INTRODUCTION TO WATER/WASTEWATER OPERATION COURSE

PART I (90 Hours)

A. MATHEMATICS:

- 1. Basic Math (12 Hours)
 - a. Fractions and Decimals
 - b. Ration and Proportions
 - c. Percent and Unit Analysis
 - d. Graphs and Significant Numbers
 - e. Review of Addition, Subtraction, etc.
 - f. Conversions and Averaging
 - g. Usage of Scientific Calculator
 - h. Metric System
- 2. Basic Algebra (15 Hours)
 - a. Simple Algebraic Equations
 - b. Exponentials, Logarithm, Scientific Notation
 - c. Formulas for Process Control
- 3. Geometric Figures (9 Hours)
 - a. Circle, Cone and Cylinder
 - b. Frustrum
 - c. Rectangles
 - d. Triangles and Trapezoid
 - e. Prismoidal Basin

*****TEST****

B. PHYSICS

- 1. Hydraulics (12 Hours)
 - a. Basic Hydraulics-Detention Time, Force, Head, Velocity, etc.
 - b. Flow Calculation-Channels, Parshall Flume, Weirs, etc.
 - c. Pumps:
 - 1. Types and Application
 - 2. Pump Curves and Computations
 - 3. Static and Dynamic Head and Calculations
 - 4. Valves and Related Equipment
 - 5. Maintenance

B. PHYSICS (Cont'd.)

- 2. Electricity (12 Hours)
 - a. Basic Electricity
 - 1. Ohm's Law
 - 2. Parallel and Series Circuits
 - 3. Basic Generator and Power Transmission
 - 4. Transformers
 - 5. Power Requirements and Calculations
 - b. Motors and Name Plate Data
 - 1. Basic Components
 - 2. Horse Power Requirements and Efficiencies
 - c. Instrumentation
 - 1. Types and Application
- 3. Simple Machines (2 Hours)
 - a. Pulleys
 - b. Levers

C. CHEMISTRY (11 Hours)

- 1. Basic Chemistry
 - a. Atomic Structure and components
 - b. Elements and Compounds
 - c. Chemical Symbols and Equations
 - d. Periodic Table
 - e. Balancing of Equations
 - f. pH Values
 - g. solution Preparation for Laboratory and Process Application

D. MICROBIOLOGY (11 Hours)

- 1. Cell Structure
- 2. Cell Metabolism-Reproduction
- 3. Microorganisms-Bacteria, Algae
- 4. Nitrogen and other Cycles
- 5. Environmental Factors Affecting Microorganisms
- 6. Classification
 - a. Aerobic
 - b. Anaerobic
 - c. Facultaive
- 7. Pathogens
- 8. Typical Microorganisms Related to Water and Wastewater

E. MISCELLANEOUS (6 Hours)

- 1. Terminology
- 2. Laboratory Equipment Familiarization
- 3. Basic Laboratory Testing
 - a. pH and temperature
 - b. Chlorine Residual
 - c. Settleable Solids

*****TEST*****

NOTE:

At least two (2) tests are to be administered for Part I with a minimum average of 70 for passing and certification. Other tests or quizzes may be given at the instructor's discretion. Certificates are to be issued after the successful completion of Part I and Part II.

INTRODUCTION TO WATER/WASTEWATER OPERATION COURSE

PART II (45 Hours) – WATER SECTION

- A. ADMINISTRATIVE: (6 Hours)
 - 1. Rules and Regulations
 - 2. Reporting to Regulatory Agencies
 - Budgeting
 - 4. Record Keeping
 - 5. Safety-P.E.O.S.H.A.
- B. WATER SOURCES AND CHARACTERISTICS: (3 Hours)
 - 1. Hydrological Cycle
 - 2. Surface Water Supply
 - 3. Ground Water Supply and Others
- C. WELLS: (3 Hours)
 - 1. Types and Construction
 - 2. Operation and Treatment
 - 3. Monitoring and Record Keeping
- D. WATER TREATMENT (12 Hours)
 - 1. Sedimentation and Precipitation
 - a. Operation and Records
 - b. Operation Parameters and Problems
 - c. Applied Math
 - 2. Filtration
 - a. Gravity and Pressure Filters
 - b. Construction
 - c. Operation Parameters and Problems
 - d. Applied Math
 - Aeration and Air Stripping
 - 4. Reverse Osmosis
 - Water Softening
 - 6. Iron Removal
 - 7. Distillation

