Remedial Investigation Report

1529 Route 206 (Block 320, Lot 5) Joan's Cleaners Site

Tabernacle Township, New Jersey

Remedial Investigation and

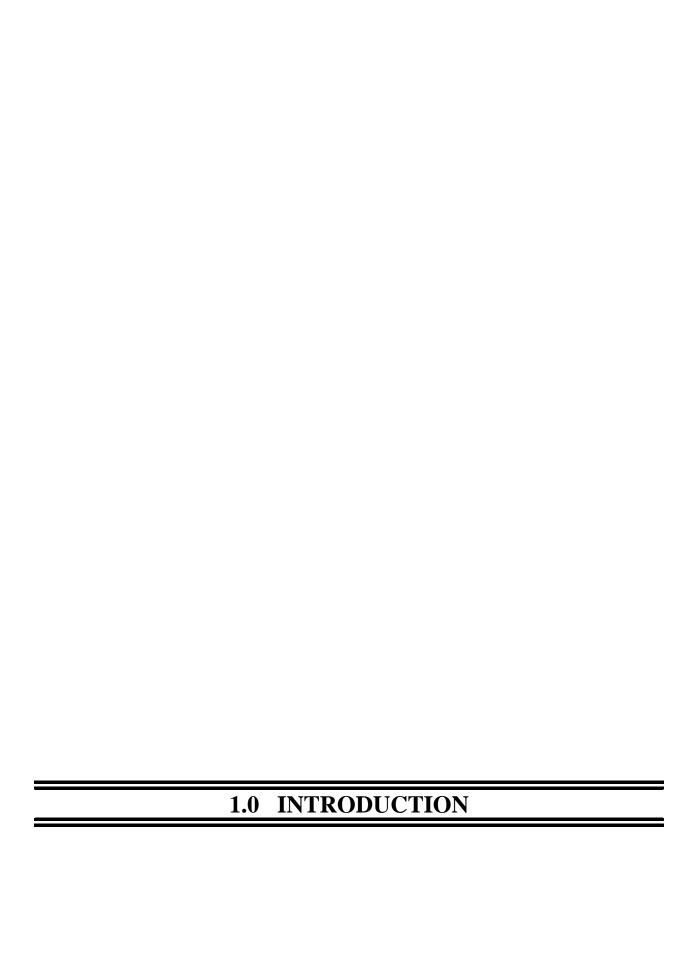
Submitted to:

Department of Environmental Protection 401 East State Street, Trenton, New Jersey

Submitted By:

THE Louis Berger Group, INC.

412 Mount Kemble Avenue Morristown, New Jersey 07960


TABLE OF CONTENTS

1.0	INTRODUCTION			
	1.1	SCOPE AND OBJECTIVE		
	1.2	SITE HISTORY AND PREVIOUS SITE INVESTIGATIONS		
2.0	SITE	SITE DESCRIPTION		
	2.1	TOPOGRAPHY	2-1	
	2.2	CLIMATE		
	2.3	GEOLOGY AND SOILS		
	2.4	HYDROGEOLOGY		
	2.5	SURFACE WATER AND WETLANDS	2-3	
3.0	TECHNICAL OVERVIEW AND FINDINGS			
	3.1	GEOPHYSICAL SURVEY		
	3.2	SOIL INVESTIGATION		
		3.2.1 July 2010 Soil Sampling Event		
		3.2.2 June 2011 Soil Sampling Event		
		3.2.3 February 2012 Soil Sampling Event		
		3.2.4 May 2012 Soil Sampling Event		
	3.3	SEPTIC INVESTIGATION		
	3.4	GROUNDWATER INVESTIGATION		
		3.4.1 Groundwater Screening		
		3.4.2 Monitoring Well Installations		
		3.4.3 Monitoring Well Sampling and Analysis		
		3.4.4 Summary of Groundwater Investigation		
	3.5	SURFACE WATER AND SEDIMENT INVESTIGATION		
	3.6	HYDROGEOLOGIC TESTING		
	3.7	IDW CHARACTERIZATION		
	3.8	SITE SURVEY AND MAPPING		
	3.9	RECEPTOR EVALUATION		
		3.9.1 Well Search		
		3.9.2 Baseline Ecological Evaluation	3-16	
4.0		CONCLUSIONS AND RECOMMENDATIONS		
	4.1	SOIL		
	4.2			
	4.3	POTENTIAL HUMAN AND ECOLOGICAL RECEPTORS	4-3	

4.4	RECOMMENDATIONS		
•••	4.4.1	Soil	
	4.4.2	Groundwater	
	4.4.3	Receptor Evaluation	
5.0 REF	ERENC	ES	5-5
		<u>TABLES</u>	
Table 1	So	il Sample Summary Table	
Table 2	So	Soil Sampling Results Table	
Table 3	Sh	Shallow Groundwater Screening Sample Summary Table	
Table 4	Sh	Shallow Groundwater Screening Sampling Results Table	
Table 5	De	Deep Groundwater Screening Sample Summary Table	
Table 6	De	Deep Groundwater Screening Sampling Results Table	
Table 7	Gr	Groundwater Elevations Table	
Table 8	Mo	Monitoring Well Sample Summary Table	
Table 9	Mo	Monitoring Well Sampling Results Table	
Table 10	Po	Potable Well Search Results Table	
		FIGURES	
Figure 1	Sit	te Location Map	
Figure 2	Sit	Site Plan	
Figure 3	We	etlands Delineation Map	
Figure 4	So	il Sampling Locations and Analytical Exceedance Map	
Figure 5	Gr	oundwater Screening Locations and Analytical Detections Map	
Figure 6	Gr	oundwater Contour Map – March 2012	
Figure 7	Gr	oundwater Contour Map – May 2012	
Figure 8	Mo	onitoring Well Locations and Analytical Detections Map	
Figure 9		Potable Well Receptor Map	
Figure 10	Cre	oss-Section Location Reference Map	
Figure 11	Cre	oss-Section	

