. OF

GENERAL NOTES

A. DESIGN CRITERIA

DESIGN SPECIFICATIONS

2001 AASHTO STANDARD SPECIFICATIONS FOR STRUCTURAL SUPPORTS FOR HIGHWAY SIGNS, LUMINAIRES AND TRAFFIC SIGNALS WITH CURRENT INTERIM.

NJDOT BRIDGES AND STRUCTURES DESIGN MANUAL, CURRENT EDITION.

DESIGN WIND VELOCITY --- 80 MPH; (ABOVE AASHTO SPECIFICATIONS APPENDIX C) DESIGN ICE LOAD ---- 3 PSF

FATIGUE LOADS

ALL STRUCTURAL DETAILS HAVE BEEN ANALYZED AGAINST FATIGUE CATEGORY II IMPORTANCE FACTOR VALUES AS DESIGNATED IN THE AVOVE AASHTO SPECIFICATIONS.

VARIABLE MESSAGE SIGN (VMS) STRUCTURES

REFER TO THE NJDOT BRIDGES AND STRUCTURES DESIGN MANUAL WHEN FURNISHING SUPPORT STRUCTURES FOR VARIABLE MESSAGE SIGNS (VMS).

CONCRETE DESIGN STRESSES

SPECIFIED COMPRESSIVE STRENGTH (f'c) (CLASS B) ---- 3,000 PSI EXTREME FIBER COMPRESSIVE STRESS (fc) ----- 1,200 PSI

REINFORCEMENT STEEL DESIGN STRESS

YIELD STRENGTH (fy) (A615, GRADE 60) ---- 60 KSI TENSILE STRESS (fs)

STRUCTURAL STEEL DESIGN STRENGTHS

YIELD STRENGTH (Fy)

PIPES (A53, TYPE S OR TYPE E, GRADE B) ---- 35 KSI (MIN.) * (API 5L, GRADE B) ---- REFER TO API SPECIFICATIONS

* FABRICATORS ARE ADVISED THAT REPAIRS TO THE MATERIALS WILL NOT BE PERMITTED. IF TEARING CRACKING OR ANY DEFECT OCCURS, THE MATERIAL WILL BE REQUIRED TO BE REPLACED.

MAXIMUM FOUNDATION DESIGN BEARING PRESSURE ---- 2.5 KSF

FOOTINGS ARE DESIGNED SUCH THAT A MINIMUM OF 75 PERCENT OF THE FOOTING IS ALWAYS IN CONTACT; A MAXIMUM OF 25 PERCENT OF THE FOOTING IS IN UPLIFT.

BEARING PILES SHALL BE CAST-IN-PLACE CONCRETE PILES WITH A MINIMUM BEARING CAPACITY EQUAL TO 50 KIPS.

REFER TO THE NJDOT BRIDGES AND STRUCTURES DESIGN MANUAL FOR ALTERNATE FOUNDATION DESIGN CRITERIA.

PERMANENT CAMBER EQUAL TO L/1000 HAS BEEN PROVIDED IN ADDITION TO THE DEAD LOAD CAMBER. B. MATERIALS

STEEL PIPE SHALL BE CERTIFIED BY MILL TEST REPORT TO MEET ASTM SPECIFICATION A53, TYPE E OR S, GRADE B WITH THE EXCEPTION THAT API 5L, GRADE B MAY BE USED WHEN THE SPECIFIED WALL THICKNESS IS GREATER THAN 1/2". ONLY ELECTRICAL RESISTANCE WELDED (ERW) MANUFACTURED SINGLE SEAM PIPE IS PERMITTED. HOWEVER, WHEN THE REQUIRED PIPE SIZE IS GREATER THAN 24', DOUBLE SEAM PIPE MAY BE USED. A MILL TEST REPORT MUST BE PROVIDED, CERTIFIED AND SIGNED BY THE PIPE MANUFACTURER, CONTAINING PHYSICAL AND CHEMICAL PROPERTIES AND THE MANUFACTURING PROCESS USED TO PRODUCE THE PIPE.

ALL OTHER STEEL SHALL CONFORM TO ASTM SPECIFICATION A709 (AASHTO M270) GRADE 38 OR GRADE 50. ALL SPECIFICIFIED STEEL PLATES SHALL MEET SUPPLEMENTARY REQUIREMENTS FOR NOTCH TOUGHNESS (CHARPY TESTING, ZONE #2)

UPON COMPLETION OF FABRICATION, THE FABRICATOR SHALL PROVIDE A NOTARIZED CERTIFICATION OF COMPLIANCE AS PER THE REQUIREMENT OF THE NJDOT STANDARD SPECIFICATIONS FOR ROAD AND BRIDGE CONSTRUCTION, INCLUDING A LEGIBLE COPY OF ALL MILL TEST REPORTS FOR MATERIALS INCORPORATED INTO THE WORK, ALSO, A COPY OF QC REPORTS SHALL BE PORVIDED.

STEEL ANCHOR BOLTS, NUTS AND WASHERS SHALL CONFORM TO ASTM SPECIFICATION F1554, GRADE 36 OR 55. THE ANCHOR BOLTS SHALL BE HOT DIP GALVANIZED AS PER ASTM SPECIFICATION A153, CLASS C.

CHORD SPLICE ASSEMBLY FASTENERS SHALL BE HIGH STRENGTH STEEL BOLTS CONFORMING TO ASTM SPECIFICATION A325 AND SHALL BE HOT DIP GALVANIZED AS PER ASTM SPECIFICATION A153, CLASS C. ALL OTHER FASTENERS SHALL BE STAINLESS STEEL CONFORMING TO ASTM SPECIFICATION A320, GRADE B8, CLASS 1.

CAPS FOR THE ENDS OF CHORDS AND TOPS OF POSTS SHALL BE STEEL CONFORMING TO ASTM SPECIFICATION A36 AND SHALL BE HOT DIP GALVANIZED IN ACCORDANCE WITH ASTM SPECIFICATION A123.

WELDING OF STEEL SHALL BE AS SPECIFIED IN AWS D1.1, CURRENT EDITION, AND IN THE NJDOT

AFTER COMPLETE FABRICATION EACH STEEL SECTION SHALL BE HOT DIP GALVANIZED ACCORDING TO THE REQUIREMENTS OF ASTM SPECIFICATION A123 AS MODIFIED BY THE NJDOT STANDARD

SPECIFICATIONS. A SINGLE DIP GALVANIZING PROCESS IS PREFERRED IF SIZE PERMITS.

REFER TO THE NJDOT STANDARD SPECIFICATIONS FOR CRITERIA ON FURNISHING MATERIALS

II. ALUMINUM

ALUMINUM SHALL CONFORM TO THE ASTM SPECIFICATIONS AND ALLOYS LISTED BELOW:

APPLICATION	ASTM SPECIFICATION	ASTM ALL
ROLLED OR EXTRUDED SHAPES	B308	6061 - T6
PLATES	B209	6061 - T6
DRAWN SEAMLESS TUBES	B210	6061 - T6
EXTRUDED TUBES	B221	6061 - T6

WELDING OF ALUMINUM SHALL BE AS SPECIFIED IN AWS D1.2, CURRENT EDITION, AND IN THE NJDOT STANDARD SPECIFICATIONS.

III. REINFORCEMENT STEEL

ALL REINFORCEMENT STEEL SHALL BE ASTM A615, GRADE 60.

IV. CONCRETE

ALL CONCRETE SHALL BE "CLASS B" AS DEFINED IN THE NJDOT STANDARD SPECIFICATIONS. UNLESS OTHERWISE SPECIFIED BY THE DESIGNER.

V. SIGN LIGHTING

WHEN NECESSARY, AN APPROVED SIGN LIGHTING SYSTEM MAY BE USED AND THE DETAILS OF THE SYSTEM SHALL BE PROVIDED WITH WORKING DRAWING SUBMISSION, NJDOT TRAFFIC SIGNAL AND SAFETY ENGINEERING SHOULD BE CONTACTED FOR REQUIREMENTS REGARDING THE PROVISION OF SIGN LIGHTING OR REFLECTORIZED SIGN PANELS ON A PROJECT TO PROJECT BASIS.

VI. SIGN PANEL AND LIGHTING SYSTEM SUPPORTS

SIGN HANGERS SHALL BE ALUMINUM OR STEEL, LUMINAIRE SUPPORTS SHALL BE ALUMINUM OR STEEL. THE STEEL SHALL CONFORM TO ASTM A709 GRADE 36 OR GRADE 50 AND SHALL BE HOT DIP GALVANIZED IN ACCORDANCE WITH ASTM SPECIFICATION A123. STEEL SURFACES SHALL BE PREVENTED FROM COMING INTO CONTACT WITH ALUMINUM SURFACES BY MEANS OF APPROVED PADS PLACED BETWEEN THE DISSIMILAR METALS. PADS SHALL BE STAINLESS STEEL CONFORMING TO ASTM SPECIFICATION A240. TYPE 304 OR APPROVED EQUAL, CONNECTING U BOLTS SHALL BE STAINLESS STEEL CONFORMING TO THE NJDOT STANDARD SPECIFICATIONS, INSTALLATION OF SIGN LIGHTING SYSTEM SHALL BE ACCORDING TO THE MANUFACTURER'S SPECIFICATIONS.

THE PROVISION OF MAINTENANCE WALKWAY IS NOT REQUIRED.

