Pavement Management Systems

PAVEMENT MANAGEMENT SYSTEMS OVERVIEW

PMS CONCEPTS

DISCUSSION TOPICS

✓ DEFINITION OF PM AND PMS
 ✓ PMS SUBSYSTEMS
 ✓ NETWORK & PROJECT LEVEL PMS
 ✓ PAVEMENT EVALUATION
 ✓ PERFORMANCE AND ECONOMIC ANALYSES
 ✓ DATA BASES/DATA MANAGEMENT

Pavement Engineering

Pavement Materials	Classification, quality assurance testing (specifications), material design
Pavement Design	Design of Structural layers for New Pavements and Pavement Rehabilitation Assess in-situ pavement material properties and layer thickness
Pavement Construction	Construction practices of New Pavements and Pavement Rehabilitation including specification development and quality assurance
Pavement Management	Monitoring Post-construction condition, timing preventive maintenance and rehabilitation treatments, and economic analysis of alternatives
Pavement Research	Research to improve all of the above

PAVEMENT MANAGEMENT SYSTEM Overview

DEFINITIONS

PAVEMENT MANAGEMENT

"Pavement Management is a program for improving the quality and performance of pavements and minimizing costs through good management practices"

DEFINITIONS

PAVEMENT MANAGEMENT SYSTEMS

"A Pavement Management <u>System</u> is a set of defined procedures for collecting, analyzing, maintaining, and reporting pavement data, to assist the decision makers in finding optimum strategies for maintaining pavements in serviceable condition over a given period of time for the least cost."

PAVEMENT MANAGEMENT SYSTEM Overview

A Pavement Management System (PMS) is designed to provide objective information and useful data for analysis so that road managers can make more consistent, cost-effective, and defensible decisions related to the preservation of a pavement network.

While a PMS cannot make final decisions, it can provide the basis for an informed understanding of the possible consequences of alternative decisions.

A PMS does NOT make decisions, Managers DO!

PMS LEVELS

NETWORK

BIRD'S EYE VIEW OF NETWORK PAVEMENTS AS A WHOLE. •STATEWIDE PAVEMENT CONDITION SUMMARY •BUDGET ESTIMATE •PERFORMANCE PREDICTION

PROJECT

ASSIST DESIGNERS IN CONSTRUCTING, MAINTAINING, OR REHABILITATING A SECTION OF ROADWAY. •PREVENTIVE MAINTENANCE •RESURFACING OR RECONSTRUCTION •TREATMENTS OPTIONS ALONG THE PROJECT

PMS SUBSYSTEMS

-<u>PMS DATA</u>

- Inventory
- Condition Pavement Evaluation
- History Initial, PM, RM, Rehab, Reconstruction
- Traffic
- Costs

-MODELING - ANALYSIS

- Serviceability Rating
- Performance Predictions
- Economic Analyses-Budgeting / Programming

-DATA MANAGEMENT

- Relational Databases
- Report Generation

PMS DATA COLLECTION

DATA TYPES

- INVENTORY,
- PAVEMENT CONDITION
- TRAFFIC/LOADS,

 COSTS - Construction, PM, RM, Rehab, Reconstruction
 HISTORY – Initial Const, PM, RM, Rehab, Reconstruction (Last Treatment)

Example Inventory Data

- Route Number
- Route Type (Interstate, US, NJ)
- Functional Class
- Length
- Divided/Undivided Route Section
- Pavement Type
- Number of Lanes and Widths
- Shoulder Type and Width
- County
- Legislative District

PMS DATA COLLECTION

PAVEMENT CONDITION EVALUATION

PAVEMENT ROUGHNESS or RIDE QUALITY
SURFACE DISTRESS
RUTTING
SKID RESISTANCE
STRUCTURAL CAPACITY

Need for Annual Condition Surveys Ride Quality, Surface Distress, Rutting, Friction

- Evaluating current condition of pavement
- Determining rates of deterioration
- Project future conditions to determe current and future maintenance & rehabilitation needs
- Determining future cost of repairs