APPENDICES

Appendix A	Photo Log
Appendix B	Geophysical Findings
Appendix C	Laboratory Data Reports and EDDs
Appendix D	Soil Boring and Groundwater Screening Logs
Appendix E	Monitoring Well Installation Documents
Appendix F	Field Sampling Purge Logs
Appendix G	Hydrogeologic Testing Data
Appendix H	IDW Disposal Documentation
Appendix I	Baseline Ecological Evaluation
Appendix J	CEA Document

1.0 INTRODUCTION

The Louis Berger Group, Inc. (LBG) has been contracted by the New Jersey Department of Environmental Protection (NJDEP) to perform site specific Remedial Investigation and Remedial Action Selection (RI/RAS) services throughout the State (NJDEP Term Contract A-73073). Through this contract, LBG has completed a Remedial Investigation addressing the volatile organic compound (VOC) contamination at the Joan's Cleaners Site, located at 1529 Route 206 in Tabernacle Township, Burlington County, New Jersey (hereinafter referred to as the "Site"). A Site Location Map is provided as Figure 1. This Remedial Investigation Report (RIR) provides a discussion of the Site background and physical setting, a description of the completed RI activities and the associated findings, and conclusions and recommendations based on those findings.

1.1 SCOPE AND OBJECTIVE

The purpose of this RI was to investigate and document subsurface conditions, specifically with regard to VOC-related groundwater contamination associated with the former dry cleaning operations on-Site. Previous groundwater sampling implemented by the NJDEP has indicated levels of VOCs in exceedance of safe drinking water standards in a residential neighborhood near the Site and further investigations have identified the Site to be a potential source for this contamination. While onsite investigations have been performed, vertical and horizontal delineation of the contaminant plume had not been completed. The primary objectives of this RI included the following:

- Confirm and delineate the source(s) of contamination;
- Characterize site geologic and hydrogeologic conditions;
- Characterize the groundwater flow regime;
- Assess groundwater quality and delineate the extent of groundwater contamination using Class I-PL (protection Area) criterion;
- Identify potential contaminant impacts to surrounding surface water; and
- Evaluate potential effects to human receptors and natural ecological resources.

In order to accomplish these objectives, LBG proposed to perform the following investigative activities, as detailed in the Site Sampling and Investigation Plan (SSIP), dated May 2009:

- Geophysical Survey;
- Soil Sampling;
- Septic Investigation;
- Groundwater Screening;
- Monitoring Well Installation and Sampling;
- Surface Water and Sediment Investigation; and,
- Receptor Evaluation.

1.2 SITE HISTORY AND PREVIOUS SITE INVESTIGATIONS

The following subsections present a brief history of the Site, followed by a summary of the previous environmental investigations that have been performed.

Joan's Cleaners was a dry cleaning facility that operated within a strip mall between 1983 and 2005. The space that was occupied by Joan's Cleaners is presently a Subway restaurant. The strip mall is serviced by one shared septic system and one common well, which is believed to be drilled to a depth of 55 feet below ground surface (bgs). The original installation date of the septic system is unknown; however, the system was replaced in 1988 and again in 2005.

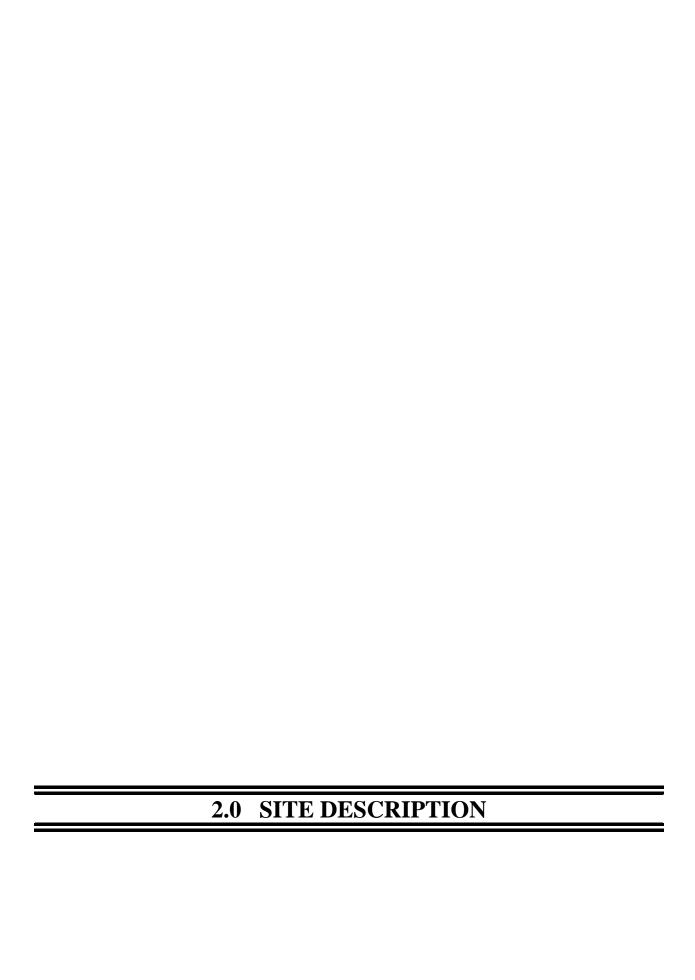
NJDEP records indicate that Joan's Cleaners utilized tetrachloroethylene (PCE) for the entire period that the business was in operation. According to manifests, between April 1988 and December 1994, approximately 3,300 lbs of waste solvent was disposed of offsite. There are no records indicating that any waste solvents were removed from the Site before April 1988 or after December 1994.

A 1,000 gallon underground storage tank (UST) that contained fuel oil was removed from the strip mall property in January 2005. Soil contamination was discovered during the UST removal activities and the contamination was remediated. Post excavation soil sample results were all below the NJDEP's Soil Cleanup Criteria (SCC) and, according to reports, groundwater was not impacted. The NJDEP issued a No Further Action (NFA) letter on August 9, 2005. There is presently an active 575 gallon above ground fuel oil storage tank at the strip mall property.