INSTRUCTIONS FOR DESIGNERS

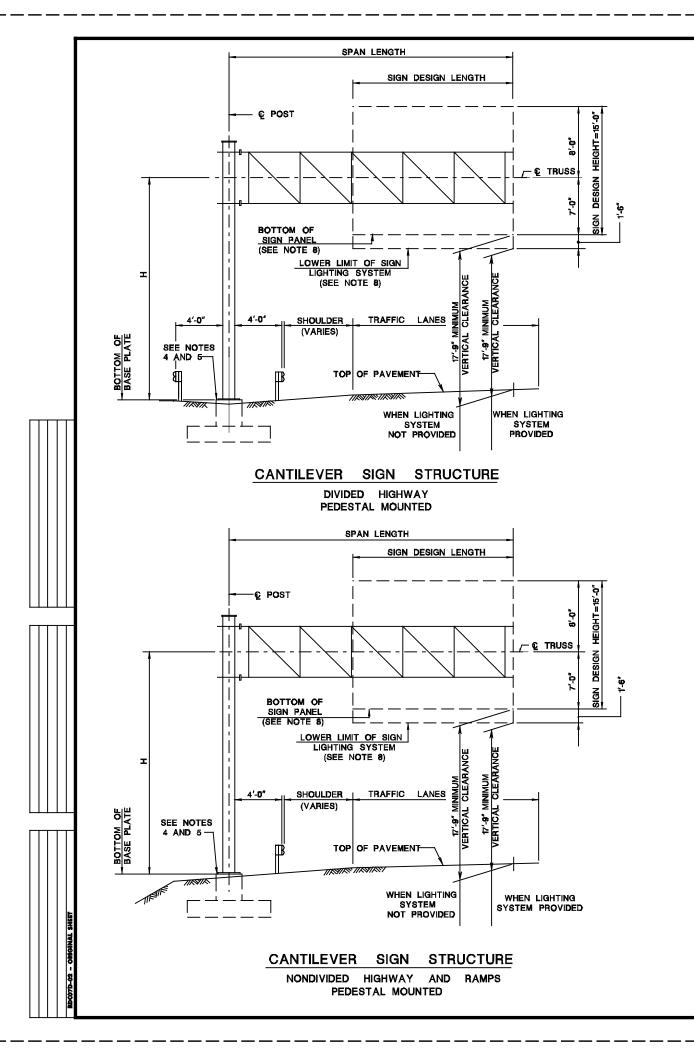
- STEP #1: PREPARE A SIGN SUPPORT LOCATION PLAN AND ELEVATION VIEW FOR EACH STRUCTURE.
- STEP #2: ENTER THE SIGN SUPPORT NUMBER AND STATION IN THE SCHEDULE OF STRUCTURES ON SIGN STRUCTURE DRG. CA-D2 OF THE CONTRACT PLANS.
- STEP #3: DETERMINE THE TRUSS SPAN LENGTH AND HEIGHT OF THE STRUCTURE USING SIGN STRUCTURE DRG. CA-G2. RECORD THE ACTUAL TRUSS SPAN LENGTH IN THE SCHEDULE OF STRUCTURES ON SIGN STRUCTURE DRG. CA-D2 OF THE CONTRACT PLANS. ROUND THIS NUMBER TO THE NEXT HIGHER LISTED SPAN LENGTH IF THE TRUSS SPAN LENGTH IS OVER 40'-0", PROCEED TO STEP #16.
- STEP #4: DETERMINE THE SIGN DESIGN LENGTH USING SIGN STRUCTURE DRG. CA-G2. DIVIDE THE SIGN DESIGN LENGTH BY THE TRUSS SPAN LENGTH DETERMINED IN STEP #3 TO OBTAIN THE PERCENT SIGN DESIGN LENGTH. USE THE NEXT HIGHER PERCENT FROM THOSE LISTED (40%, 60%, 70%, OR 80%), IF THE PERCENT IS MORE THAN 80 PROCEED TO STEP #5. OTHERWISE, SKIP TO STEP #6.
- STEP #5: TO SELECT A STANDARD DESIGN DIVIDE THE SIGN DESIGN LENGTH BY 80% AND ROUND THIS NUMBER TO THE NEXT HIGHER LISTED SPAN LENGTH IF THE NUMBER IS LESS THAN 40'-0", RETURN TO STEP #4. OTHERWISE, PROCEED TO STEP #16.
- STEP #6: HAVING OBTAINED THE TRUSS SPAN LENGTH (FROM STEP #3 OR STEP #5) AND THE PERCENT SIGN DESIGN LENGTH (FROM STEP #4), SELECT THE TRUSS SIZE AND THE TRUSS ELEMENT SIZES (I.E., CHORDS, DIAGONALS, AND STRUTS) USING THE APPROPRIATE DESIGN TABLES ON SIGN STRUCTURE DRG. CA-G3. RECORD THE DATA IN THE SCHEDULE OF STRUCTURES ON SIGN STRUCTURE DRG. CA-D2 OF THE CONTRACT PLANS.
- STEP #7: WITH THE HEIGHT OF THE STRUCTURE OBTAINED IN STEP #3 AND USING THE ELEVATION OF THE BOTTOM OF BASE PLATE, DETERMINE THE ELEVATION OF THE CENTER LINE OF THE TRUSS AND THE DESIGN HEIGHT OF THE POST. IF THE POST HEIGHT IS MORE THAN 40'-0", SKIP TO STEP #16. OTHERWISE, SELECT THE NEXT HIGHER NUMBER FROM THOSE LISTED (25, 30, OR 40 FEET), USING THE SAME TABLE USED IN STEP #6. SELECT THE SIZE OF THE POST (I.E., OUTSIDE DIAMETER AND THICKNESS). RECORD THE DATA IN THE SCHEDULE OF STRUCTURES ON SIGN STRUCTURE DRG. CA-D2 OF THE CONTRACT DRAWINGS.
- STEP #8: CHECK AVAILABILITY OF SHAPES SELECTED IN STEPS #6 AND #7.
- STEP #9: USING SOIL TEST AND SOIL BORING INFORMATION, DETERMINE THE ALLOWABLE SOIL PRESSURE AND THE REQUIRED DEPTH OF EQOTINGS.

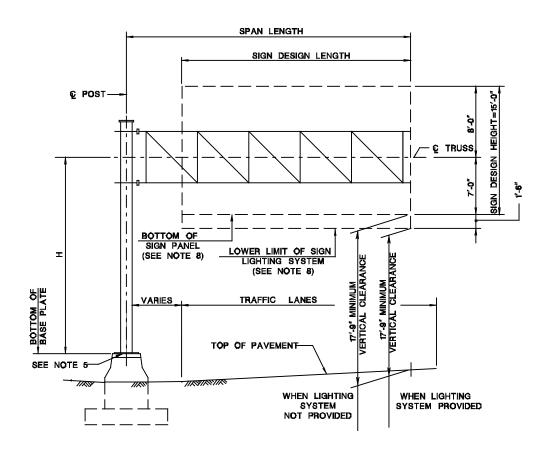
- STEP #10: DETERMINE THE PEDESTAL HEIGHT IF THE PEDESTAL HEIGHT IS BETWEEN 4'-0" AND 6'-0". PROCEED TO STEP #11. OTHERWISE, SKIP TO STEP #16. THE PREFERRED PEDESTAL HEIGHT OF 4'-6' IS TO BE USED WHENEVER POSSIBLE. WHEN USING A BARRIER PEDESTAL, THE "COVERED" HEIGHT MUST BE 3'-Q". OTHERWISE, SKIP TO STEP # 16
- STEP #11: DETERMINE THE REQUIRED FOOTING SIZES USING THE DESIGN TABLE ON SIGN STRUCTURE DRGS. CA-G3. RECORD THE DATA IN THE SIGN SUPPORT FOUNDATION TABLE ON SIGN STRUCTURE DRG. CA-D2 OF THE CONTRACT PLANS.
- STEP #12: DETERMINE THE REQUIRED FOOTING DESIGN DATA USING SIGN STRUCTURE DRG. CA-G5. RECORD THIS DATA IN THE SIGN SUPPORT FOUNDATION TABLE ON SIGN STRUCTURE DRG. CA-D2 OF THE CONTRACT PLANS, IF THE ALLOWABLE SOIL PRESSURE IS GREATER THAN 2.5 KSF, SKIP TO STEP #14. OTHERWISE, PROCEED TO STEP #13.
- STEP #13: SELECT THE NUMBER OF CAST-IN-PLACE CONCRETE PILES NEEDED TO SUPPORT THE STRUCTURE USING SIGN STRUCTURE DRG. CA-G5. RECORD THE DATA IN THE SIGN SUPPORT FOUNDATION TABLE ON SIGN STRUCTURE DRG. CA-D2 OF THE CONTRACT PLANS.
- STEP #14: DETERMINE WHETHER A PEDESTAL OR BARRIER PEDESTAL IS TO BE USED FOR THE FOUNDATION SELECT ALL PEDESTAL OR BARRIER PEDESTAL DATA FROM SIGN STRUCTURE DRG. CA-G4. RECORD THE DATA IN THE SIGN SUPPORT FOUNDATION TABLE ON SIGN STRUCTURE DRG. CA-D2 OF THE CONTRACT PLANS.
- STEP #15: THE DESIGN OF THE CANTILEVER SIGN SUPPORT STRUCTURE IS COMPLETE. DISREGARD STEP #16
- STEP #16: THE PARAMETERS OF THE SIGN SUPPORT STRUCTURE EXCEED THE RESTRICTIONS RELATED TO THESE STANDARD DESIGN TABLES, DESIGN THE SIGN SUPPORT STRUCTURE ON AN INDIVIDUAL BASIS.

INDEX OF DRAWINGS
DESCRIPTIÓN
GENERAL INFORMATION
GENERAL CRITERIA
DESIGN TABLES - STEEL TRUSSES AND STEEL POSTS
PEDESTAL AND BARRIER PEDESTAL DESIGN TABLES AND DETAILS
FOOTING DESIGN TABLES AND DETAILS

THIS PLATE FOR DESIGN INFORMATION ONLY. DO NOT INCLUDE IN CONTRACT PLANS.

SIGN STRUCTURE DRG. CA-G1


NEW JERSEY DEPARTMENT OF TRANSPORTATION BUREAU OF STRUCTURAL ENGINEERING


CANTILEVER SIGN SUPPORT STANDARDS

GENERAL INFORMATION

SCALE : NONE

CANTILEVER SIGN STRUCTURE

DIVIDED HIGHWAY BARRIER MOUNTED

NOTES:

- 1. THE SIGN DESIGN LENGTH EXTENDS FROM THE END OF THE CANTILEVER TO THE EDGE OF THE USEABLE TRAFFIC LANES.
- 2. THE BOTTOM EDGE OF ALL SIGN PANELS SHALL BE LEVEL AND AT THE SAME ELEVATION.
- 3. THE TOP EDGE OF ALL SIGN PANELS SHALL PROJECT NOT LESS THAN 6' ABOVE THE TOP OF THE TOP CHORD. THE SIGN PANEL SIZES AND LOCATIONS SHALL BE VERIFIED AND APPROVED BY THE DESIGNER.
- 4. TOP OF PEDESTALS SHALL BE SET 4' ABOVE THE FINISHED GROUND LINE.
- 5. THE ELEVATION OF THE BOTTOM OF THE POST BASE PLATE SHALL BE SET AT (ANCHOR BOLT DIAMETER + 1") ABOVE TOP OF PEDESTAL OR TOP OF BARRIER PEDESTAL (SEE DRG CA-06).
- 6. THE TRUSS SHALL BE A TWO-CHORD PLANAR TRUSS.
- 7. IF THE POST FOUNDATION IS WITHIN THE CLEAR ZONE, IT SHALL BE PROTECTED BY GUIDE RAIL, BARRIER OR OTHER SUITABLE MEANS, DEPENDING UPON SITE CONDITIONS.
- 8. THE 17'-9" MINIMUM VERTICAL UNDERCLEARANCE SHALL BE PROVIDED TO THE BOTTOM OF SIGN LIGHTING SYSTEM OR TO THE BOTTOM OF SIGN PANEL WHEN LIGHTING SYSTEM IS NOT PROVIDED.