Pavement Condition Survey Equipment

Profiler

roughness, distress, rutting, noise, pavement cracking Pavement friction

Skid Trailer

GPR

Layer Thickness

Structural Capacity

Equipment Demo Last Day

ROAD ROUGHNESS

"ROAD ROUGHNESS IS THE IRREGULARITIES IN THE PAVEMENT SURFACE AFFECTING USER COMFORT AND SAFETY"

DUE TO VARIATIONS IN HORIZONTAL, VERITICAL, AND TRANSVERSE PROFILES

RIDE QUALITY - USER PERCEPTION OF PAVEMENT ROUGHNESS

SURFACE DISTRESS

DESCRIPTION

TYPE OF DISTRESS (Cracking, Patching, Rutting) SEVERITY (Crack Width, Condition Assessment) EXTENT (Percentage of the Pavement Length)

DATA COLLECTION

CONTINUOUS - WINDSHIELD SURVEY (COMPUTER RATER KEYBOARD, and VIDEO)

SURFACE DISTRESS BITUMINOUS/COMPOSITE PAVEMENTS

<u>NDI</u> <u>CRACKING</u> MULTIPLE LOGITUDINAL TRANSVERSE

<u>LDI</u> <u>CRACKING</u> MULTIPLE

SURFACE DEFORMATION RUTTING

<u>MISCELLANEOUS</u> SHOULDER CONDITION PATCH CONDITION

Observation of condition in the other lanes

RUT DEPTH MEASUREMENT

SURFACE DISTRESS CONCRETE PAVEMENTS

CRACKING

JOINT DEFECTS JOINT SEAL DAMAGE JOINT CONDITION

MISCELLANEOUS PATCH CONDITION

SKID RESISTANCE SAFETY

DESCRIPTION ASSESSMENT OF THE COEFFICIENT OF FRICTION OF THE PAVEMENT SURFACE (BASED ON SPEED)

<u>DATA COLLECTION</u> CONTINUOUS - ASTM E274 (LOCK WHEEL) SKID TRAILER

STRUCTURAL LOAD CAPACITY

Project Level PMS

<u>DESCRIPTION</u> ASSESSMENT OF THE LOAD CARRYING CAPACITY OF THE PAVEMENT STRUCTURE

DATA COLLECTION DESTRUCTIVE - CORING/BORINGS/LAB TESTS NON-DESTRUCTIVE TEST – •FALLING WEIGHT DEFLECTOMETER (FWD) •CONCRETE JOINT LOAD TRANSFER EFFICIENCY •GROUND PENETRATING RADAR

PM/S Performance

Performance Analyses

Condition Surveys Ride Quality, Surface Distress, Rutting

Pavement Indices

Pavement Wheel Path	Ride Quality Index
Profile	IRI
Pavement Surface Distresses	Surface Distress Index
Rutting	Average Pavement Rut Depth
Structural Capacity	Structural Capacity
Deflections	Index

Converts collected data to single value

Need for Condition Surveys Ride Quality Index

- Measure Pavement Wheel Path Profile(s) to assess Pavement Ride Quality
- Convert Pavement Wheel Path Profile (L&R) to Pavement Ride Quality Indices (IRI)

Pavement Distress Survey

- Type of distress (Cracking, Patching, etc)
- Severity (width of cracks, condition of the patch, etc.)

 Extent - Quantity of distress present on the pavement (percentage of length)

Distress Identification Manual for the Long-Term Pavement Performance Program http://www.tfhrc.gov/pavement/ltpp/reports/03031/index.htm

Pavement Models

PMS **Economics** Analyses

Reporting

ECONOMIC ANALYSES

Multi-Year Prioritization (MYP)

A method of allocating limited resources in an efficient and cost-effective way over a multi-year period (2-10 year's needs), through an evaluation of long-term impacts.

A PMS process or tool used to objectively identify the best combination of projects over a multi-year program.

