AUTOMATIC TANK GAUGING SYSTEMS
Achieving Compliance

John D. Sieger, Tanknology
The Objective: Monitor the Tanks & Piping Systems for leaks
TANK GAUGING SYSTEM BRANDS
DOUBLE WALL TANK MONITORING
DRY FIBERGLASS

Figure 30. Example Interstial Sensor Installation - Fiberglass UST
DOUBLE WALL TANK MONITORING
WET FIBERGLASS

Concrete Traffic Pad
Reservoir Liquid Level Sensor
Stable Reservoir Liquid Level
Stored Product
Reservoir Drains
Inner Wall Breach

Figure 3. Dual-Point Sensor Installation
SINGLE WALL TANK MONITORING
via MAGNETOSTRICTIVE PROBE
SINGLE WALL UST MONTHLY MONITORING
via 0.2 GPH STATIC TESTING

• NJDEP & USEPA Release Detection Monitoring requirements require at least 1 Passing 0.2 (Gallon Per Hour) GPH leak test, Monthly, for each UST on a facility.
• Commonly set to operate on a weekly basis, at a time when the facility is not in operation. This allows just 4 opportunities per month to achieve a passing test.
• The monitoring console is programmed to run the test for 2, 3, 4 or more hours.
• The results of the test print-out as soon as the test is completed.
 • **NOTE:** The printed results of at least 1 Passing 0.2 GPH in-tank leak test for each registered UST on a facility should be kept for 3 years’ time.
• Common problems achieving a passing monthly test in a given month:
 ❖ 24-Hour station doesn’t afford enough down-time for the tank.
 ❖ In-Tank product level is too low upon the date/time the test is set to be run.
 ❖ A fuel delivery occurs within 8 hours of, or during a test in progress.
 ❖ Static tests are being attempted on a set of siphon-manifolded tanks.
• The most popular means of achieving compliance when the factors above are routinely encountered is to add a CSLD (Veeder Root) or SCALD (Incon) software upgrade to enable 24-hour continuous leak detection capabilities to the ATG console.
• The Veeder Root and Incon consoles store passing test results in memory, by month. This memory will be accessed by NJDEP or County Health Inspectors.
Example of an “Invalid” leak test result on the left. A “Passing” result on the right.
Example of “Good” leak test results stored in the TLS console memory
Example of “BAD” leak test results stored in the TLS console memory

Note the lack of a passing 0.2 GPH static test in the months of Feb. & Apr. 2008.
Monitoring Piping Systems
DOUBLE WALL PIPING MONITORING via CONTAINMENT SUMP SENSORS

Diagram of a double-walled pressurized piping system. Any fuel leakage that occurs in the piping itself will flow down to the tank-top sump where the liquid sensor will trigger an alarm inside the facility. Leaks from piping components at the tank top are contained in the tank-top sump, while leaks from the dispenser are contained in the dispenser sump.
SINGLE WALL PIPING MONITORING via ELECTRONIC LINE LEAK DETECTION
TLS-350 PLLD (Pressurized Line Leak Detection)
The setup printout will have a section detailing the PLLD setup for each line: Q1, Q2, Q3, etc.

PRESSURE LINE LEAK SETUP

Q 1: REGULAR UNLEADED
TYP: 2.0/3.0 IN FIBERGLASS
2.0 IN DIA LEN: 175 FEET
3.0 IN DIA LEN: 3 FEET
0.20 GPH TEST: REPETITIVE
0.10 GPH TEST: DISABLED
SHUTDOWN RATE: 0.8 GPH
LOW PRESSURE SHUTDOWN: YES
LOW PRESSURE T: 5 PSI

T 1: REGULAR UNLEADED
DISPENSE MODE: STANDARD
SENSOR: NON-VENTED
PRESSURE OFFSET: 0.08 PSI

Note that the 0.2 GPH mode is set to " Repetitive " or constant.
Note that the 0.1 GPH mode is set to " Disabled ".

Note that the shutdown rate is set for 3.0 GPH. This can be disabled also, allowing the line to continue to be used even though a catastrophic leak is being detected.

A printout of the PLLD Alarm History looks like these.
TLS-350 WPLL LD (Wireless Pressurized Line Leak Detection)

The setup printout will have a section detailing the WPLL LD setup for each line: W1, W2, etc.