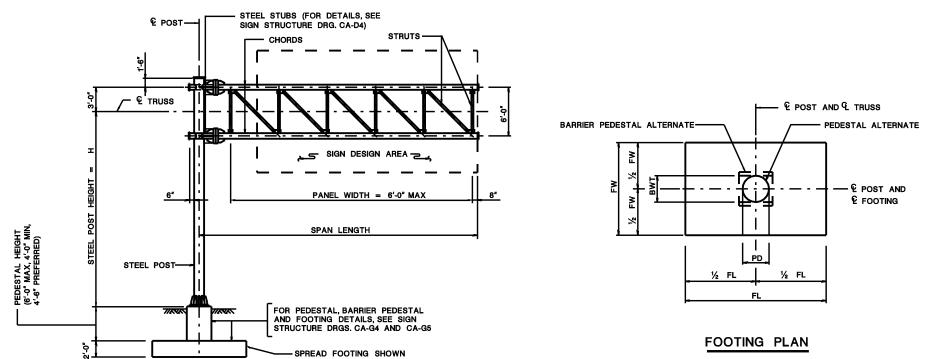
THIS PLATE FOR DESIGN INFORMATION ONLY. DO NOT INCLUDE IN CONTRACT PLANS.

SIGN STRUCTURE DRG. CA-G2

NEW JERSEY DEPARTMENT OF TRANSPORTATION BUREAU OF STRUCTURAL ENGINEERING

CANTILEVER SIGN SUPPORT STANDARDS

GENERAL CRITERIA


SCALE :

2

5

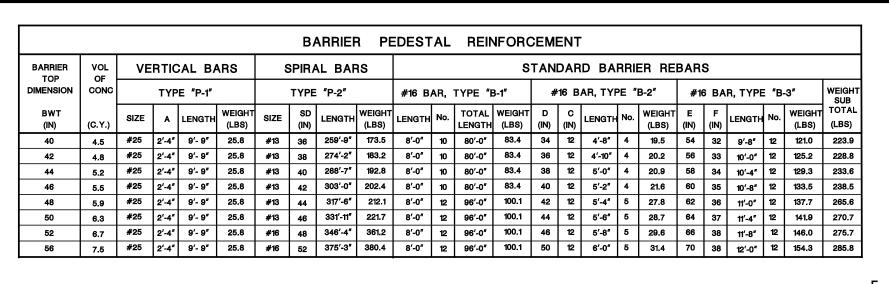
BRIDGE SHEET NO.

LENGTH	LENGTH	STEEL	L TRUSS	MEMBER	RS	ST	EEL POS	STS			PEDE	STAL	s			BARR	IER	PEDES	STAL	.s	FOOTINGS							
	–				BER		POST HEIGHT			= 25 FT	Н =	30 FT	Н =	H = 40 FT		= 25 FT	Н =	30 FT	H = 40 F		H = 25 F	H = 30 FT	H = 40					
SPAN	SIGN	CHORDS	STRUTS	STEEL STUBS	CAM	H = 25FT	H = 30FT	H = 40FT	PD	VERT REBARS	PD	VERT REBARS	PD	VERT REBARS	BWT	VERT REBARS	BWT	VERT REBARS	вwт	VERT REBARS	FLxFW	FLxFW	FLxFW					
	΄ ΄ Γ) (%)	O.D.xTHICK (IN)	O.D.xTHICK (IN)	O.D.xTHICK (IN)	(IN)	O.D.xTHICK (IN)	O.D.xTHICK (IN)	O.D.xTHICK (IN)	(IN)	No. & SIZE	(IN)	No. & SIZE	(IN)	No. & SIZE	(IN)	No. & SIZE	(IN)	No. & SIZE	(IN)	No. & SIZE								
	40	8.625x.322	2.875x.276	8.625x.322	3½	14.000x.500	16.000x.500	18.000x.500	40	21-#25	42	23-#25	44	25-#25	40	21-#25	42	23-#25	44	25-#25	11'-6"x8'	11'-6"x8'	12'-6"x8'					
	50	8.625x.500	2.875x.276	8.625x.500	31/8	16.000x.500	16.000x.500	18.000x.500	42	23-#25	42	25-#25	44	27-#25	42	23-#25	42	25-#25	44	27-#25	11'-6"x8'	12'-6"x8'	13'x8'					
20	60	8.625x.500	2.875x.276	8.625x.500	23/4	16.000x.500	18.000x.500	20.000x.500	42	24-#25	44	26-#25	46	29-#25	42	24-#25	44	26-#25	46	29-#25	12'-6"x8'	13'x8'	14'x10'					
	70	8.625x.500	2.875x.276	8.625x.500	23/8	18.000x.500	18.000x.500	20.000x.500	44	26-#25	44	27-#25	46	30-#25	44	26-#25	44	27-#25	46	30-#25	13'x8'	13'x9'	14'x10'					
	80	8.625x.500	2.875x.276	8.625x.500	2	18.000x.500	20.000x.500	24.000x.500	44	27-#25	46	30-#25	48	33-#25	44	27-#25	46	30-#25	48	33-#25	13'x9'	14'x10'	15'x10'					
	40	12.750x.375	3.500x.300	12.750x.375	6	20.000x.500	20.000x.500	24.000x.500	46	28-#25	46	30-#25	48	33-#25	46	28-#25	46	30-#25	48	33-#25	13'x9'	14'x9'	14'x10'					
	50	12.750x.500	4.000x.318	12.750x.500	5½	20.000x.500	24.000x.500	24.000x.500	46	29-#25	48	33-#25	50	36-#25	46	29-#25	48	33-#25	50	36-#25	14'x9'	14'x10'	15'x10'-6"					
30	60	12.750x.500	4.000x.318	12.750x.500	43/4	24.000x.500	24.000x.500	24.000x.500	48	31-#25	50	35-#25	50	37-#25	48	31-#25	50	35-#25	50	37-#25	14'x10'	15'x10'-6"	16'-6"x10'-6					
	70	12.750x.500	4.000x.318	12.750x.500	4%	24.000x.500	24.000x.500	26.000x.500*	48*	31-#25	50*	36-#25	52*	41-#25	48*	31-#25	50*	36-#25	52*	41-#25	15'x10'	15'-6"x10'-6"	16'-6"x11'-6"					
	80	12.750x.500	4.000x.318	12.750x.500	3½	24.000x.500	26.000x.500*	26.000x.750*	50*	34-#25	52*	39-#25	52*	42-#25	50*	34-#25	52*	39-#25	52*	42-#25	15'x10'-6"	16'-6"x10'-6"	17'-6"x11'-6"					
	40	18.000x.375	5.563x.375	18.000x.375	8	24.000x.500	26.000x.500*	26.000x.750*	50*	30-#25	52*	35-#25	52*	37-#25	50*	30-#25	52*	35-#25	52*	37-#25	15'x10'-6"	16'-6"x10'-6"	16'-6"x11'-6"					
	50	18.000x.500	5.563x.375	18.000x.500	9	26.000x.500*	26.000x.750*	26.000x.750*	52*	33-#25	52*	35-#25	52*	37-#25	52*	33-#25	52*	35-#25	52*	37-#25	16'-6"x11'-6"	16'-6"x11'-6"	17'x12'-6"					
40	60	18.000x.500	5.563x.375	18.000x.500		26.000x.750*	26.000x.750*	26.000x.750*	52*	33-#25	52*	35-#25	52*	38-#25	52*	33-#25	52*	35-#25	52*	38-#25	16'-6"x11'-6"	17'x12'-6"	18'x12'-6"					
	70	18.000x.500	5.563x.375	18.000x.500	_	26.000x.750*	26.000x.750*	26.000x.750*	52*	33-#25	52*	35-#25	52*	38-#25	52*	33-#25	52*	35-#25	52*	38-#25	17'x11'-6"	17'x12'-6"	18'x13'					
	80	18.000x.500	5.563x.375	18.000x.500	6%	26.000x.750*	26.000x.750*	26.000x.875*	52*	33-#25	52* Ee	37-#25	52* 56	40-#25	52*	33-#25	52* 56	37-#25	52* 56	40-#25	17'x12'-6"	18'x12'-6"	19'x13'					
														<u> </u>														
30	70	12.750x.500	4.000x.318	12.750x.500	43/8	24.000x.500	24.000x.500	30.000x.500	48	31-#25	50	36-#25	56	41-#25	48	31-#25	50	36-#25	56	41-#25	15'x10'	15'-6"x10'-6"	16'-6"x11'-					
"	80	12.750x.500	4.000x.318	12.750x.500	3½	24.000x.500	30.000x.500	30.000x.625	50	34-#25	56	39-#25	56	42-#25	50	34-#25	56	39-#25	56	42-#25	15'x10'-6"	16'-6"x10'-6"	17'-6"x11'-					
	40	18.000x.375	5.563x.375	18.000x.375	8	24.000x.500	30.000x.500	30.000x.625	50	30-#25	56	35-#25	56	37-#25	50	30-#25	56	35-#25	56	37-#25	15'x10'-6"	16'-6"x10'-6"	16'-6"x11'-					
	50	18.000x.500	5.563x.375	18.000x.500	9	30.000x.500	30.000x.625	30.000x.625	56	33-#25	56	35-#25	56	37-#25	56	33-#25	56	35-#25	56	37-#25	16'-6"x11'-6"	16'-6"x11'-6"	17'x12'-6					
40	60	18.000x.500	5.563x.375	18.000x.500	7½	30.000x.625	30.000x.625	30.000x.625	56	33-#25	56	35-#25	56	38-#25	56	33-#25	56	35-#25	56	38-#25	16'-6"x11'-6"	17'x12'-6"	18'x12'-6					
	70	18.000x.500	5.563x.375	18.000x.500	7½	30.000x.625	30.000x.625	30.000x.625	56	33-#25	56	35-#25	56	38-#25	56	33-#25	56	35-#25	56	38-#25	17'x11'-6"	17′x12′-6″	18'x13'					
			5.563x.375	18.000x.500	6%	30.000x.625	30.000x.625	30.000x.625	56	33-#25	56	37-#25	56	40-#25	56	33-#25	56 l	37-#25	56	40-#25	17'x12'-6"	18'x12'-6"	19'x13'					

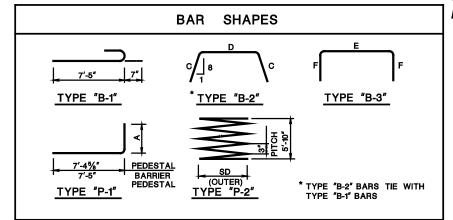
ELEVATION

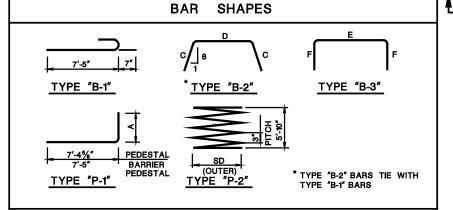
- 1. % SIGN LENGTH = $\frac{\text{SIGN DESIGN LENGTH}}{\text{SPAN LENGTH}} \times 100$
- 2. DUE TO THE AVAILABILITY ISSUE OF 26" O.D. STEEL POST SIZES, UNTIL FURTHER NOTICE FROM NJDOT THE DESIGNER IS ADVISED TO USE 30" O.D. POST SIZES. ACCORDINGLY, THE BOLT CIRCLES (SHEET CA-D6), PEDESTALS AND BARRIER PEDESTALS (CA-G3 & CA-G4), POST-STUB CONNECTION CUTTING CURVATURE (CA-D4), AND ANY NECESSARY DETAILS SHALL TAKE 30" O.D. POST SIZE INTO ACCOUNT.