<u>ECONOMIC ANALYSES</u> Multi-Year Prioritization (MYP)

Prioritization techniques use mathematical modeling tools to achieve the best combination of projects over the specified analysis period:

- •Pavement performance Models predict future condition and suggest timing of needed rehab
- •Projects are identified with need for PM, Minor Rehab, Major Rehab or Reconstruction
- •The most effective timing for the applying the appropriate treatment are identified

ECONOMIC ANALYSES

Benefits Provided By MYP

- Forecast future conditions
- Analyze timing options
- Evaluate effectiveness of alternative strategy
- Perform economic analyses
- Use of objective measures for prioritizing needs
- Project future budgets
- Predict the impact of each combination of projects on the network over the given analysis period

Effect of Treatment Timing on Costs

Typical Variation of Pavement of Pavement Condition as a Function of Time

Homogeneous Analysis Sections

- Change in pavement type
- Change in pavement structure
- Change in traffic Volume
- Political boundaries
- Change in pavement condition (Dynamic)
- Construction Project limits

Decide the overall condition, timing, costs, and treatment type

Treatment Options in MYP

Treatment Options in MYP

ECONOMIC ANALYSES

Decision Benefits Provided By MYP

Provide answers for the questions:

- 1. What <u>condition</u> will be reached for a given level of funding?
- 2. What <u>budget</u> is needed to reach or maintained a given level of condition?

Example Network Performance

Illustrates Policy Decisions

What are the average projected IRI for the given Budget Levels?

IRI % above trigger

Example Network Performance

Illustrates Policy Decisions

What will it cost to maintain the current IRI?

Pavement Strategy Development

Pavement Strategy

- **Plan of action**
- Comprised of the application of one or more maintenance or rehabilitation techniques
- Designed to improve or maintain the condition of a pavement segment above some predetermined minimum requirement

Requirements for Developing a Strategy

- List of strategy guidelines and treatment options
- Treatment Costs
- Pavement performance models for treatment

Options in Strategy Development

- Project Selection/Treatment Selection simultaneous or not
- Single treatments or multiple treatments

Single Treatment Strategy

- Most common approach
- Several feasible alternatives may be identified for each section
- Each treatment considered independently
- Most cost-effective treatment generally selected
 Multiple Treatment Strategy
- Combination of treatments considered for each section
- Effectiveness of all treatments is representative of effectiveness of entire strategy
- Subsequent treatments affect selection of strategy
- Repeated treatments

Treatment Selection

Decision Trees

PMS DATABASES

<u>COMPUTERIZED DATABASE</u> <u>MANAGEMENT SYSTEMS (DBMS)</u>

INTEGRATED RELATIONAL DATABASES

PMS COORDINATED DATABASES

<u>COMPUTERIZED DATABASE MANAGEMENT SYSTEMS (DBMS)</u> INTEGRATED RELATIONAL DATABASES

INVENTORY - RT NUMBER, FUNCTIONAL CLASS,
PAVEMENT TYPE, etc.
CONDITION - RIDE QUALITY, DISTRESS, FRICTION,
DEFLECTION
COSTS
HISTORY
TRAFFIC / LOADS

PAVEMENT HISTORY

Initial Construction Data

Date, Cost, Material, Structure, etc.

Preventive Maintenance

Date, Treatment, Cost, Material, Structure, etc. <u>Rehabilitation</u>

Date, Treatment, Cost, Material, Structure, etc. <u>Reconstruction</u>

Date, Treatment, Cost, Material, Structure, etc.

COSTS

AGENCY COSTS

P&E
DESIGN
CONSTRUCTION
PREVENTIVE AND ROUTINE MAINTENANCE
REHABILITATION / RESURFACING / RECONSTRUCTION
SALVAGE

PMS DATABASES

DATABASE PRODUCTS/REPORTS

DEFICIENCY REPORTS –

SECTIONS WITH UNACCEPTABLE RQ OR DISTRESS

PERFORMANCE HISTORIES

DISPLAY GIVEN CONDITION PARAMETER OVER TIME OR LOADS

CONSTRUCTION, MAINTENANCE, REHAB HISTORIES

<u>LIST OF BUDGET NEEDS</u> - STATE, MPO, COUNTY, TOLL AUTHORITIES

PMS DATABASES

DATABASE PRODUCTS/REPORTS

[TABULAR, BUSINESS GRAPHICS, GIS MAP, Video]

Section	Year	Cost
32	2006	\$100,000
47	2008	\$237,999

That's All Folks

QUESTIONS?

THANK YOU