In March 2006, groundwater contamination was detected in a private well northeast and down-gradient of the Site. The NJDEP and the local health department sampled over 70 of the private

wells in the area and PCE and derivative chlorinated products, such as trichloroethene (TCE) and cis-1,2 dichloroethene, were present in the groundwater samples collected from approximately 30 of the wells. Based on NJDEP correspondence, it was determined that private wells in that neighborhood are typically screened in the Cohansey aquifer between 40 and 70 feet bgs. The gasoline additive methyl tert-butyl ether (MTBE) was also present in several of the groundwater samples collected from the private wells. Point of entry treatment units (POETS) were subsequently provided to all the impacted private wells.

In May 2006, the NJDEP performed groundwater screening at 10 locations at and near the Joan's Site. A total of 37 groundwater samples were collected; concentrations of four of the samples exceeded the NJDEP Class-IIA groundwater quality standards (GWQS) for PCE and the concentration of one of the groundwater samples exceeded the GWQS for TCE. Three of the groundwater samples with only PCE exceedances were collected from 21 to 24 feet bgs. The one groundwater sample with both PCE and TCE exceeding the NJDEP criteria was collected from 57 to 60 feet bgs. A sample collected at the same location from the 69 to72 foot interval did not exceed the criteria for either PCE or TCE.


In July 2006, the NJDEP performed groundwater screening at 18 locations at the Site as well as up-gradient and down-gradient of the Site. Eighteen groundwater samples were collected from varying intervals ranging from the water table to a depth of 72 feet bgs, and the concentrations of five of the samples exceeded the GWQS for PCE. Locations up-gradient to the Site did not exhibit groundwater concentrations above the GWQS; however, several down-gradient groundwater samples that were collected near a Sunoco Service Station, (formerly Highway Petroleum Inc. [HPI], a known contaminated Site), exhibited low levels of MTBE and benzene, toluene, ethylbenzene and xylene, collectively referred to as BTEX compounds.

The NJDEP performed 20 borings in the neighborhood northeast of the Site in July 2007. From these 20 borings, 38 groundwater samples and 20 soil gas samples were collected. No soil gas samples exhibited concentrations above NJDEP screening levels; however, there were PCE and TCE exceedances of the GWQS as deep as 64 feet bgs, and MTBE exceedances of the GWQS as deep as 44 feet bgs. In March 2008, the NJDEP performed additional borings within the same neighborhood and PCE and MTBE exceedances were identified as deep as 52 feet bgs, and benzene exceedances were detected as deep as 44 feet bgs. Samples collected from the 60 to 64 foot bgs intervals did not contain concentrations above criteria.

The HPI site is identified as a Known Contaminated Site (KCS) by the NJDEP and is located directly across Route 206 from the Site. In May 1999, seven USTs were removed from HPI. According to NJDEP reports, some or all of the USTs released gasoline and 176 tons of contaminated soil were removed from the HPI Site and three (3) groundwater monitoring wells

were installed. In October 2002, PCE was detected at a concentration of 114 parts per billion (ppb) in one of the HPI monitoring wells. In a June 2007 sampling event, the PCE concentration was 1.4 ppb. In August 2000, MTBE was detected in groundwater at HPI at a concentration of 7.48 ppb. In June 2007 the MTBE concentration was 1 ppb.

While onsite investigations have been performed and groundwater sampling has been conducted within the residential neighborhood, vertical and horizontal delineation of the contaminant plume was not completed. Consequently, the NJDEP contracted LBG to perform the outstanding RI activities. In May 2009, LBG prepared a Site Sampling and Investigation Plan (SSIP) to detail proposed field activities. The SSIP provided an approach to investigate and document the surface and subsurface conditions as necessary to satisfy NJDEP requirements for site remediation, specifically with regard to soil and groundwater contamination associated with the former Joan's Cleaners facility.

2.0 SITE DESCRIPTION

The Site is located within a strip mall at 1529 Route 206 (Block 320, Lot 5) in Tabernacle Township, Burlington County, New Jersey situated at approximately 39° 51' 12" north latitude and 74° 44' 3" west longitude. The Site is within the limits of the Pinelands Management Area (Pinelands), part of the Pinelands National Reserve. Figure 1 is an annotated U.S.G.S. 7.5-minute quadrangle (Indian Mills and Medford Lakes, NJ 1981) showing the Site's location, local topography, surface water, and cultural features. The property was used as a dry cleaning facility from 1983 to 2005, and is presently a Subway Restaurant. The Site is surrounded by residential and commercial properties and is currently owned by Haas Plaza, LLC. Figure 2 is a site plan showing the Site property and the surrounding area and a photo log is provided as Appendix A.

2.1 TOPOGRAPHY

The Site is located within the Atlantic Coastal Plain Physiographic Province, which is typically characterized by low-relief terraces underlain by marginal marine sediments. The topography is relatively flat, with an elevation of approximately 120 feet above mean sea level (amsl). Surface elevations within the neighborhood to the northeast of the Site range from 118 feet amsl near the Site to 90 feet amsl to the northeast near the high school. The topography change of the entire investigation area is approximately 28 feet from the Site to the eastern most extent just west of the high school.

2.2 CLIMATE

The climate of the region is temperate-humid, with warm summers and moderate winters. The high temperature in the summer seldom exceeds 100°F and the low temperature in the winter rarely drops below 0°F. The temperature from late May through early September often reaches 90°F, and the mean annual temperature is 53°F. Precipitation averages 45 inches per year with the heaviest amounts typically falling in the summer months (Rutgers, 2007)

2.3 GEOLOGY AND SOILS

According to a NJDEP Site Investigation Report (September 2006) soils at the Site and in the surrounding area are of the Evesboro series which consists of deep, loose, excessively drained sands. The NJDEP performed several soil borings at the Site, these borings were advanced to 20 feet bgs and indicated poorly sorted yellow-orange fine to medium sands. The USGS Surfical Geologic Map of Central and Southern New Jersey classifies soil at the Site as Colluvium and Alluvium (Pleistocene) consisting of poorly sorted, quartz rich, sand, gravel, silt and clay. The unit is generally less than 6 feet thick but may range up to 25 feet.