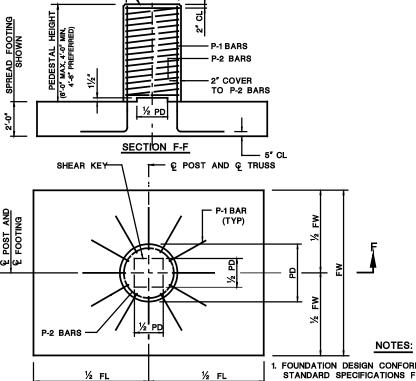
THIS PLATE FOR DESIGN INFORMATION ONLY. DO NOT INCLUDE IN CONTRACT PLANS.



SIGN STRUCTURE DRG. CA-G3


NEW JERSEY DEPARTMENT OF TRANSPORTATION BUREAU OF STRUCTURAL ENGINEERING


CANTILEVER SIGN SUPPORT STANDARDS
DESIGN TABLES


STEEL TRUSSES AND STEEL POSTS

	PEDESTAL REINFORCEMENT														
PEDESTAL	VOL	VOL VERTICAL BARS SPIRAL BARS													
DIAMETER	CONC		TYP	E "P-1"		TYPE "P-2"									
PD (IN)	(C.Y.)	SIZE (NOTE 9)	A	LENGTH	WEIGHT (LBS)	SIZE	SD (IN)	LENGTH	WEIGHT (LBS)						
40	1.8	#25	2'-4"	9′-7%″	25.7	#13	36	259'-9"	173.5						
42	2.1	#25	2′-4″	9′-7%″	25.7	#13	38	274'-2"	183.2						
44	2.2	#25	2'-4"	9′-75⁄8″	25.7	#13	40	288'-7"	192.8						
46	2.5	#25	2'-4"	9′-75⁄8″	25.7	#13	42	303'-0"	202.4						
48	2.6	#25	2'-4"	9′-7%″	25.7	#13	44	317'-6"	212.1						
50	2.9	#25	2'-4"	9′-7%″	25.7	#13	46	331′-11″	221.7						
52	3.1	#25	2'-4"	9′-75⁄8″	25.7	#16	48	346'-4"	361.2						
56	3.7	#25	2'-4"	9′-75⁄8″	25.7	#16	52	375′-3″	380.4						

PLAN

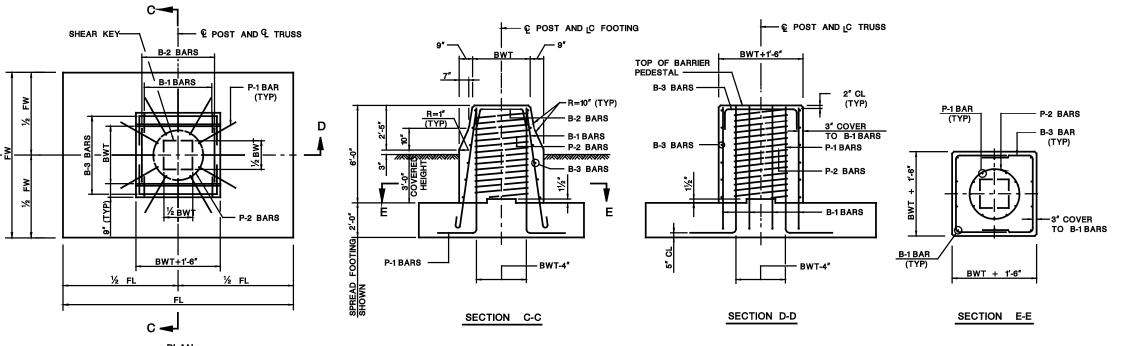
PEDESTAL DETAILS

- ଜୁ POST AND ଜୁ TRUSS

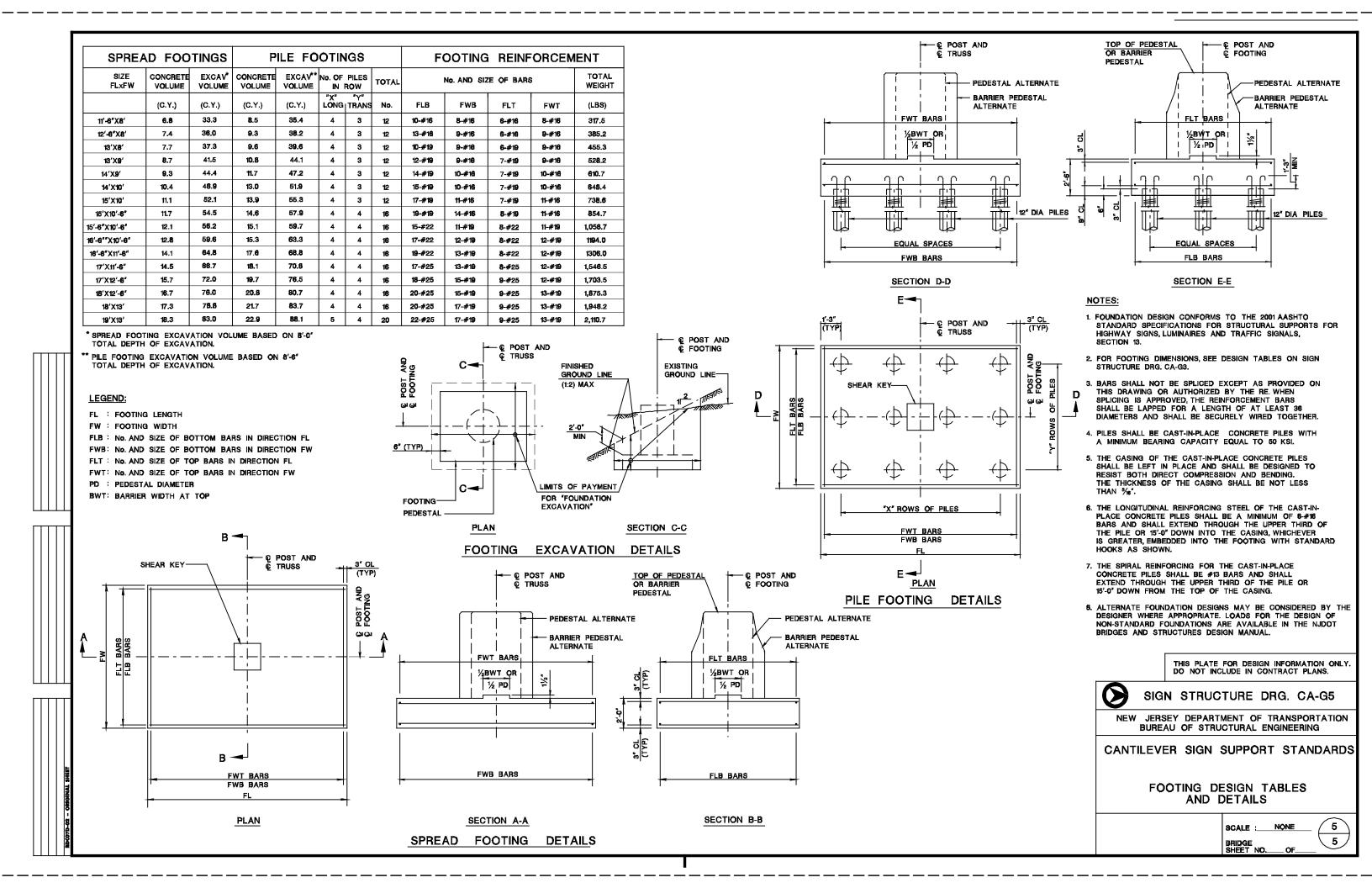
TOP OF PEDESTAL

- I. FOUNDATION DESIGN CONFORMS TO THE 2001 AASHTO STANDARD SPECIFICATIONS FOR STRUCTURAL SUPPORTS FOR HIGHWAY SIGNS, LUMINAIRES AND TRAFFIC SIGNALS, SECTION 13. REFER TO THE NJDOT BRIDGES AND STRUCTURES DESIGN MANUAL FOR ALTERNATE FOUNDATION CRITERIA.
- 2. FOR PEDESTAL AND BARRIER PEDESTAL DIMENSIONS AND REINFORCEMENT, SEE DESIGN TABLES ON DRG. CA-G3.
- 3. ALL REINFORCEMENT IN PEDESTALS AND BARRIER PEDESTALS SHALL BE CORROSION PROTECTED.
- 4. EXPOSED CONCRETE EDGES SHALL BE CHAMFERED 1"x1" UNLESS NOTED OTHERWISE.
- 5. BARS SHALL NOT BE SPLICED EXCEPT AS PROVIDED ON THIS DRAWING OR AUTHORIZED BY THE RE. WHEN SPLINCING IS APPROVED, THE REINFORCEMENT BARS SHALL BE LAPPED FOR A LENGTH OF AT LEAST 36 DIAMETERS (48 DIAMETERS FOR SPIRAL BARS) AND SHALL BE SECURELY WIRED TOGETHER.
- 6. LENGTH OF BARS SHOWN IN TABLE ALREADY CONSIDER BENDS. DIMENSIONS DESCRIBED IN BAR SHAPES TABLE ARE OUT-TO-OUT OF BAR.
- 7. CONCRETE VOLUMES, AND LENGTH OF B-1, P-1 AND P-2 BARS SHOWN IN TABLE ARE FOR A 6'-0" HIGH PEDESTAL OR 6'-0" HIGH BARRIER PEDESTAL.
- 8. WEIGHT SHOWN IN TABLE FOR P-1 BARS IS FOR ONE BAR ONL
- 9. REFER TO THE NJDOT BRIDGES AND STRUCTURES DESIGN MANUAL FOR CLARIFICATION OF REINFORCEMENT STEEL DESIGNATION.

