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Figure 3.  Structural data on rocks in study area.  Joints not present in all exposures.

INTRODUCTION

The Park Ridge, NY-NJ 7 1/2-minute quadrangle is in extreme northeastern New Jersey and southeastern 
New York State.  The boundary dividing them extends obliquely from southeast to northwest. Park Ridge 
quadrangle lies within the Piedmont Physiographic Province.   North-south trending, broad ridges form a 
subdued landscape that rises in elevation from less than 100 feet in the southeast to more than 600 feet in 
the northwest.  Three north-south rivers, the Hackensack River to the east, the Saddle River to the west, and 
Pascack Brook between them, dominate the drainage network.  Woodcliff Lake is the largest standing water 
body.

The New Jersey side is predominantly a suburban landscape consisting of housing tracts cut by two major 
highways, the Garden State Parkway and NJ Route 17. Both routes continue northward to the New York 
Thruway and furnish commuters easy routes to New York City.  Housing density in highest in the 
southwestern corner of the quadrangle.  
 
STRATIGRAPHY
 
The New Jersey part of the quadrangle contains a thick sedimentary cover deposited by glaciers during the 
Pleistocene and fluvial material of Recent origin.  This sedimentary blanket limits the amount of bedrock 
exposure which has been exposed through erosion.  The bedrock is part of the Newark Basin of Mesozoic 
age, formed by rifting that led to the modern-day Atlantic Ocean.  The Newark Basin extends southwestward 
into Pennsylvania where merges with the Gettysburg Basin.  It is a half-graben bounded on the west by 
northeast-striking, southeast-dipping border faults.  Late Triassic to Middle Jurassic motion on the different 
border faults as well as several intrabasinal faults controlled basin morphology (Schlische, 1992, 1993; 
Olsen and others, 1996).  The south-dipping Ramapo Fault marks the western edge of the Newark Basin 
directly west of the Park Ridge quadrangle.  Sediments entered the basin through three different fluvial 
networks: from the southeast in northwesterly-draining streams, from southwest- and southeast-draining 
fluvial network incised along rider blocks between border fault segments and lastly, along the basin’s 
northern edge in a basin-parallel direction.  Source material in this quadrangle exhibits a northeastern 
provenance (Parker and others, 1988; Parker, 1993, Yager and Ratcliffe, 2010) suggesting a basin-parallel 
fluvial system deposited the sediment in this region of the Newark Basin.  Smoot (2010) categorized these 
sediments as axial sandstone and conglomerate that are interpreted as terminal fan deposits.  Several 
generations of diabase intruded the basin sediments during the Early Jurassic and regionally reached the 
paleosurface where thick basalt volcanics formed.  Following the Atlantic Ocean opening, 3-5 km of material 
was eroded from the quadrangle region (Malinconico, 2010) by the Early Cretaceous (Olsen and Rainforth, 
2001) and deposited on the continental shelf (Katz and others, 1998; Pratt and others, 1988; Walters and 
Kotra 1990; Huntoon and Furlong, 1992; Steckler and others, 1993; El-Tabakh and others, 1997) where it 
joined other weathered material from the continental interior through fluvial channels into the Atlantic coastal 
region and offshore Baltimore Canyon (Poag and Sevon, 1989; Pazzaglia, 1993).    
 
A mantle of glacial and postglacial deposits overlie the bedrock throughout the quadrangle (Stanford, 2002).  
These consist of 1) glacial-meltwater sediments, 2) postglacial deposits and 3) till.  The meltwater deposits 
are  valley-fill sediments deposited in several glacial lakes and in glacial-river plains in the Saddle River, 
Pascack Brook, and Musquapsink Brook valleys (Stanford, 2002).   Postglacial deposits consist of alluvium, 
alluvial fan, stream terrace and swamp deposits.  Till covers most upland areas and is mapped with the 
bedrock.  Drumlins composed of till as much as 120 feet thick mapped by Stanford (2002) form elliptical 
ridges that strike approximately north south and are noted on the map. 

Several lithofacies of the Passaic Formation have been described by Parker and others (1988), Parker 
(1993) and Drake and others (1996).  These lithofacies document mudstone in the central Newark Basin that 
grades into a sandy mudstone through sandstone into conglomeratic sandstone, and finally quartzite-clast 
conglomerate towards the northwestern corner of the basin (Drake and others, 1996).  The outcrop pattern 
of the conglomeratic sandstone and quartzite-clast conglomerate match the pebbly sandstone and 
conglomerate of Parker and others (1988) and Parker (1993).  Smoot (2010) described the sedimentary 
rocks in the Park Ridge quadrangle as the axial sandstone and conglomerate facies, which were 
differentiated from the border conglomerate and sandstone facies.   Mapping in the western section of the 
quadrangle identified sandstone to pebbly sandstone as the dominant lithology.  Individual beds could be 
described as conglomerate containing clasts varying from pebbles to boulders.  The overall lithology is an 
arkosic to feldspathic sandstone, to local pebbly sandstone.  Clast lithology consists of vein quartz, quartz 
arenite, brown siltstone and fossiliferous limestone.  Conglomeratic beds are clast-supported, rarely 
imbricated and their erosional basal contacts portray channel morphologies (fig. 1).  Sufficiently thick 
outcrops demonstrate stacked channels (fig. 2).  Clast horizons also form lag deposits consisting of layers 
one clast thick or aligned on reactivation surfaces.  Matrix-supported conglomerates also occurr but are 
greatly subordinate in volume.  Ratcliffe (1988) and Yager and Ratcliffe (2010) described fine sands and clay 
to the east that lie stratigraphically below coarse-grained to medium-grained quartz-pebble sandstone and 
conglomerate with less mudstone and shale.   Driller’s well logs (Stanford, 2002) suggest a dominance of 
sandstone towards the west and a fine-grained facies, identified as shale in driller’s logs that dominates the 
Passaic to the south. This agrees with the descriptions of Ratcliffe (1988) and Yager and Ratcliffe (2010).  
This data supplied sufficent information to subdivide the Passaic into two facies.   