Based on the *Bedrock Geologic Map of Central and Southern New Jersey* (Owens et al., 1998), the Cohansey Formation underlies the Site. The Cohansey Formation is middle Miocene in age and is comprised of fine to coarse grained sand with local gravel and clay, and is underlain by the Kirkwood Formation, which is comprised of fine to medium grained sand and silty sand and is also middle to lower Miocene in age. The lowermost clay-silt layer of the Kirkwood Formation, termed the Asbury Clay or Asbury Park Member of the Kirkwood Formation, is a dark, peaty, massive to laminated clay-silt with occasional interbeds of fine sand and is typically a few feet thick. The Cohansey and Kirkwood formations extend to a depth of approximately 150 feet bgs.

A confining layer of interbedded massive clays and silty clays consisting of the Shark River (upper middle Eocene), Manasquan (lower Eocene), Hornerstown (lower Paleocene) and Tinton (upper Cretaceous) Formations extends to a depth of approximately 400 feet bgs.

Soil encountered during the RI activities were consistent with the above descriptions, and generally consisted of yellowish orange coarse to fine sand with little Silt. A clayey silt with some sand lenses was encountered at approximately 120 feet bgs, assumed to be the lower Kirkwood/Asbury Clay. A clay layer assumed to be the Shark River formation was encountered at approximately 150 feet bgs at the eastern most extent of the investigation area.

2.4 HYDROGEOLOGY

During past NJDEP investigations groundwater was encountered at approximately 20 feet bgs, and shallow groundwater flow was assumed to be northeast towards Bear Swamp and Bread and Cheese Run (USGS, 1995). The shallow aquifer at the Site is the Kirkwood-Cohansey aquifer system, which is comprised of predominantly highly permeable sand and is approximately 150 feet thick at the Site. Due to its location within the Pinelands, this aquifer system at the Site is classified as a Class I-PL Protection Area, with the primary designated use being the preservation of Pinelands plant and animal species and their habitats (NJAC 7:9-6 – NJDEP, 1993). Secondary designated uses of the aquifer include potable and agricultural water.

Below the Kirkwood-Cohansey aquifer and a 250 foot thick confining layer is the Mount Laurel-Wenonah aquifer, which is approximately 400 feet bgs and approximately 100 feet thick. There are supply wells within 2 miles northeast of the Site that are screened in the Mount Laurel-Wenonah aquifer.

2.5 SURFACE WATER AND WETLANDS

The nearest surface water bodies are the headwaters of the Bear Swamp River, located approximately 3,800 feet northeast of the Site, and the Bread and Cheese Run located approximately 2,500 feet southeast of the Site. Bread and Cheese Run is ponded before it travels under Carranza Road southeast of the Site. Both of these are tributaries of the South Branch of Rancocas Creek. The *New Jersey Surface Water Quality Standards* (N.J.A.C 7:9B) classify the South Branch of Rancocas Creek as PL (Pinelands Waters). Designated uses of Pineland Waters include the maintenance, migration and propagation of natural and established biota. There are deciduous wooded wetlands approximately 1,000 feet southeast of the Site and approximately 3,500 feet northeast of the Site (NJDEP Burlington County Wetland shape files). Figure 3 depicts the wetlands in the area.

3.0 TECHNICAL OVERVIEW AND FINDINGS

The field activities associated with the RI were carried out between July 2010 and September 2012. Field activities were conducted to address delineation and outstanding data gaps identified during previous investigations, and consisted of the following:

- Geophysical Survey;
- Soil Investigation;
- Septic Investigation;
- Groundwater Screening;
- Monitoring Well Installations and Sampling;
- Surface Water and Sediment Investigation;
- Hydrogeologic Testing; and,
- Receptor Evaluation.

The above activities, as well as the associated findings, are described in the following subsections. All sampling and investigation activities were performed in accordance with N.J.A.C. 7:26E; New Jersey *Technical Requirements for Site Remediation* (NJDEP, 2009) and the New Jersey *Field Sampling Procedures Manual* (NJDEP, 2009). The task-specific descriptions of field activities are supplemented by detailed procedures outlined in the *Site Sampling and Investigation Plan* (SSIP) (LBG, 2009). Any deviations from the SSIP are noted in the following sections. All field work was also performed in accordance with the contract *Programmatic Health and Safety Plan* (HASP) (LBG, 2009) and a *Site-Specific Health and Safety Plan* (SSHASP) (LBG, 2009).

3.1 GEOPHYSICAL SURVEY

An initial geophysical survey was completed in June 2010 for the purpose of identifying subsurface utilities at proposed soil boring and shallow groundwater screening locations both onsite and offsite. All geophysical work was performed by Advanced Geophysical Services (AGS) of Malvern PA, using electromagnetic (EM), and radio frequency (RF) methods. A Time-Domain EM survey was conducted using an EM-31 high sensitivity detector, capable of detecting metal and other non-metallic anomalies at depths of 10 feet. Any subsurface anomalies

identified were marked in the field and further investigated with a more localized, focused ground penetrating radar (GPR) survey. Additional geophysical clearing for proposed borings were done prior to drilling as necessary.

Onsite subsurface locations such as the septic tank, transfer box and leach field were identified using a GPR survey. Findings of the geophysical survey including the utilities and septic system are shown on Figure 4, as well as presented in Appendix B. Additionally, proposed offsite boring locations were cleared using geophysical techniques to locate subsurface utilities (sewer, electrical, gas) in the immediate vicinity of each proposed location. Each proposed location was demarcated in the field using spray-paint and pin flags, and recorded using GPS.