*****TEST****

- E. DISINFECTION: (3 Hours)
 - 1. Types-Chlorination, Ultra-Violet Light, others
 - 2. Method of Application
 - 3. Operation

- F. WATER ANALYSIS AND INTERPRETATION: (3 Hours)
 - 1. Drinking Water Standards
 - 2. Process Evaluation
- G. DISTRIBUTION SYSTEM: (9 Hours)
 - 1. Types of Pumps and Pipe
 - 2. Main Installation and Repair
 - 3. Water Meters and Valves
 - 4. Hydrant Installation and Repairs
 - 5. Physical and Cross-Connections
- H. SAFETY: (3 Hours)

*****TEST****

I. FIELD TRIP: (3 Hours)

NOTE: At least two (2) tests are to be administered for this section with a minimum average of 70 for passing. Other tests or quizzes may be given at the instructor's discretion.

INTRODUCTION TO WATER/WASTEWATER OPERATION COURSE

PART II (45 Hours) - WASTEWATER SECTION

- A. ADMINISTRATIVE: (4 Hours)
 - 1. Rules and Regulations
 - 2. Reporting to Regulatory Agencies
 - 3. Safety
- B. WASTEWATER SOURCES AND CHARACTERISTICS: (2 Hours)
 - 1. Domestic
 - 2. Industrial
 - 3. Parameter Ranges
 - 4. Flows
- C. TREATMENT METHODS:
 - 1. Preliminary (3 Hours)
 - a. Screening
 - b. Grit Removal
 - c. Comminution, Grinders, etc.
 - d. Pre-Chlorination and Pre-aeration
 - 2. Primary (3 Hours)
 - a. Septic Tanks
 - b. Imhoff Tanks
 - c. Clarifiers
 - 1. Construction
 - 2. Operation Parameters and Problems
 - 3. Applied Math
 - d. Chemical Precipitation
 - 3. Secondary (10 Hours)
 - a. Trickling Filters and RCB's (2 Hours)
 - 1. Construction
 - 2. Operation Parameters and Problems
 - 3. Applied Math
 - b. Activated Sludge Systems (8 Hours)
 - 1. Conventional, Step-aeration, Extended, etc.
 - a. Construction
 - b. Operation Parameters and Problems
 - c. Applied Math

- b. Activated Sludge Systems (cont'd)
 - 2. Secondary Clarification
 - a. Construction
 - b. Operation Parameters and Problems
 - c. Applied Math

*****TEST****

- 4. Sludge Handling (6 Hours)
 - a. Sludge Thickening
 - 1. Gravity
 - 2. Flotation
 - 3. Gravity Belt
 - b. Sludge Digestion
 - 1. Aerobic
 - 2. Anaerobic
 - c. Sludge Dewatering
 - 1. Mechanical Methods
 - 2. Drying Beds
 - d. Sludge Disposal
 - 1. Incineration
 - 2. Composing
 - 3. Land Application
- 5. Advanced Treatment (3 Hours)
 - a. Ammonia Removal
 - b. Phosphorus Removal
 - c. Stabilization Lagoons
- D. DISINFECTION: (2 Hours)
 - 1. Types Chlorination, Ultra-Violet Light, etc.
 - 2. Method of Application
 - 3. Dechlorination
 - 4. Operation
- E. WASTEWATER ANALYSIS AND INTERPRETATION: (3 Hours)
 - 1. Process Control
 - 2. Laboratory Testing
 - a. BOD
 - b. Solids-Total, Suspended, Dissolved
 - c. Sludge Analysis
 - d. Others