The setup will look similar to that of the PLLD example.

A printout of the WPLL LD Test Results from the front menu looks like this.

W 3: REGULAR UNLEADED

3.0 GAL/HR RESULTS:

LAST TEST:
MAY 2, 2008 12:56PM PASS

NUMBER OF TESTS PASSED:
PREV 24 HOURS: 94
SINCE MIDNIGHT: 47

0.20 GAL/HR RESULTS:

- APR 14, 2008 3:16AM PASS
- MAR 21, 2008 1:13AM PASS
- MAR 15, 2008 1:13AM PASS
- MAR 8, 2008 1:51AM PASS
- FEB 24, 2008 2:10AM PASS
- FEB 6, 2008 3:12AM PASS
- JAN 27, 2008 3:13AM PASS
- DEC 19, 2007 3:13AM PASS
- NOV 18, 2007 3:14AM PASS

0.10 GAL/HR RESULTS:

- NOV 18, 2007 3:16AM PASS
- FEB 12, 2007 3:03AM PASS

* * * * * END * * * * *

This is the 0.2 GPH diagnostic menu printout for the WPLL LD.

WPLL LINE LEAK DIAG
MAY 2, 2008 12:57PM PASS
W 3: REGULAR UNLEADED

0.20 GPH TEST DIAG

CURRENT TEST:
--- TIME --- PRESS

PREVIOUS DATA:
--- TIME --- PRESS

APR 30	3:19 AM	43.0	0.00
APR 29	3:19 AM	37.2	0.00
3:01 AM	34.7	0.00	
2:34 AM	34.9	0.00	
2:01 AM	35.9	0.00	

AUTO-CONFIRM DATA

CURRENT TEST:
START TIME: APR 16, 2008
DURATION: 15 DAYS
SEQUENTIAL PASSES: 0
SEQUENTIAL FAILS: 0
TOTAL PASSES: 0
TOTAL FAILS: 0
RESULT REASON CODE: WORKING
RESULT: NONE

LAST TEST:
START TIME: APR 12, 2008
DURATION: 1 DAY
SEQUENTIAL PASSES: 2
SEQUENTIAL FAILS: 0
TOTAL PASSES: 2
TOTAL FAILS: 0
RESULT REASON CODE: SEQUENTIAL
RESULT: TEST PASSED

0.20 TEST RESULTS

<table>
<thead>
<tr>
<th>PON</th>
<th>RATIO</th>
<th>DUR</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>APR 14, 2008</td>
<td>3:05 AM</td>
<td>34.1</td>
<td>0.19</td>
</tr>
<tr>
<td>APR 14, 2008</td>
<td>3:11 AM</td>
<td>30.9</td>
<td>0.19</td>
</tr>
<tr>
<td>APR 10, 2008</td>
<td>2:45 AM</td>
<td>31.9</td>
<td>0.00</td>
</tr>
<tr>
<td>APR 6, 2008</td>
<td>2:42 AM</td>
<td>36.1</td>
<td>0.25</td>
</tr>
<tr>
<td>MAR 31, 2008</td>
<td>3:26 AM</td>
<td>34.4</td>
<td>0.17</td>
</tr>
<tr>
<td>MAR 25, 2008</td>
<td>1:50 AM</td>
<td>32.6</td>
<td>0.12</td>
</tr>
<tr>
<td>MAR 19, 2008</td>
<td>1:57 AM</td>
<td>36.1</td>
<td>0.32</td>
</tr>
<tr>
<td>MAR 17, 2008</td>
<td>3:19 AM</td>
<td>37.3</td>
<td>0.46</td>
</tr>
<tr>
<td>MAR 7, 2008</td>
<td>3:51 AM</td>
<td>35.1</td>
<td>0.30</td>
</tr>
<tr>
<td>MAR 5, 2008</td>
<td>3:18 AM</td>
<td>32.8</td>
<td>0.10</td>
</tr>
</tbody>
</table>

NO-VENT TEST ABBRETS:
0 OUT OF 10 TEST
GENERAL RECORDKEEPING
REQUIREMENTS FOR ATG SYSTEMS

• NJDEP & USEPA Release Detection Monitoring requirements require that the O/O (Owner/Operator) of a regulated UST and Piping system be prepared to demonstrate compliance with Release Detection requirements for the previous 3 years. This demonstration will usually entail the ability to produce printouts from the ATG system console to support a “Normal” or non-leaking condition of the facility’s underground tanks and piping systems. The printouts needed in archive will depend on the configuration of the facility (single wall vs. double wall). A general listing of them is as follows:

1. Passing 0.2 (Gallon Per Hour) GPH In-Tank static leak tests, at least Monthly, for each UST on a facility. (single wall tanks)
2. Passing 0.2 GPH in-line pressurized leak tests, at least monthly, for each line being monitored by the console with electronic in-line leak detection. This will generally be for single-wall piping where electronic line leak detection is the registered means of compliance.
3. Monthly Liquid Sensor Status verification for any sensor being used to monitor the secondary space of a Double-wall UST or Piping system. This will apply when Secondary Containment Monitoring is the registered means of compliance for the tanks and/or piping.

• Some ATG console manufacturers (Incon) have provided programming in their console to enable the O/O to receive an automatic printout from the console that summarizes all “compliance” items (in-tank leak tests and sensor status.)
• Unfortunately, the Veeder Root TLS 350 and earlier consoles must have their sensor status reports retrieved manually. In order to stay consistent with archive retrieval, we recommend that the O/O pick a set day of the month to retrieve and file their sensor status reports. It does not matter if it is the 1st, 15th or last day of the month that these reports are retrieved, so as long as they are retrieved every 30 days.

• NOTE: The ATG console memory keeps track of the Alarm History of Probes and Sensors. With the Veeder Root consoles, for example, the 3 most recent alarms are stored in its on-board memory.

• Bottom line, a conscientious O/O, should be able to ask his/her trusted contractor for guidance on what you should need to do with your ATG console in order to maintain compliance with the NJDEP requirements for Release Detection Monitoring of your underground tanks and piping systems.
Liquid Sensor Status

This printout shows the status of all 2-wire sensors L1, L2, L3, etc. Some Veefer Root sensors are not "Smart" as they can not distinguish from Fuel or Water, simply that liquid has been detected.

A low resistance value received at the console can cause "False" alarms as well.

AUG 6, 2007 9:20 AM
LIQUID STATUS
AUG 6, 2007 9:20 AM

L 13:646 STP SUMP
SENSOR NORMAL

L 13:646 STP SUMP
FUEL ALARM

L 3:UNLEADED ANNULAR
SENSOR NORMAL

L 4:DIESEL ANNULAR
FUEL ALARM

L 5:DIESEL DISPENSER PAN
SENSOR NORMAL

L 6:UNL DISPENSER PAN
SENSOR NORMAL

** END **

LIQUID DIAGNOSTIC

L 1:3466 STP SUMP
SAMPLES= 5
LOW REFL = 818
HIGH REFH = 5517
VALUE = 93471

L 2:6346 STP SUMP
SAMPLES= 5
LOW REFL = 818
HIGH REFH = 5519
VALUE = 95871

L 3:UNLEADED ANNULAR
SAMPLES= 5
LOW REFL = 818
HIGH REFH = 5517
VALUE = 9506

L 4:DIESEL ANNULAR
SAMPLES= 5
LOW REFL = 818
HIGH REFH = 5516
VALUE = 19961

L 5:DIESEL DISPENSER PAN
SAMPLES= 5
LOW REFL = 820
HIGH REFH = 5520
VALUE = 144003

L 6:UNL DISPENSER PAN
SAMPLES= 5
LOW REFL = 820
HIGH REFH = 5527
VALUE = 14323514

L 7:
SAMPLES= 5
LOW REFL = 820
HIGH REFH = 5527
VALUE = 14323514

L 8:
SAMPLES= 5
LOW REFL = 820
HIGH REFH = 5527
VALUE = 14323514
UST w/ 95% Limiting Drop Tubes