3.2 SOIL INVESTIGATION

The purpose of the soil investigation was to identify and delineate onsite contamination related to the possible release of PCE from the former Joan's Cleaners facility. Four sampling events were conducted between July 2010 and May 2012. Soil samples were collected for laboratory analysis to document the presence of any contamination resulting from the identified concerns. These soil samples were collected from soil borings and were subsequently submitted to Accutest Laboratories (Accutest) (NJDEP Certification #12129) of Dayton, New Jersey for analysis. A soil sample summary table, which includes all of the soil samples collected during the RI activities, is presented as Table 1.

The analytical results of the soil samples collected from the soil investigation are summarized on Table 2. The analytical results were evaluated with respect to the *NJDEP Residential Direct Contact* (RDCSRS), *Non-Residential Direct Contact* (NRDCSRS) and *Impact to Groundwater* (IGWSRS) *Soil Remediation Standard* (revised November 2009). For each individual chemical compound, the most stringent of the three sets of criteria comprises the NJDEP's *Unrestricted Use Soil Remediation Standard* (SRS), which was used to identify soil contaminant exceedances. Locations of all soil borings and contaminant exceedances are presented in Figure 4. The laboratory analytical data reports are included as Appendix C.

3.2.1 July 2010 Soil Sampling Event

On July 19 and July 20, 2010, Summit Drilling of Bound Brook, New Jersey (Summit) advanced ten soil borings at the Joan's Cleaners Site (SB01 to SB10) using direct push methods primarily around the perimeter of the leach field but also adjacent to the garage area. Continuous soil cores (4-feet in length) were collected in acetate liners from ground surface to a depth of 20 feet below ground surface (bgs). The water table was encountered between 17 and 18 feet bgs. One soil boring (SB-10) was advanced until refusal (36 feet bgs) in order to document deeper

subsurface conditions onsite. All soil cores retrieved were screened using a properly calibrated photoionization detector (PID) for volatile organic compounds (VOCs). Soil cores were then described by a LBG geologist using the Burmister Soil Classification System. All observations were recorded in a bound field book and borehole logs were subsequently produced from this data. Boring logs summarizing lithology and sample intervals are included in Appendix D.

One soil sample was collected from the six-inch interval immediately above the water table from each onsite boring location for analyses of Target Compound List (TCL) Volatile Organic Compound (VOC+10), method SW846 8260. Selected soil samples (SB01 and SB08) were also analyzed for Total Organic Carbon (TOC), method SW846 9060M, to establish a site-specific soil remediation standard for impact to groundwater if the need arose.

The results of borehole geologic logging indicate that the subsurface in the investigation area consists of coarse to fine sand with little silt; no identifiable confining layer was encountered above 83 feet bgs at any borehole location. The maximum depth attainable before refusal during the combined groundwater screening/soil boring program was 83 feet bgs. Water was encountered between 17 and 18 feet bgs onsite.

The analytical results of the soil sampling indicated that no exceedances were observed in these samples collected. Furthermore, all soil samples were non-detect for the parameters analyzed with the exception of acetone (SB-07). Acetone is not a contaminant of concern at this Site and may be a laboratory contaminant.

Based on the findings of the soil investigation, there did not appear to be any site related soil contamination present onsite at the locations and depths sampled. Subsequently, LBG in consultation with the NJDEP decided to perform additional shallow soil borings in the rear parking lot of the Site, specifically near the past and current dumpster locations to investigate the possible use of dumpsters as a PCE waste disposal method. In addition, due to groundwater contamination encountered at screening location GW-102 (as discussed in Section 3.4), LBG proposed to perform three additional soil borings in the front of the building.

3.2.2 June 2011 Soil Sampling Event

On June 13, 2011, a total of eight soil borings (SB-11 to SB-18) were advanced at the Joan's Site to a depth of 25 feet below grade surface (bgs). Soil borings SB-11 to SB-15 were performed to investigate the possible use of dumpsters as a PCE waste disposal method while soil borings SB-16 to SB-18 were performed to investigate groundwater contamination previously encountered at screening location GW-102. A soil sample was collected from each boring from the six inch

interval above the water table due to the absence of noticeably impacted soil. All samples were analyzed for TCL VOC+10, and TBA using USEPA method SW846 8260.

Results of the soil sampling did not indicate any exceedances to the NJDEP soil remediation standards. In fact, no detections of VOCs were observed. In an effort to investigate any potential for spillage near the building, five additional soil borings were proposed in the rear of the building, biased to the location of the former cleaners.

3.2.3 February 2012 Soil Sampling Event

On February 2 and February 3, 2012, a total of five soil borings (SB-19 to SB-23) were advanced along the rear of the Joan's Site building to a maximum depth of 40 feet bgs. A total of 10 soil samples (a shallow "A" sample and deeper "B" sample) were collected from the five boring locations. The "A" sample was collected at the six-inch interval immediately above the water table while a deeper "B" sample was collected at the bottom of the boring to further document deeper subsurface conditions. All samples were analyzed for TCL VOC+10.

Results of the third soil sampling event exhibited no detections of VOCs; however, during the sampling activities, LBG field staff recorded high PID readings and noted a faint chemical odor at locations SB22 and SB23. At both locations, elevated PIDs were recorded at the water table (between 17 and 18 feet bgs) and soil samples were collected from the interval exhibiting the highest PID reading.

Based on the high PID readings and faint chemical odor but lack of VOC detections in analytical results from soil collected at those intervals, LBG and NJDEP collaboratively decided to return to the site and perform additional soil borings near the recently sampled locations.