F. COLLECTION SYSTEM: (6 Hours)

- 1. Gravity Systems
 - a. Types and Size of Pipes
 - b. Slope and Velocity Requirements
 - c. Manhole
 - 1. Standard
 - 2. Drop
 - d. House Connection
 - e. Maintenance
- 2. Pumping Station and Force Main
 - a. Sizing of Force Main
 - b. Pumps and Controls
 - c. Standby Power (Generator)
 - d. Odor Control
 - e. Screenings and Grease Control
 - f. Maintenance
- 3. Pretreatment
 - a. Local and State Regulations
 - b. Treatment Impact
- 4. Safety

*****TEST****

G. FIELD TRIP: (3 Hours)

NOTE: At least two (2) tests are to be given with a minimum average of 70 for passing. Other tests or quizzes may be given at the instructor's discretion.

PROCESSING FORMULAS

Grit Chambers

Flow Velocity (ft/sec) = <u>Length of Grit Chamber (ft)</u>
Time for sewage to pass through G.C. (sec)

Flow Velocity (ft/sec) = Rate of Flow to Grit Chamber (ft 3/ sec)

Cross sectional area of sewage in the channel (ft 2)

Detention Time (sec) = Volume of Grit Chamber (ft 3)

Rate of flow to Grit Chamber (ft 3/sec)

Clarifiers

Detention Time (hrs) = Volume of Clarifier (gal)
Rate of Flow to Clarifier (gal/hr)

Weir Overflow Rate (gal/ft/day) = Rate of Flow to Clarifier (gal/day)

Length of Weir (ft)

Surface Settling Rate (gal/ft 2/day) = Rate of Flow to Clarifier (gal/day)
Surface Area of Clarifier (ft 2)

Anaerobic Digesters

Volatile Acids/Alkalinity Ratio = Volatile Acids Analysis (mg/l)

Alkalinity Analysis (mg/l)

Digester Loading (lbs/ft 3/day) = Volatile Suspended Solids Fed (lbs/day)

Volume digester used (ft 3)

Chlorination

Dose (mg/l) = Demand (mg/l) + Residual (mg/l)

Rate of Feed (lbs/day) = Dose (mg/l) $X = 8.34 \frac{lbs/mg}{mg/l} X Flow (MGD)$

Detention Time (min) = Vol. Tank (gal) X 24 (hrs/day) X 60 (min/hr) Flow (gal/day)

Percent Efficiency

Efficiency = Input-Output X 100 (Removal) Input

Efficiency = $\frac{\text{Influent (mg/l)} - \text{Effluent (mg/l)}}{\text{Influent (mg/l)}} \times 100$

Efficiency = % Vol. Solids (Raw) - % Vol. Solid (Digested)
% Vol. Solids (Raw) - (% Vol. Solids Raw)) X % Vol. Solids (Digested)

PROCESSING FORMULAS

Trickling Filters

Hydraulic Loading (MGAD) = $\frac{\text{Flow (MGD)} \times 43,560 \text{ (ftz/A)}}{\text{Surface Area (ftz)}}$

Hydraulic Loading (gal/ft2/day) = Flow (gal/day) Surface Area (ft2)

Organic Loading (lbs/1000 ft3/day) = B.O.D. to Trickling filter (lbs/day)

Volume Filter Media (ft3)

1000

Activated Sludge

Inf. B.O.D. (lbs) = B.O.D. Anal. (mg/l) \times 8.34 (lbs/MG) \times Flow (MG) mg/l

Inf. S.S. (lbs) = S.S. Anal. (mg/l) \times 8.34 (lbs/MG) \times Flow (MG) mg/l

Wgt MLSS (lbs) = MLSS Anal. (mg/l) X 8.34 (lb/MG) X Vol. Aer. Tank (MG) mg/l

Food/Mass Ratio = Influent B.O.D. (lbs)
MLSS in Aeration Unit (lbs)

Sludge Age (days) = Suspend Solids in Aeration Tank (MLSS)(lbs)
Suspend Solids in Influent (lbs/day)