THIS PLATE FOR DESIGN INFORMATION ONLY DO NOT INCLUDE IN CONTRACT PLANS.


SIGN STRUCTURE DRG. CA-G4

NEW JERSEY DEPARTMENT OF TRANSPORTATION BUREAU OF STRUCTURAL ENGINEERING


OVERHEAD SIGN SUPPORT STANDARDS

PEDESTAL AND BARRIER PEDESTAL DESIGN TABLE AND DETAILS

> SCALE :_ BRIDGE SHEET NO

BARRIER PEDESTAL DETAILS

PAY ITEM	CTANDADD			
NO.	STANDARD ITEM NO.	DESCRIPTION	UNIT	CONTRACT QUANTITY
		CLEARING SITE, STRUCTURE	LUMP SUM	
		FOUNDATION EXCAVATION	C.Y.	
		TEMPORARY SHEETING	S.F.	
		CONCRETE IN STRUCTURES, FOOTINGS	C.Y.	
		REINFORCEMENT STEEL IN STRUCTURES	LB	
			1	
			1	
			1	
			+	
			-	
			1	
			1	
	1			
	_ JOB NO			

CONTROL

CHK.

CHK.

BY

SECTION

EST.

SPECS BY

GENERAL NOTES

A. DESIGN CRITERIA

2001 AASHTO STANDARD SPECIFICATIONS FOR STRUCTURAL SUPPORTS FOR HIGHWAY SIGNS,

NJDOT BRIDGES AND STRUCTURES DESIGN MANUAL, CURRENT EDITION.

DESIGN WIND VELOCITY ---- 80 MPH; (ABOVE AASHTO SPECIFICATIONS APPENDIX C)

VARIABLE MESSAGE SIGN (VMS) STRUCTURES

CONCRETE DESIGN STRESSES

SPECIFIED COMPRESSIVE STRENGTH (f'c) (CLASS B) ---- 3,000 PSI EXTREME FIBER COMPRESSIVE STRESS (fc) ------ 1,200 PSI

REINFORCEMENT STEEL DESIGN STRESS

YIELD STRENGTH (fy) (A615, GRADE 60) ---- 60 KSI TENSILE STRESS (fs) ---- 24 KSI

YIELD STRENGTH (Fy)

PIPES (A53, TYPE S OR TYPE E, GRADE B) ---- 35 KSI (MIN.) * (API 5L, GRADE B) ---- REFER TO API SPECIFICATIONS

TEARING, CRACKING OR ANY DEFECT OCCURS, THE MATERIAL WILL BE REQUIRED TO BE REPLACED.

FOUNDATIONS

FOOTINGS ARE DESIGNED SUCH THAT A MINIMUM OF 75 PERCENT OF THE FOOTING IS ALWAYS IN CONTACT; A MAXIMUM OF 25 PERCENT OF THE FOOTING IS IN UPLIFT.

CAMBER

B. MATERIALS

I. STEEL

ALL OTHER STEEL SHALL CONFORM TO ASTM SPECIFICATION A709 (AASHTO M270) GRADE 36 OR GRADE 50. ALL SPECIFIED STEEL PLATES SHALL MEET SUPPLEMENTARY REQUIREMENTS FOR NOTCH TOUGHNESS (CHARPY TESTING, ZONE #2)

UPON COMPLETION OF FABRICATION, THE FABRICATOR SHALL PROVIDE A NOTARIZED CERTIFICATION OF COMPLIANCE AS PER THE REQUIREMENT OF THE NJDOT STANDARD SPECIFICATIONS FOR ROAD AND BRIDGE CONSTRUCTION, INCLUDING A LEGIBLE COPY OF ALL MILL TEST REPORTS FOR MATERIALS INCORPORATED INTO THE WORK. ALSO, A COPY OF QC REPORTS SHALL BE PROVIDED.

STEEL ANCHOR BOLTS, NUTS AND WASHERS SHALL CONFORM TO ASTM SPECIFICATION F1554, GRADE 36 OR 55. THE ANCHOR BOLTS SHALL BE HOT DIP GALVANIZED AS PER ASTM SPECIFICATION A153, CLASS C.

SPECIFICATION A325 AND SHALL BE HOT DIP GALVANIZED AS PER ASTM SPECIFICATION A153, CLASS C. ALL OTHER FASTENERS SHALL BE STAINLESS STEEL CONFORMING TO ASTM SPECIFICATION A320, GRADE B8. CLASS 1.

CAPS FOR THE ENDS OF CHORDS AND TOPS OF POSTS SHALL BE STEEL BOLTS CONFORMING TO ASTM SPECIFICATION A709 (AASHTO M270) GRADE 36 OR 50 AND SHALL BE HOT DIP GALVANIZED IN ACCORDANCE

SPECIFICATIONS.

STATE | FEDERAL PROJECT NO

DESIGN SPECIFICATIONS

LUMINAIRES AND TRAFFIC SIGNALS WITH CURRENT INTERIM.

DESIGN LOADS

DESIGN ICE LOAD ----- 3 PSF

FATIGUE LOADS

ALL STRUCTURAL DETAILS HAVE BEEN ANALYZED AGAINST FATIGUE CATEGORY II IMPORTANCE FACTOR VALUES AS DESIGNATED IN THE ABOVE AASHTO DPECIFICATIONS.

REFER TO THE NJDOT BRIDGES AND STRUCTURES DESIGN MANUAL WHEN FURNISHING SUPPORT STRUCTURES FOR VARIABLE MESSAGE SIGNS (VMS).

STRUCTURAL STEEL DESIGN STRENGTHS

* FABRICATORS ARE ADVISED THAT REPAIRS TO THE MATERIALS WILL NOT BE PERMITTED. IF

MAXIMUM FOUNDATION DESIGN BEARING PRESSURE ---- 2.5 KSF

BEARING PILES SHALL BE CAST-IN-PLACE CONCRETE PILES WITH A MINIMUM BEARING CAPACITY EQUAL TO 50 KIPS.

REFER TO THE NJDOT BRIDGES AND STRUCTURES DESIGN MANUAL FOR ALTERNATE FOUNDATION DESIGN CRITERIA.

PERMANENT CAMBER EQUAL TO L/1000 HAS BEEN PROVIDED IN ADDITION TO THE DEAD LOAD CAMBER.

STEEL PIPE SHALL BE CERTIFIED BY MILL TEST REPORT TO MEET ASTM SPECIFICATION A53. TYPE E OR S, GRADE B WITH THE EXCEPTION THAT API 5L, GRADE B MAY BE USED WHEN THE SPECIFIED WALL THICKNESS IS GREATER THAN ½". ONLY ELECTRICAL RESISTANCE WELDED (ERW) MANUFACTURED SINGLE SEAM PIPE IS PERMITTED. HOWEVER, WHEN THE REQUIRED PIPE SIZE IS GREATER THAN 24", DOUBLE SEAM PIPE MAY BE USED. A MILL TEST REPORT MUST BE PROVIDED, CERTIFIED AND SIGNED BY THE PIPE MANUFACTURER, CONTAINING PHYSICAL AND CHEMICAL PROPERTIES AND THE MANUFACTURING PROCESS USED TO PRODUCE THE PIPE.

CHORD SPLICE ASSEMBLY FASTENERS SHALL BE HIGH STRENGTH STEEL CONFORMING TO ASTM

WITH ASTM SPECIFICATION A123.

WELDING OF STEEL SHALL BE AS SPECIFIED IN AWS D1.1, CURRENT EDITION, AND THE NJDOT STANDARD

AFTER COMPLETE FABRICATION, EACH STEEL SECTION SHALL BE HOT DIP GALVANIZED ACCORDING TO THE REQUIREMENTS OF ASTM SPECIFICATION A123, AND AS MODIFIED BY THE NJDOT STANDARD SPECIFICATIONS, A SINGLE DIP GALVANIZING PROCESS IS PREFERRED IF SIZE PERMITS.

REFER TO THE NJDOT STANDARD SPECIFICATIONS FOR CRITERIA ON FURNISHING MATERIALS OTHER THAN SPECIFIED ABOVE.

<u>II. ALUMINUM</u>

ALUMINUM SHALL CONFORM TO THE ASTM SPECIFICATIONS AND ALLOYS LISTED BELOW:

APPLICATION	ASTM SPECIFICATION	ASTM ALLOY
ROLLED OR EXTRUDED SHAPES	B308	6061 - T6
PLATES	B209	6061 - T6
DRAWN SEAMLESS TUBES	B210	6061 - T6
EXTRUDED TUBES	B221	6061 - T6

WELDING OF ALUMINUM SHALL BE AS SPECIFIED IN AWS D1.2, CURRENT EDITION, AND THE NJDOT STANDARD SPECIFICATIONS.

THE SIGN PANEL SHALL BE INSTALLED LEVEL. THE CONTRACTOR MAY FIELD DRILL THE SIGN SUPPORTS AS REQUIRED TO ACHIEVE THIS.

III. REINFORCEMENT STEEL

ALL REINFORCEMENT STEEL SHALL BE ASTM A615, GRADE 60.

IV. CONCRETE

ALL CONCRETE SHALL BE "CLASS B" AS DEFINED IN THE NJDOT STANDARD SPECIFICATIONS UNLESS OTHERWISE SPECIFIED BY THE DESIGNER.

V. SIGN LIGHTING SYSTEM SUPPORTS

SIGN HANGERS SHALL BE ALUMINUM OR STEEL. LUMINAIRE SUPPORTS SHALL BE ALUMINUM OR STEEL THE STEEL SHALL CONFORM TO ASTM A709 GRADE 36 OR GRADE 50 AND SHALL BE HOT DIP GALVANIZED IN ACCORANCE WITH ASTM SPECIFICATION A123. STEEL SURFACES SHALL BE PREVENTED FROM COMING INTO CONTACT WITH ALUMINUM SURFACES BY MEANS OF APPROVED PADS PLACED BETWEEN THE DISSIMILAR METALS. PADS SHALL BE STAINLESS STEEL CONFORMING TO ASTM SPECIFICATION A240, TYPE 304 OR APPROVED EQUAL. CONNECTING U BOLTS SHALL BE STAINLESS STEEL CONFORMING TO THE NJDOT STANDARD SPECIFICATIONS. INSTALLATION OF SIGN LIGHTING SYSTEM SHALL BE ACCORDING TO THE MANUFACTURER'S SPECIFICATIONS.