3.2.4 May 2012 Soil Sampling Event

On May 3, 2012, a total of seven soil borings (SB25 to SB30) were advanced to a maximum depth of 25 feet bgs at the Joan's Site to investigate the high PID readings observed during the third soil sampling event. A soil sample was collected from each boring from the six inch interval above the water table due to the absence of noticeably impacted soil. In addition split samples of the same interval were collected for analysis using two different methods of field preservation. One sample was collected using methanol preservation performed in the field (eg. SB30A) while the second sample was collected using the Encore methodology (eg. SB30AE), which is how all previous soil samples were collected. All samples were analyzed for TCL VOC+10.

Results of the fourth soil sampling event exhibited detections of PCE in the samples collected in SB25, SB26, SB27 and SB30; however none of the concentrations were above the NJDEP's soil remediation standards. Results from the samples collected using methanol preservation in the field were generally higher than the samples collected using Encores; however the concentrations were still very low to make any kind of determination regarding the validity of one method over the other. For example, at location SB30 the concentration of PCE using methanol extraction in the field was 0.0020 mg/kg, as opposed to 0.0017 mg/kg in the sample collected using the encore sampler.

3.3 SEPTIC INVESTIGATION

The septic tank at the Joan's Cleaners site was removed and replaced with a new tank in 1988 and again in 2005. Eight soil borings (SB03 through SB10) were advanced around the perimeter of the septic field and nine (9) additional borings were performed down-gradient of the septic system with no evidence of any contamination. Consequently, LBG recommended and NJDEP agreed that the collection of aqueous and sludge samples from the new tank would not be valuable to the investigation.

3.4 GROUNDWATER INVESTIGATION

The purpose of the groundwater investigation was to characterize the existing contamination and assess its horizontal and vertical extent. The investigation was comprised of shallow and deep groundwater screening and the installation and sampling of permanent monitoring wells.

3.4.1 Groundwater Screening

Groundwater screening was conducted between July 2010 and July 2011 using direct push and mud rotary drilling techniques. The findings of these activities guided the placement of permanent monitoring wells.

<u>July 2010 – October 2010 Groundwater Screening Event</u>

In conjunction with the first soil sampling event, the installation and sampling of temporary well points (TWP) were conducted at the Joan's Site. A total of two groundwater samples (SB03/TWP02 and SB05/TWP01) were collected from the respective soil boring locations, shown on Figure 5. Groundwater samples were collected through the installation/sampling of temporary PVC wells, also known as passively placed narrow diameter points (PPNDPs). Each PPNDP was constructed with 1-inch diameter PVC 10 foot screen and extended to a depth of 20 feet bgs. Ground water was encountered at approximately 17 feet bgs. Prior to sampling, at least three well volumes were purged with a check-valve system prior to sampling. Each

groundwater sample was collected through Teflon® lined tubing. Samples were placed into laboratory-supplied glassware for sample preservation. The samples were immediately placed on ice in a cooler and later transported to Accutest for analyses using chain of custody protocols. Samples were analyzed for TCL VOC+10, method SW846 8260 as well as TBA. Table 3 provides a summary of all groundwater samples collected from the PPNDPs.

Groundwater screening utilizing a Geoprobe SP15/16[©] sampler was conducted at a total of 40 locations offsite within the investigation area with discrete groundwater samples collected every 10 feet from the estimated groundwater table to a depth of approximately 83 feet bgs, where possible. Prior to sampling, approximately three well volumes were purged with a check-valve system. Each groundwater sample was collected using disposable Teflon® lined tubing and a reusable, decontaminated stainless steel check-valve. Samples were placed into laboratory-supplied glassware for sample preservation. The samples were immediately placed on ice in a cooler and later transported to Accutest for TCL VOC+10, and TBA analyses. Table 3 provides a summary of all shallow groundwater screening samples collected, including QA/QC samples.

In almost all cases, both a preserved and unpreserved set of samples were collected due to the reaction of the preservative hydrochloric acid (HCl) with the sediment in the sample container creating an air bubble in the sample vial after collection. In these instances, the unpreserved sample was analyzed using a shorter sample holding time. Field blanks were collected daily by pouring laboratory-supplied deionized water over/through groundwater sampling equipment. Blind duplicates were collected at a rate of one blind duplicate per 20 field samples. Trip blanks, supplied by the laboratory, were included in every sample shipment. Both field blanks and trip blanks were analyzed for TCL VOC+10, and TBA.

At predetermined locations, continuous soil cores were collected from ground surface to a depth of 83 feet bgs, or refusal, whichever was encountered first at 17 of the 40 groundwater screening locations. All soil cores retrieved were screened using a properly calibrated PID for VOCs and soil cores were described by a LBG geologist using the Burmister Soil Classification System. All observations were recorded in a bound field book and borehole logs were subsequently produced from this data. Boring logs summarizing lithology and sample intervals are included in Appendix D.

The Site is located within the NJDEP's Class I-PL Protection Area. Based on the NJDEP Groundwater Quality Standards (GWQS) (NJAC 7:9C), "the groundwater quality criteria for Class I-PL (Protection Area) shall be background water quality". Through the course of this investigation, the most up-gradient monitoring well (MW01) exhibited no detections above the laboratory method detection limits (MDL). In addition side-gradient monitoring wells MW05, MW09 and MW10 did not have concentrations of contaminants of concern above the MDL's.

Therefore, it can be assumed that the background levels for the contaminants of concern related to the Joan's Site, chlorinated volatile organic compounds (CVOCs), would be non-detectable. For comparison purposes, any CVOC that was detected above the MDL has been highlighted and subsequently discussed in this RIR. Table 4 includes a summary of the analytical results and Figure 5 depicts each PPNDP and shallow groundwater screening location and all CVOC detections.

The results of the groundwater screening indicate that a total of 52 samples collected from 17 screening locations exhibited concentrations of chlorinated solvent related compounds including PCE, TCE, cis-1,2-dichloroethene, and/or 1,1,2,2-Tetrachloroethane at or above the laboratory MDL. Of the 52 samples with detections of CVOCs, 30 are exceedances to the Class IIa GWQS of PCE, TCE, or 1,1,2,2 tetrachloroethane. Other screening locations exhibited concentrations above the MDL but were below the Class IIA GWQS for non-chlorinated VOCs including: benzene, toluene, ethylbenzene, xylenes, and MTBE. These analytes are primary components and additives to gasoline, although no definable plume of gasoline related VOCs was discernible. Acetone and chloroform were also detected in many samples, although below the GWQS.