ALARM HISTORY REPORT

-- IN-TANK ALARM --

T 1: UNLEADED 10K

OVERFILL ALARM
MAR 12, 2008 2:13 PM
MAR 17, 2008 5:41 PM
MAR 10, 2008 9:31 PM

LOW PRODUCT ALARM
MAR 05, 2008 3:22 PM
MAR 05, 2008 7:05 PM
MAR 28, 2008 1:54 PM

HIGH PRODUCT ALARM
NOV 09, 2008 9:55 PM
NOV 20, 2008 7:24 PM
Dec 04, 2008 8:16 PM

INVALID FUEL LEVEL
DEC 15, 2007 9:48 PM
DEC 23, 2007 9:42 PM
OCT 27, 2006 1:33 PM

PROBE OUT
Jan 16, 2006 11:56 AM
Jan 16, 2006 11:16 AM
Jan 16, 2006 11:14 AM

DELIVERY NEEDED
Mar 04, 2008 10:55 AM
Mar 04, 2008 7:01 AM
Mar 04, 2008 10:02 AM

LOW LEVEL WARNING
Jan 16, 2006 11:12 PM
NOV 08, 2004 11:48 PM

UST w/ 90% Limiting Ball Floats

ALARM HISTORY REPORT

-- IN-TANK ALARM --

T 1: UNLEADED 10K

OVERFILL ALARM
JAN 07, 2008 11:31 PM
NOV 24, 2007 8:42 PM
NOV 18, 2007 6:19 PM

LOW PRODUCT ALARM
JAN 26, 2008 11:17 AM
JAN 25, 2008 11:18 AM
JAN 3, 2008 8:44 PM

HIGH PRODUCT ALARM
DEC 18, 2007 9:42 PM
Aug 26, 2007 5:35 PM
Aug 26, 2007 12:22 PM
Aug 25, 2007 11:39 AM

INVALID FUEL LEVEL
DEC 07, 2007 8:13 PM
DEC 07, 2007 5:55 PM
Nov 02, 2007 9:14 PM

PROBE OUT
DEC 7, 2007 8:22 PM
DEC 7, 2007 8:11 PM
Aug 27, 2007 5:05 PM

HIGH WATER WARNING
Dec 7, 2007 8:18 PM
Aug 17, 2007 7:06 PM

DELIVERY NEEDED
Dec 25, 2008 11:15 AM
Jan 25, 2008 9:46 AM
Jan 3, 2008 7:26 AM

MAX PRODUCT ALARM
Aug 26, 2007 5:39 PM
Aug 25, 2007 12:22 PM
Aug 25, 2007 11:39 AM

PERIODIC TEST FAIL
DEC 8, 2007 8:00 AM
NOV 22, 2007 3:56 AM
Nov 13, 2007 4:35 AM

95% alarm within the past 30 days
100% alarm within the past 90 days
Per. test fails in past 30 days
Incon TS-1001/2001 Regulatory Report

This printout summarizes all items a DEP inspector could ask for. This report shows the status of all components of the system, the last 12 months of passing Static Tests & 12 months of Sensor Status Reports.

Test Unit
- **Model Number:** 00-1001/00-1001
- **Serial Number:** 001001
- **Inspector:** BELLMAY VALEJO
- **Station:** 226 S. BLACKHORSE PK.
- **Console SN:** 010001

Reports
- **Software Report:** 01/29/2001
- **Hardware Report:** 01/29/2001
- **TS-EQM 1 NOT INSTALLED**: 01/29/2001
- **TS-EQM 2 NOT INSTALLED**: 01/29/2001
- **TS-CMP NOT INSTALLED**: 01/29/2001
- **Probe 1 OPERATIONAL**: 01/29/2001
- **Probe 2 OPERATIONAL**: 01/29/2001
- **Probe 3 OPERATIONAL**: 01/29/2001

Sensors
- **Sensor 1 OPERATIONAL**: 01/29/2001
- **Sensor 2 OPERATIONAL**: 01/29/2001
- **Sensor 3 OPERATIONAL**: 01/29/2001
- **Sensor 4 OPERATIONAL**: 01/29/2001
- **Sensor 5 OPERATIONAL**: 01/29/2001
- **Sensor 6 OPERATIONAL**: 01/29/2001

Auxiliary Inputs
- **Aux In 1 OPERATIONAL**: 01/29/2001
- **Aux In 2 OPERATIONAL**: 01/29/2001

Passed Leaks Tests
- **Tank 1**: 05/01/2006
- **Tank 2**: 05/01/2006
- **Tank 3**: 05/01/2006
- **Cus Tanks**: 01/28/2001