INDEX OF DRAWINGS											
DRG. NO.	DESCRIPTION										
CA-D1	GENERAL NOTES AND ELEVATION										
CA-D2	STRUCTURE AND FOUNDATION SCHEDULES										
CA-D3	FOUNDATION DETAILS										
CA-D4	TRUSS AND POST DETAILS - SHEET 1										
CA-D5	TRUSS AND POST DETAILS - SHEET 2										
CA-D6	POST BASE AND FOUNDATION DETAILS										
CA-D7	SIGN AND LIGHTING SYSTEM SUPPORT DETAILS										
CA-D8	TYPICAL ELECTRICAL DETAILS										

SIGN STRUCTURE DRG. CA-D1

NEW JERSEY DEPARTMENT OF TRANSPORTATION BUREAU OF STRUCTURAL ENGINEERING

CANTILEVER SIGN SUPPORT STRUCTURES GENERAL NOTES AND ELEVATION

> SECTION: ROUTE:

> > NONE SCALE :___

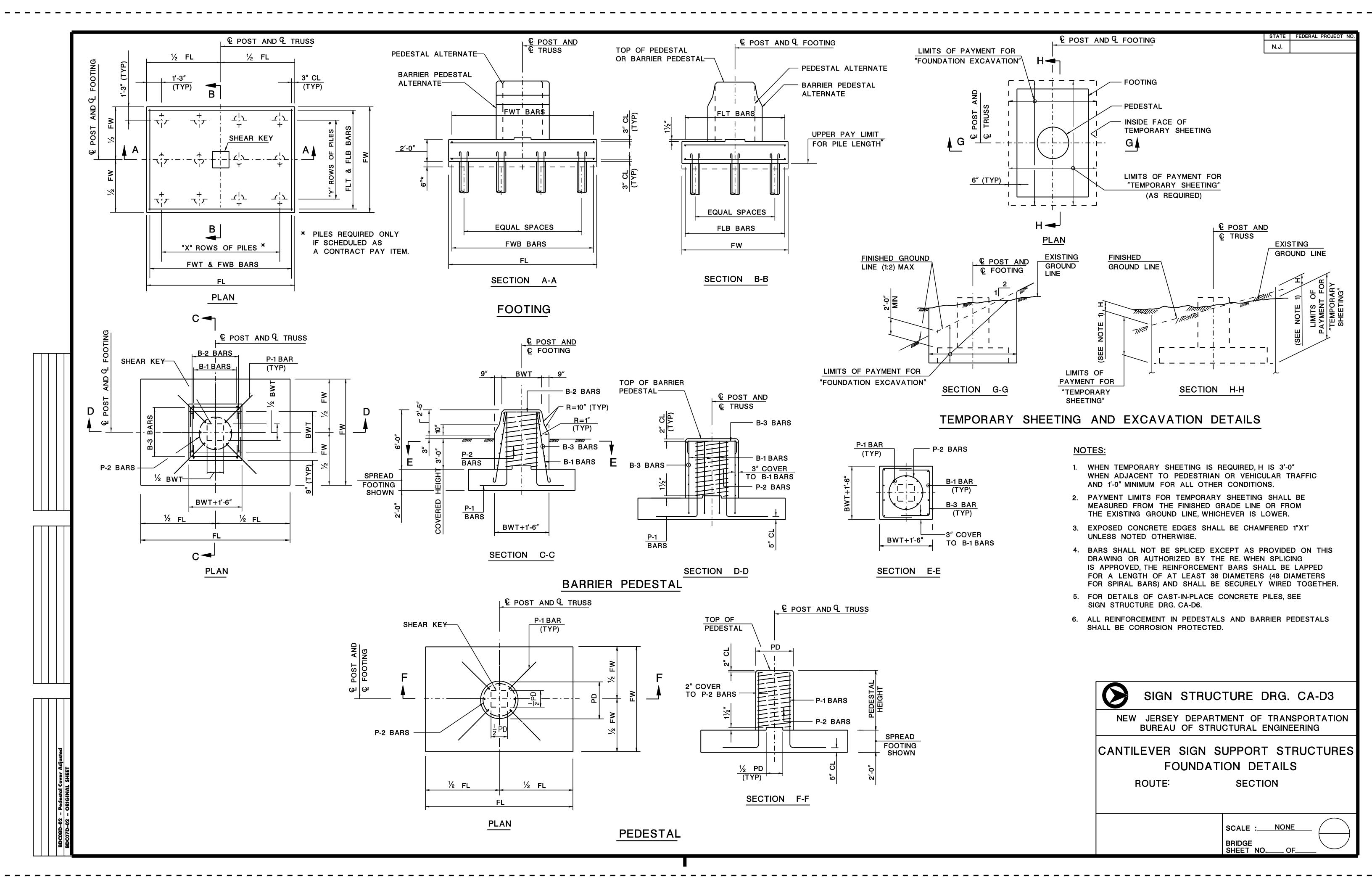
STATION V. TRUSS BASE PLATE LENGTH PW OD.ATHOK O					CANTI	LEVE	R SIGI	N SL	JPPOR	TS	- SCI	HEDUI	LE	OF	STF	3UC 1	URES	3																		N.	J.
CANTILEVER SIGN SUPPORTS - SCHEDULE OF FOUNDATIONS CANTILEVER SIGN SUPPORTS - SCHEDULE OF FOUNDATIONS CANTILEVER SIGN SUPPORTS - SCHEDULE OF FOUNDATIONS FOOTING	SI	GN SU	PPC	ORTS		ELEV	ATIONS		PANEL			STEE							TEEL P	тес																	
CANTILEVER SIGN SUPPORTS - SCHEDULE OF FOUNDATIONS CANTILEVER SIGN SUPPORTS - SCHEDULE OF FOUNDATIONS FOOTING PEDESTAL BARRIER PEDESTAL FOOTING FOOTING PEDESTAL FOOTING FOOTING PEDESTAL FOOTING FO	JCTURE No.	GO Nos.		STATION	ē	TRUSS		LENGT	H PW	O.D.x	тніск	O.D.xTF	IICK	O.D.xT	HICK		0.1).xTHICK	O.D.xTHIC		.D.xTHICK									NO)TE:						
FOOTING PEDESTAL BARRIER PEDESTAL TOTAL VOLUME No. OF PILES PIL																																					
FOOTING PEDESTAL BARRIER PEDESTAL TOTAL VOLUME No. OF PILES PIL																																					
FOOTING PEDESTAL BARRIER PEDESTAL TOTAL VOLUME No. OF PILES PIL																																					
VOLUME No. OF PILES NO. OF PILES NO. OF WITH W/O W/O WITH W/O W/O WITH W/O W/O WITH W/O											CAN	ΓILEV	ER	SIG	N :	SUPF	PORT	S - S	CHEDU	LE	OF	FOU	INDAT	ION	 S												
VOLUME No. OF PILES PILES SPIRAL REBARS SPIR						FOO	TING								PEDE	ESTA	L __								BAI	RRIER F	EDESTAL								TOTAL		
BOT CONCRETE EXCAVATION IN ROW No. & SIZE OF TOP VOL TYPE "P-1" TYPE "P-2" PROT. BAR- TOP VOL TYPE "P-1" TYPE "P-2" TYPE "B-2" TYPE "B-2" TYPE "B-2" TYPE "B-2" TYPE "B-3" PROT. PROT. OF ALL VOLUM SIZE OF WITH W/O WITH W/O PILE RE- SIZE PED OF OF RE- REBAR OF			E V	VOL	JME			REINFO	RCING B	RS	WT		ELEV		VERT	REBAI	SPIR	AL REBAR	WT OF		ELEV		VERT REE	ARS SF	IRAL RE	BARS	STAN	DARD	BARE	RIER RE	EBARS	;			WT OF WT OF		
STATE		В	от 📗			ION IN	ROW	Nø.	SIZE		OF	- DED	TOP	VOL	TYF	PE "P-1"	TY	'PE "P-2"	PROT.	BAF	R- TOP	VOL	TYPE "P	-1"	TYPE "I	-2" TYP	Ε "β-1" ΤΥ	PE "B	-2"		TYP	E "B-3"	ş"	PROT.	PROT.	OF AL	LVOLUN
	UCTURE F	LxFW F	TG p	WITH W/O PILES PILES (C.Y.) (C.Y.)	WITH W. PILES PIL (C.Y.) (C.	/O ES Y.) "X"	LGTH "Y" (FT)	FLB FW	B FLT	FWT (ARS PD BS) (IN)	HT (FT)	PED	CONC	No. & SIZE	A LO			H BARS BY	∕Т НТ	BARR	CONC	No. & Lo SIZE	STH No	. & SD ZE (IN)	LGTH No. SIZ	LGTHNo. & SIZE (D (I	C LG N)	TH No. 1	& E E (IN	. F 1) (IN)		BARS	BARS	TYPE	CÓNO
																															士	\perp	_				
																															士	\pm	\perp				
	+		+								+					+												+			+	+	+				+-
																															7	1	1				
																															#	+	_				1
																															#	#	1				
																															士	士					
																															+	+	_				+
																															\mp	+	\perp				
																															土						
											$\overline{}$			D			E		PEDEST		[T T	_		PEC HER	ESTAL GHT-2"					BURE	:AU (OF STF	TMENT	AL ENG	INEERIN