Based on the findings of the groundwater screening, one large "main plume" of chlorinated solvent contaminated groundwater was shown to emanate from the Site and flow northeast, towards the Bear Swamp River headwaters (between locations GW-148 and GW-149) The findings also indicated a secondary "branch plume" flowing east towards Carranza Road (location GW-150). Figure 5 shows the results of the GW screening and extent of the plumes.

The larger main plume appears to originate immediately at the eastern edge of the suspected source property (GW-102) and extends to the northeast bounded by Hill Road (GW-115) continuing northeast along Worrell Road (GW-138 &-139) to Hawkins Road (GW-145). The second, less continuous branch plume appears to extend from the suspected source area east along Cramer Road (GW-133) to Worrell Road (GW-143) and Carranza Road (GW-150). The full extent of this plume was not known as groundwater screening location GW-150 was the eastern extent of the initial investigation area.

Vertically, groundwater contamination appeared to extend from the water table at GW-102 (16-19 feet bgs) to at least 68-71 feet bgs at GW-126. The majority of exceedances appeared to range from 40 to 63 feet bgs with the highest frequency of exceedances occurring between 60 to 63 feet bgs. In the western area of the plume, concentrations of PCE increased one to two orders of magnitude with depth to a maximum and then decreased by an order of magnitude in the underlying sample range. Sample locations in the center and eastern extent of the plume did not obtain a vertical delineation to the contamination.

Consequently, LBG recommended additional groundwater screening using mud rotary drilling combined with Hydropunch-II[®] groundwater sample collection vertically and horizontally delineate the extent of the contaminant plume.

<u>June 2011 – July 2011 Groundwater Screening Event</u>

Between June 14, 2011 and July 1, 2011, deep groundwater screening was conducted. A total of 50 groundwater samples were collected from six locations (GW201 to GW206) through the use of a hydropunch sampler used in conjunction with mud rotary drilling techniques. Discrete groundwater samples were collected to a depth of approximately 150 feet bgs. At each of the predetermined groundwater sampling intervals, the hydropunch sampler was driven approximately 3 to 4 feet below the bottom of the drilled borehole in an effort to obtain a representative groundwater sample at depth. Samples were transferred into laboratory glassware for analyses of TCL VOC+10, and TBA. Table 5 provides a summary of all deep groundwater screening samples collected, including QA/QC samples. Table 6 includes a summary of the analytical results and Figure 5 depicts each deep groundwater screening location and all contaminant exceedances.

There were no exceedances to the NJDEP's Class IIA GWQS, however several compounds were detected above the MDL, including the chlorinated solvent compounds 1,1,1-trichloroethane, 1,1-dichloroethane, and cis-1,2, dichloroethene. These compounds were found to be present in two locations; GW-201 located onsite near the septic area, and at GW-202, located in the center of the plume, adjacent to the shallow location GW-139, which exhibited the highest concentrations of chlorinated solvent compounds.

Other screening locations exhibited concentrations above the MDL but below the Class IIA GWQS of analytes including: benzene, toluene, ethylbenzene, xylenes, and MTBE. These analytes are primary components and additives to gasoline.

Based on the results of the deep groundwater screening program, the extent of the two contaminant plumes was identified. LBG consequently recommended the installation of permanent monitoring wells to verify the extent of the plumes and to better characterize flow and hydrogeologic characteristics necessary to obtain the goal of establishing a classification exception area (CEA).

3.4.2 Monitoring Well Installations

Based on the groundwater screening results 16 monitoring wells (MW01 to MW16) shown on Figures 6, 7, and 8, were installed between January 10 and February 2, 2012. MW01 was installed to characterize up-gradient groundwater quality while MW02, MW12 and MW14 to

MW16 were installed to further characterize the contaminant plume and groundwater flow. MW03 to MW06 and MW08 to MW10 were installed to characterize the horizontal extent of the plume both side and down gradient, while MW07 and MW13 were installed to vertically delineate the extent of the plume.

All new monitoring wells were installed using a combination of hollow-stem auger and mud rotary drilling techniques with split-spoon samples collected to facilitate lithologic logging of each monitoring well location. Wells were constructed with 2-inch diameter, schedule 40, PVC casing threaded into a 10-foot length of 0.02-slotted PVC screen. The annular space between the PVC and the wall of each well boring was filled with #2 size well gravel to a depth corresponding to at least two feet above the well screen. A seal was formed by using #00 size sand in the annular space to immediately above the #2 well gravel. The remaining annular space was tremied with grout. Each well is equipped with an expandable locking well plug and a protective steel housing (flushmount or stick-up, as appropriate) over the PVC.

Following monitoring well installation, each new well was hand-surged and developed with a submersible pump to remove as much sediment from the well as practical. Well development procedures were performed until a near turbid-free discharge was achieved, or for a period of one hour, assuming that at least three well volumes were extracted from the well. Monitoring well logs, well permits, records and documentation are included in Appendix E.

3.4.3 Monitoring Well Sampling and Analysis

Following the monitoring well installations, two sampling events were completed as part of this RI. The first sampling event was conducted in March 2012 and the second was conducted in May 2012. The two sampling events included the sampling of the 16 newly installed monitoring wells as well as two existing monitoring wells (HPIMW2 and HPIMW4) located at the Sunoco station (formally HPI) situated directly across Route 206 from the Site.