Compliance Tests
- **Cus Tank 1**: 04/09/2000
- **Sensor No. 1**: 03/25/2008
- **Sensor No. 1**: 02/27/2008
- **Sensor No. 2**: 09/03/2007
- **Sensor No. 3**: 01/28/2008
- **Sensor No. 4**: 01/29/2007
- **Sensor No. 5**: 01/29/2007
- **Sensor No. 6**: 08/01/2007
- **Sensor No. 7**: 07/02/2007

Status
- **Sensor No. 1**: ANNUAL
- **Sensor No. 2**: ANNUAL
- **Sensor No. 3**: ANNUAL
- **Sensor No. 4**: ANNUAL
- **Sensor No. 5**: ANNUAL
- **Sensor No. 6**: ANNUAL
- **Sensor No. 7**: ANNUAL
Incon TS-1001/2001 Regulatory Report Pg 2

This printout summarizes all items a DEP inspector could ask for:
This report shows the status of all components of the system, the last 12 months of passing Static Tests & 12 months of Sensor Status Reports.

<table>
<thead>
<tr>
<th>Date</th>
<th>Sensor No.</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>08/27/2007</td>
<td>5</td>
<td>12:00</td>
<td>CUS LINE 2</td>
</tr>
<tr>
<td>04/09/2007</td>
<td>4</td>
<td>87 STP</td>
<td>SUMP</td>
</tr>
<tr>
<td>08/03/2007</td>
<td>5</td>
<td>12:00</td>
<td>SENSOR NO. 4</td>
</tr>
<tr>
<td>04/09/2007</td>
<td>4</td>
<td>87 STP</td>
<td>SUMP</td>
</tr>
<tr>
<td>08/03/2007</td>
<td>5</td>
<td>12:00</td>
<td>SENSOR NO. 4</td>
</tr>
<tr>
<td>04/09/2007</td>
<td>4</td>
<td>87 STP</td>
<td>SUMP</td>
</tr>
<tr>
<td>01/28/2008</td>
<td>4</td>
<td>12:00</td>
<td>SENSOR NO. 4</td>
</tr>
<tr>
<td>08/09/2007</td>
<td>4</td>
<td>87 STP</td>
<td>SUMP</td>
</tr>
<tr>
<td>03/29/2007</td>
<td>4</td>
<td>12:00</td>
<td>SENSOR NO. 4</td>
</tr>
<tr>
<td>08/09/2007</td>
<td>4</td>
<td>87 STP</td>
<td>SUMP</td>
</tr>
<tr>
<td>02/27/2008</td>
<td>4</td>
<td>12:00</td>
<td>SENSOR NO. 4</td>
</tr>
<tr>
<td>08/09/2007</td>
<td>4</td>
<td>87 STP</td>
<td>SUMP</td>
</tr>
<tr>
<td>01/28/2008</td>
<td>4</td>
<td>12:00</td>
<td>SENSOR NO. 4</td>
</tr>
<tr>
<td>08/09/2007</td>
<td>4</td>
<td>87 STP</td>
<td>SUMP</td>
</tr>
<tr>
<td>12/29/2007</td>
<td>4</td>
<td>12:00</td>
<td>SENSOR NO. 4</td>
</tr>
<tr>
<td>08/09/2007</td>
<td>4</td>
<td>87 STP</td>
<td>SUMP</td>
</tr>
<tr>
<td>11/29/2007</td>
<td>4</td>
<td>12:00</td>
<td>SENSOR NO. 4</td>
</tr>
<tr>
<td>08/09/2007</td>
<td>4</td>
<td>87 STP</td>
<td>SUMP</td>
</tr>
<tr>
<td>05/30/2007</td>
<td>4</td>
<td>12:00</td>
<td>SENSOR NO. 4</td>
</tr>
<tr>
<td>08/09/2007</td>
<td>4</td>
<td>87 STP</td>
<td>SUMP</td>
</tr>
<tr>
<td>05/30/2007</td>
<td>4</td>
<td>12:00</td>
<td>SENSOR NO. 4</td>
</tr>
<tr>
<td>08/09/2007</td>
<td>4</td>
<td>87 STP</td>
<td>SUMP</td>
</tr>
<tr>
<td>05/30/2007</td>
<td>4</td>
<td>12:00</td>
<td>SENSOR NO. 4</td>
</tr>
<tr>
<td>08/09/2007</td>
<td>4</td>
<td>87 STP</td>
<td>SUMP</td>
</tr>
<tr>
<td>05/30/2007</td>
<td>4</td>
<td>12:00</td>
<td>SENSOR NO. 4</td>
</tr>
<tr>
<td>08/09/2007</td>
<td>4</td>
<td>87 STP</td>
<td>SUMP</td>
</tr>
<tr>
<td>05/30/2007</td>
<td>4</td>
<td>12:00</td>
<td>SENSOR NO. 4</td>
</tr>
<tr>
<td>08/09/2007</td>
<td>4</td>
<td>87 STP</td>
<td>SUMP</td>
</tr>
<tr>
<td>05/30/2007</td>
<td>4</td>
<td>12:00</td>
<td>SENSOR NO. 4</td>
</tr>
<tr>
<td>08/09/2007</td>
<td>4</td>
<td>87 STP</td>
<td>SUMP</td>
</tr>
<tr>
<td>05/30/2007</td>
<td>4</td>
<td>12:00</td>
<td>SENSOR NO. 4</td>
</tr>
<tr>
<td>08/09/2007</td>
<td>4</td>
<td>87 STP</td>
<td>SUMP</td>
</tr>
</tbody>
</table>