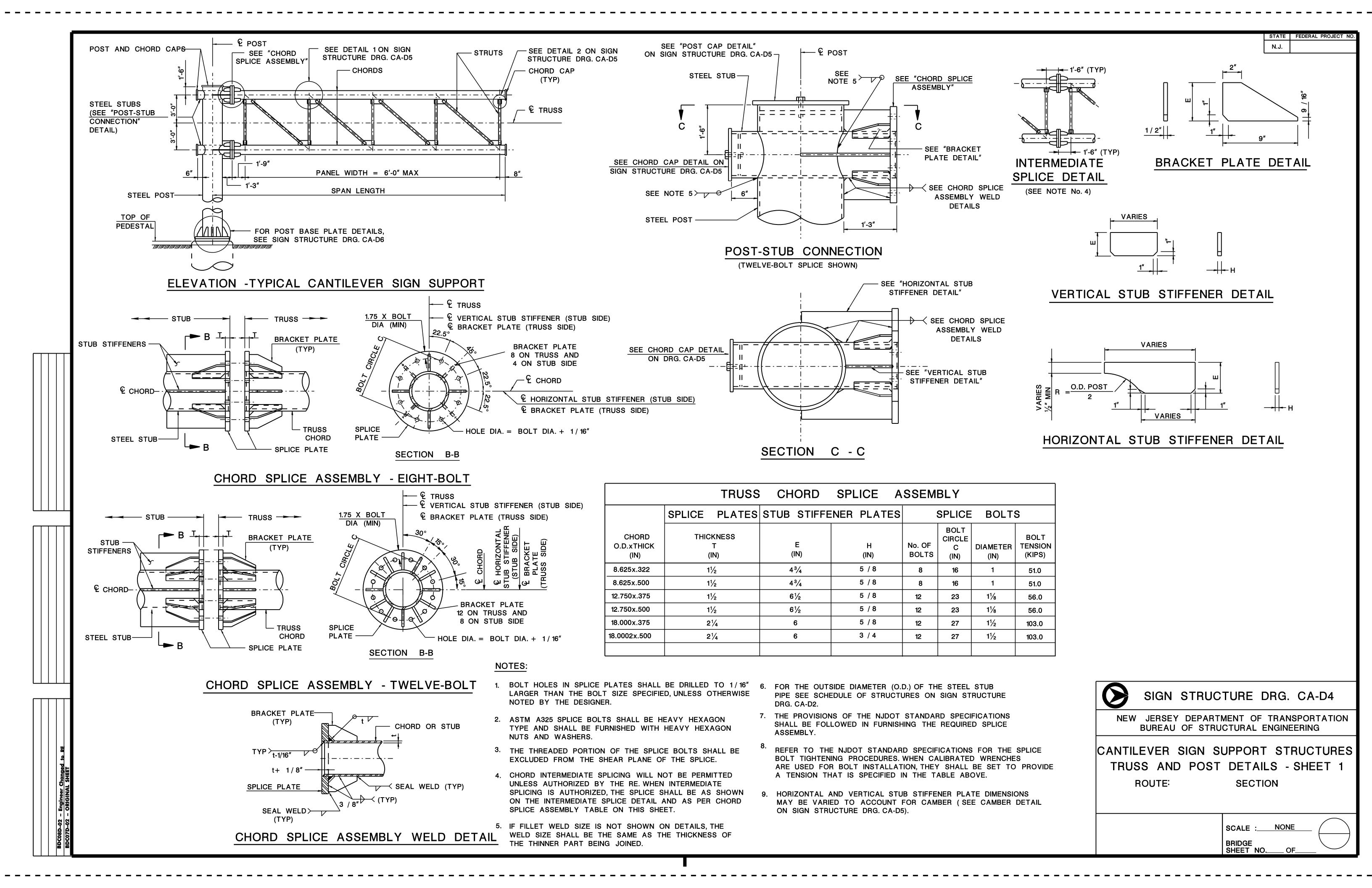
TYPE "P-1"

TYPE "B-1"

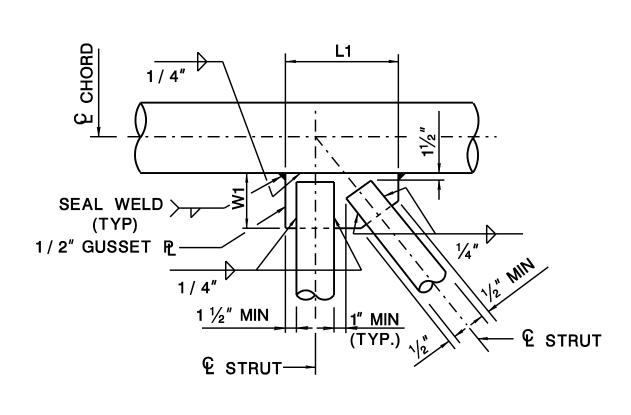
TYPE "B-2"

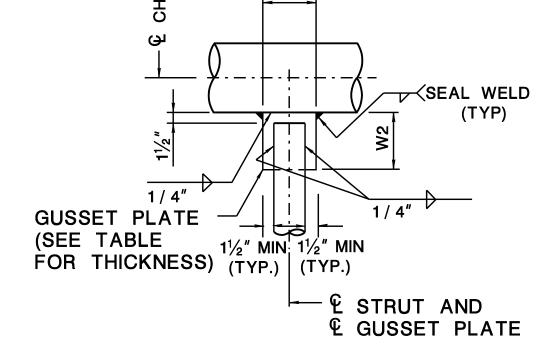
TYPE "B-3"


REBAR SHAPES

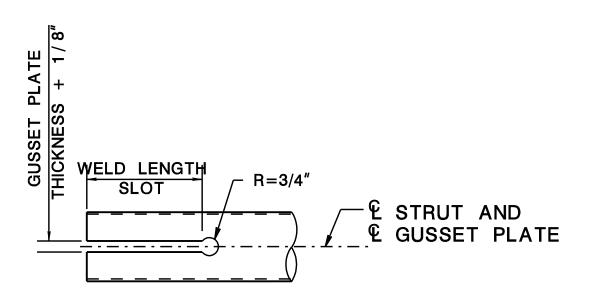

TYPE "P-2"

ROUTE:


SECTION


SCALE : NONE

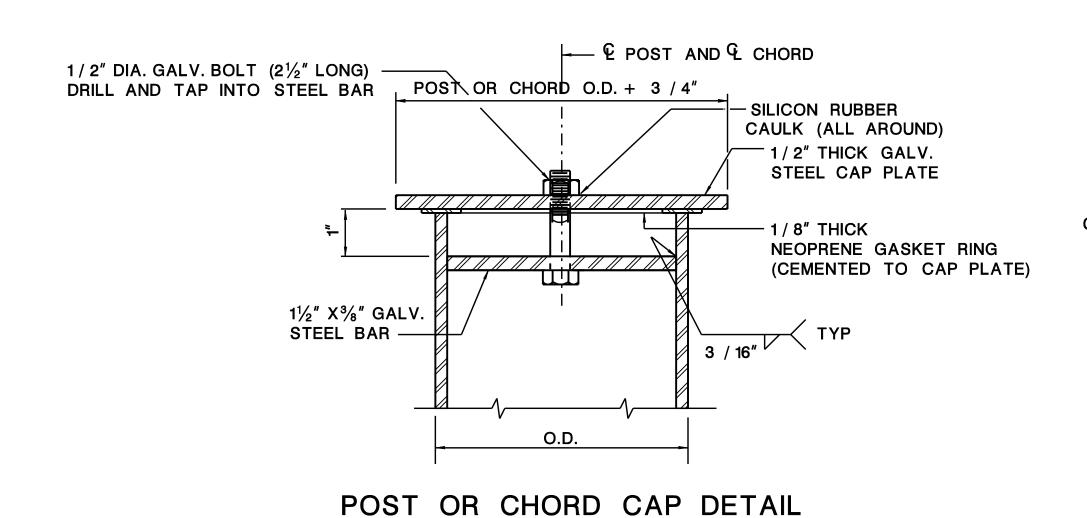
STATE | FEDERAL PROJECT NO.



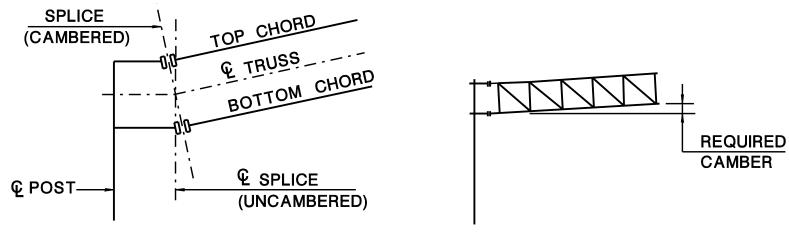
TRU	TRUSS GUSSET PLATES													
CHORD	'K' GL	JSSET	'T' G	THICK- NESS										
O.D.xTHICK (IN)	L1 (IN)	W1 (IN)	L2 (IN)	W2 (IN)	(IN)									
8.625X.322	131/2	61/4	61/4	61/4	1/2									
8.625X.500	14 1/2	61/4	61/4	61/4	1/2									
12.750X.375	16½	7	7	7	5/8									
12.750X.500	191/2	73/4	10	71/4	5/8									
18.000X.375	211/2	91/2	11	81/4	5/8									
18.000X.500	241/2	91/2	15 ³ / ₄	9	5/8									

DETAIL 1 ('K' GUSSET) DETAIL 2 ('T' GUSSET)

∟ <u>€ CHORD</u>


3 / 8" & COPE HOLE FILLET WELD (TYP) - € STRUT AND € GUSSET PLATE ____ 1/2" OR 5 /8" GUSSET PLATE COPE HOLE DETAIL

DETAIL A


NOTE:

COPE HOLES TO BE PROVIDED AT BOTH ENDS AND BOTH FACES OF ALL STRUTS.

CAMBER DIAGRAM

NOTE: ALTERNATE CAP DETAILS MAY BE SUBMITTED TO THE RE FOR APPROVAL.