The Lockatong Argillite does not crop out in the Park Ridge quadrangle and is only shown in the cross 
section.  Geologic descriptions and data on this formation have been projected from the Nyack and Yonkers 
quadrangles to the east (Monteverde, unpublished data) where the argilite has been separated into two 
facies: an upper coarser-grained arkosic-to-feldspathic sandstone and a lower, more characteristic black 
siltstone and lesser interbedded arkosic-to-feldspathic sandstone near its contact with the underlying 
Stockton Formation (Parker, 1993; Drake and others, 1996).  Olsen, (1980a, 1980b, 1980c) and Olsen and 
others (1989) did not use this subdivision of the Lockatong and instead defined the upper coarse-grained 
facies as part of the Stockton.  Olsen, (1980b, 1980c), and Olsen and others, 1989, 1996, 2004) did place 
the repetitious fining-upwards cycles in this region into their defined member that can be correlated across 
the Newark Basin as the overall grain size changes from coarse sand through siltstone to mudstone.      

STRUCTURE

Sedimentary units dip fairly uniformly west-southwest except where channel margins are exposed.  Dip 
angle and dip direction may vary owing to the nature of braided stream deposits.  The most common 
bedding strike ranges from 00o to 020o with a total range of 30o to either side of north (fig 1).  Jointing is 
uncommon in most outcrops.  Joints range widely in strike but dominant trend at 170o-180o (fig. 3).  No 
other evidence of structural development was visible in the sparse rock exposures in the study area.
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DESCRIPTIONS OF MAP UNITS

Postglacial deposits - Alluvium consisting of pebble- to cobble-gravel, sand, silt, and clay; and wetland 
deposits consisting of peat and organic silt, clay and fine sand.  Dark-reddish-brown, reddish-brown, gray 
and black, moderately to well sorted, stratified to massive. As much as 15 feet thick.  Corresponds to 
alluvium, alluvial fan, stream terrace and swamp deposits of Stanford (2002)

Glacial meltwater deposits – includes glacial-lake deposits consisting of  well sorted, stratified sand and 
gravel in inclined foreset and overlying topset beds, locally displaying collapse features, laminated to thin- 
bedded silt, clay and fine sand.  Also includes glacial-stream sediments consisting of well sorted, stratified 
gravel and sand, in horizontal to cross-bedded, thick to thin beds.  Gravel consists of sandstone, mudstone, 
gneiss, and quartzite, sand includes quartz, feldspar, mica and rock fragments.  Deposit consists of units 
combined from Stanford (2002)

Glacial till -  blanket of unsorted sediment 10 to 120 feet thick and averaging about 40 feet thick (Stanford, 
2002).  

Passaic Formation - (Lower Jurassic and Upper Triassic) (Olsen, 1980a) - Interbedded sequence of 
reddish-brown to maroon, and white to buff, medium- to coarse-grained arkosic to feldspathic sandstone and 
coarse-grained arkosic pebbly sandstone (JTRsp) and less common fine- to medium-grained sandstone to 
shaley siltstone (JTRps).  Sandstone is medium to coarse-grained, poorly to moderately sorted, subrounded, 
dominated by arkosic to feldspathic sandstone consisting chiefly of quartz with white feldspar grains, and 
lesserclay and siltstone.  Pebbly sandstone dominated by pebbles with local concentrations of granules, and 
uncommon cobbles, subrounded to rounded, rarely imbricated, consisting chiefly of vein quartz but also 
fossiliferous limestone, red brown sandstone, siltstone and dark-gray chert.  Clasts range from 5 to 15%  
rock and are clast- to matrix-supported in an arkosic-to-feldspathic sandstone. Thin- to thick-bedded, erosive 
base, pebbles commonly are lags and rare along reactivation surfaces, planar cross-stratified, weak 
horizontal bedding, channels with pebble lags, in stacked channels: some material is massive. Regionally 
unit coarsens with larger clast size and volume towards the north-northwest.  Formation is approximately 
11,000 feet thick in region.  Lower contact gradational.

Lockatong Formation (Upper Triassic) (Kummel, 1897) - (shown only in cross section) Cyclically deposited 
sequences of mainly gray to greenish-gray siltstone and white to buff arkosic sandstone and local pebble 
conglomerate. Siltstone is medium- to fine-grained, thin-bedded, laminated, platy to massive. Arkose (TRla) is 
similar to that of the Stockton Formation and is massive to cross-bedded.  Symmetrical ripples  indicate 
bidirectional flow. Maximum thickness of unit regionally is about 700 feet (Parker, 1993).    
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EXPLANATION OF MAP SYMBOLS

Contact - Dashed where approximately located; dotted where concealed

Planar features

   Strike and dip of inclined beds

Other features

   Drumlin (location from Stanford, 2002)

   Rock quarry, abandoned

   Lithologic identification from drill-log data (Stanford 2002).  Dot locates drill hole, abbreviated label
   identifies lithology; where ss = sandstone, sh = shale and rr = red rock

   Location of bedrock exposures shown in figures 1 and 2
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Figure 1. Photograph (1a) and line drawing (1b) of channel eroded down into sandstone beds.  Smaller 
channel is at lower right.  Clasts more numerous at base of channel.
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Figure 2. Photograph (2a) and line drawing (2b) of pebbly sandstone beds.  Smaller channel is at lower 
right.  Clasts more numerous at base of channel and scattered elsewhere.
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