CUS LINE 1

<table>
<thead>
<tr>
<th>Date</th>
<th>Sensor No.</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>08/03/2007</td>
<td>2</td>
<td>12:00</td>
<td>DSL ANNULAR</td>
</tr>
<tr>
<td>05/30/2007</td>
<td>2</td>
<td>12:00</td>
<td>DSL ANNULAR</td>
</tr>
<tr>
<td>04/03/2007</td>
<td>2</td>
<td>12:00</td>
<td>DSL ANNULAR</td>
</tr>
<tr>
<td>05/30/2007</td>
<td>2</td>
<td>12:00</td>
<td>DSL ANNULAR</td>
</tr>
<tr>
<td>04/03/2007</td>
<td>2</td>
<td>12:00</td>
<td>DSL ANNULAR</td>
</tr>
<tr>
<td>05/30/2007</td>
<td>2</td>
<td>12:00</td>
<td>DSL ANNULAR</td>
</tr>
<tr>
<td>04/03/2007</td>
<td>2</td>
<td>12:00</td>
<td>DSL ANNULAR</td>
</tr>
<tr>
<td>05/30/2007</td>
<td>2</td>
<td>12:00</td>
<td>DSL ANNULAR</td>
</tr>
<tr>
<td>04/03/2007</td>
<td>2</td>
<td>12:00</td>
<td>DSL ANNULAR</td>
</tr>
<tr>
<td>05/30/2007</td>
<td>2</td>
<td>12:00</td>
<td>DSL ANNULAR</td>
</tr>
<tr>
<td>04/03/2007</td>
<td>2</td>
<td>12:00</td>
<td>DSL ANNULAR</td>
</tr>
</tbody>
</table>
ANNUAL TANK GAUGING SYSTEMS CERTIFICATION

- Contrary to statements by ATG system manufacturers who state their systems are “self-testing”, ensuring the monitoring system’s equipment will perform properly when needed by physically manipulating the components into an alarm condition and ensuring that the required audible/visual indications are received at the ATG system console is recommended in many circles within the industry.

- What is done:
 - Liquid-level Probes are removed & placed on the surface of the tank-field, re-connected to their probe cables, and then the floats are moved to positions to trigger fuel and water level alarms.
 - An external audible overfill horn’s proper function (if present) is also verified with these steps.
Field Sensors are removed for testing:
- Interstitial/Annular space sensors
- Turbine/Piping Sump sensors
- Dispenser Sump/Pan sensors

Electronic Line Leak Detectors should receive a 3.0 GPH functionality test.

- NOTE: NJDEP RDM regulations do not require the ATG system to specifically shut-down the line system in the event a leak is detected. But it must provide an audible/visual indication of the problem when detected.

- Any components of the system found to not be working should be reported to the owner/operator for immediate repair since the ATG system’s ability to provide Release Detection or Overfill Prevention could be ineffective or completely unavailable.
- Testers should attain manufacturer’s Certification for the specific gear being tested.
Any Questions?

Thank you for your attention and participation in this presentation today.