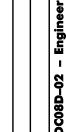
CAMBER DETAIL

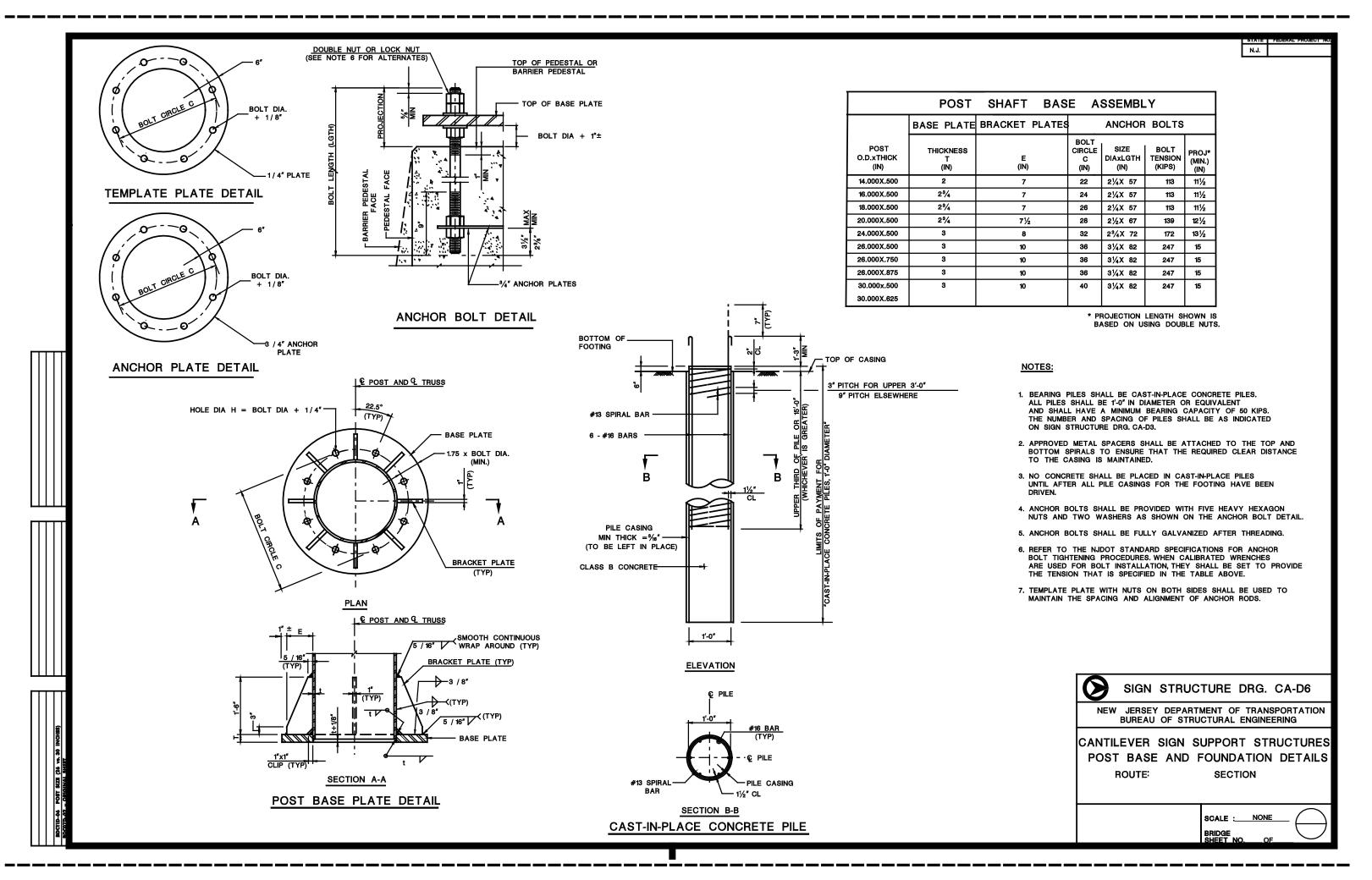
CAMBER SHALL BE OBTAINED BY SHORTENING THE TOP CHORD STUB LENGTH AND LENGTHENING THE BOTTOM CHORD STUB LENGTH. CHORD SPLICE PLATES SHALL BE SKEWED ACCORDINGLY BEFORE WELDING TO CHORDS. NO FORCE SHALL BE APPLIED IN PROVIDING CAMBER. AN ALTERNATE METHOD OF OBTAINING CAMBER MAY BE USED AS APPROVED BY THE RE. FOR REQUIRED CAMBER, REFER TO DRG. CA-G3 AND SEE SCHEDULE OF STRUCTURES

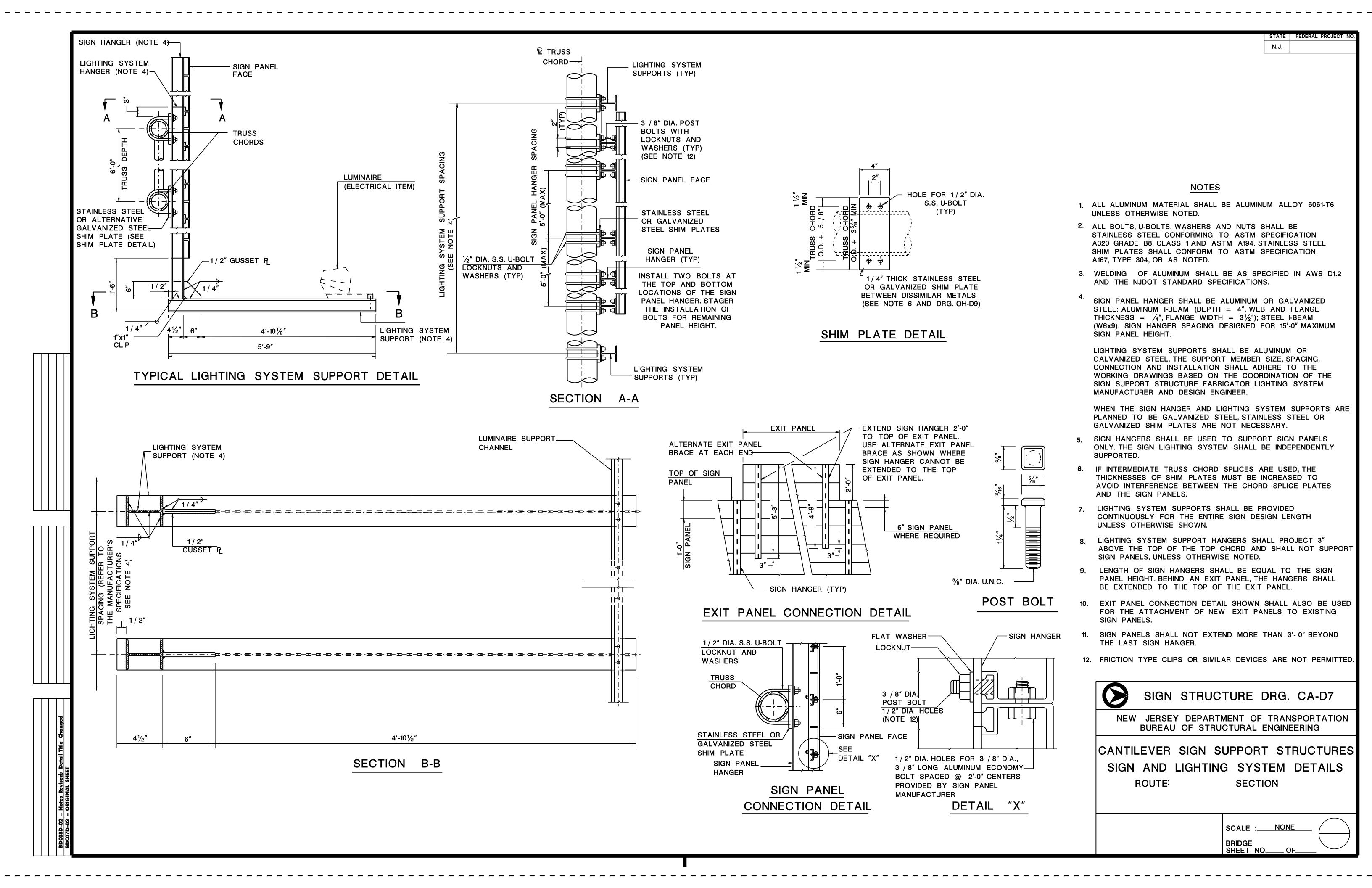
CAMBER NOTE:

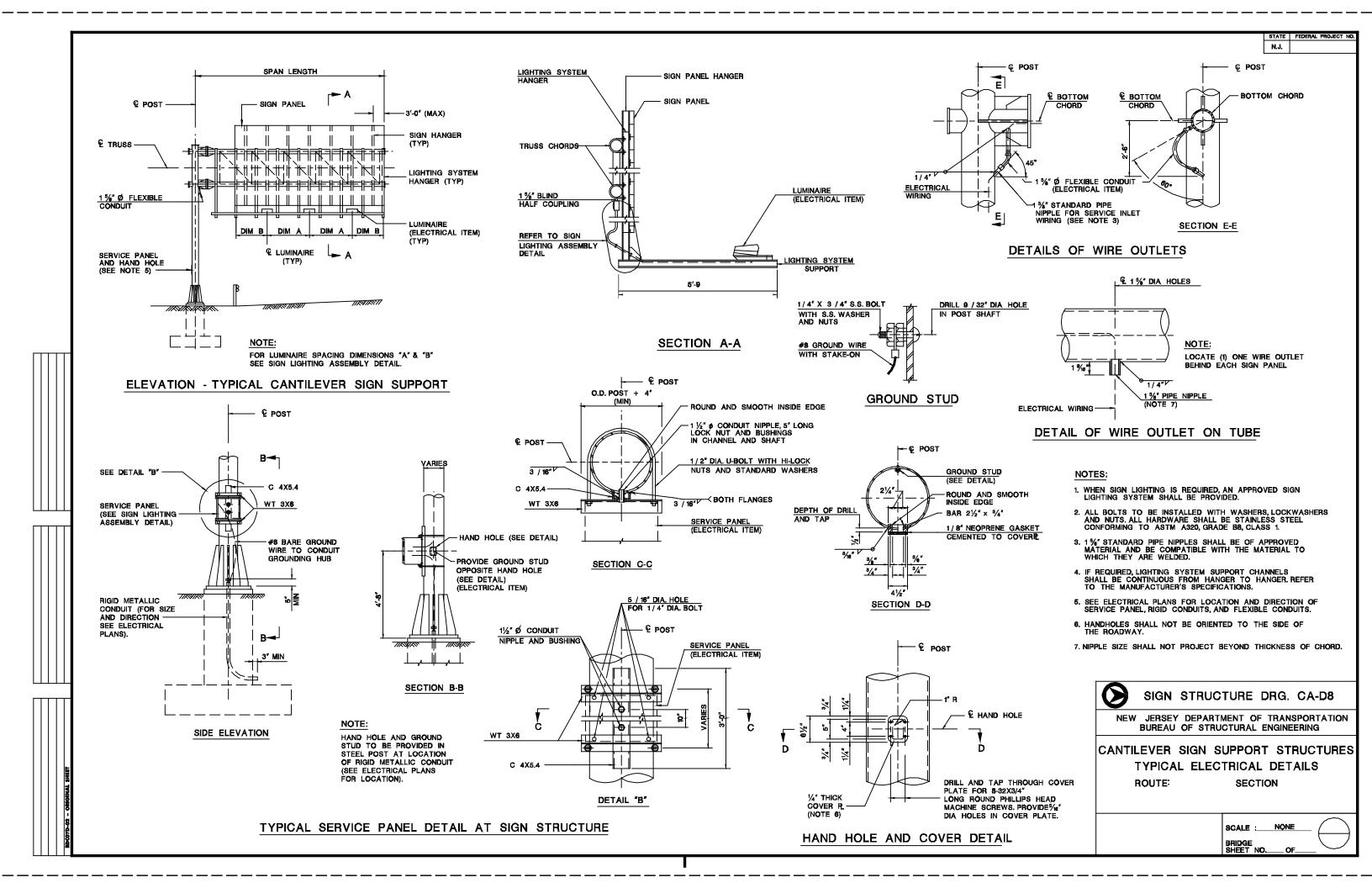
ON DRG. CA-D2.

SIGN STRUCTURE DRG. CA-D5


NEW JERSEY DEPARTMENT OF TRANSPORTATION BUREAU OF STRUCTURAL ENGINEERING


CANTILEVER SIGN SUPPORT STRUCTURES TRUSS AND POST DETAILS - SHEET 2


SECTION ROUTE:


> NONE SCALE :__ BRIDGE SHEET NO.__

_ OF_