During the first sampling event, one groundwater sample was collected for every five feet of submerged screen in accordance with NJAC 7:26E and the *NJDEP Field Sampling Procedures Manual* (NJDEP, 2009). With the exception of MW02 and HPIMW2, each newly installed monitoring well and Sunoco well HPIMW4 had 10 feet of submerged well screen. Consequently, two samples were collected from these monitoring wells during the first sampling event. Groundwater samples collected from the first 5-foot section of submerged screen were identified as "A" samples while groundwater samples collected from the second 5-foot section of submerged screen were identified as "B" samples.

Prior to sampling, depth to water measurements were collected from all wells. As each monitoring well plug was removed, a headspace vapor reading was recorded with a PID. Water levels were then measured from the top of the PVC well casing. These water level readings were subsequently subtracted from the surveyed well elevations to establish a water level elevation at each location (Table 7). Groundwater elevation contours generated from water level measurements collected from the monitoring wells during the first and second sampling events indicate that shallow groundwater is generally flowing northeast (Figure 6 and Figure 7).

Subsequent to the water level measurement at each well, groundwater samples were collected by low flow purging and sampling technologies in accordance with the *NJDEP Field Sampling Procedures Manual* (2009). Dedicated Teflon®-lined tubing was installed and connected to a QED SamplePro® bladder pump with a disposable Teflon bladder. A low-flow purge was initiated and maintained at a pumping rate not in exceedance of 500 ml/min. A continuous flow was monitored for pH, dissolved oxygen, turbidity, conductivity, redox potential, and temperature. Additionally, water levels, pump depth, purge rates/times, sampling times, and weather were all recorded on purge logs (Appendix F). After well purging and water stabilization requirements were met, groundwater samples were collected directly from the effluent, prior to the flow-through apparatus.

All groundwater samples were submitted for TCL VOC+10, and TBA. Laboratory analysis also included a total of three duplicate sample, eight field blanks, and four trip blanks. A summary of the monitoring well samples collected are presented on Table 8.

As discussed on previous sections 3.4.1, the Site is located within the NJDEP's Class I-PL Protection Area and therefore any contaminants of concern that were detected above the MDLs were highlighted and discussed in the RIR. Table 9 includes a summary of the analytical results for both sampling events and Figure 8 depicts each monitoring well location and all CVOCs detected.

March 2012 Groundwater Sampling Event

A total of 34 groundwater samples were collected from the 18 monitoring wells during the first sampling event. Similar to the groundwater screening (Section 3.4), concentrations of chlorinated solvent related compounds such as PCE, TCE, cis-1,2 dichloroethene, trans-1,2-dichloroethene, 1,1,2,2-tetrachloroethane and 1,2-dichloroethane were detected in six of the newly installed monitoring wells (MW02, MW07, MW12, MW14, MW15 and MW16) and in the Sunoco monitoring well (HPIMW4) with PCE concentrations being the most prevalent. Vertically, the majority of elevated concentrations are present at depths up to approximately 67

feet bgs. While additional exceedances of Class I-PL are present at a deeper interval (132-136 feet bgs) further down-gradient in MW07, these exceedances are below the Class IIA GWQS.

The following exceedances to the Class I-PL GWQS were identified in the analytical results:

- PCE exceedances were detected in seven monitoring well locations with concentrations ranging from 0.64 ppb (MW15 at 54 feet bgs) to 268 ppb (MW14 at 61.5 feet bgs). The deepest sample intervals exhibiting exceedances of PCE was at a depth of 132 feet bgs (MW07A) where a detection of 1 ppb was identified and 136 feet bgs, also at MW07, with a concentration of 0.42 ppb.
- TCE exceedances were detected in monitoring wells MW14 and MW16 with concentrations ranging from 2.4 ppb (MW16A at 46.10 feet bgs) to 4.4 ppb (MW14A at 61.50 feet bgs). The most elevated concentrations were detected between 51 and 62 feet bgs;
- Cis-1,2-dichloroethene exceedances were detected in monitoring wells MW14 and MW16 with concentrations ranging from 0.52 ppb (MW16B at 51.10 feet bgs) to 15.3 ppb (MW14B at 66.50 feet bgs). The most elevated concentrations were detected in MW14 between 61and 67 feet bgs. Concentrations of cis-1,2 Dichloroethene detected in the monitoring wells are above the MDL but below the Class IIA GWQS;
- Trans-1,2-dichloroethene exceedances were detected in monitoring well MW14 with concentrations of 0.33 ppb at 61.50 feet bgs (MW14A) and 0.32 ppb at 66.50 feet bgs (MW14B). These concentrations are above the MDL but below the Class IIA GWQS;
- 1,1,2,2-tetrachloroethane exceedances were detected in monitoring well MW16 with concentrations of 0.43 ppb at 46.10 feet bgs (MW16A) and 0.31 ppb at 51.10 feet bgs (MW16B). These concentrations are above the MDL but below the Class IIA GWQS, and
- 1,2-dichloroethane exceedances were detected in monitoring well MW15 with concentrations of 0.64 ppb at 54 feet bgs (MW15A) and 1.3 ppb at 59 feet bgs (MW15B). These concentrations are above the MDL but below the Class IIA GWQS.

May 2012 Groundwater Sampling Event

A total of 18 groundwater samples were collected from the 18 monitoring wells during the second groundwater sampling event. The analytical results of the second sampling event identified exceedances of chlorinated solvent related compounds in the same seven monitoring wells MW02, MW07, MW12, MW14, MW15, MW16 and HPIMW4 that exhibited exceedances

during the first sampling event. In addition, a second monitoring well in the Sunoco property (HPIMW2) exhibited PCE exceedance above the MDL but below the Class IIA GWQS.

The following exceedances to the Class I-PL GWQS were identified in the analytical results:

- PCE exceedances were detected in eight monitoring well locations with concentrations ranging from 0.36 ppb (HPIMW2 at 18 feet bgs) to 221 ppb (MW14 at 66.5 feet bgs). The deepest sample intervals exhibiting exceedances were at a depth of 66.50 feet bgs at MW14 where a detection of 221 ppb was identified, and at MW07 which exhibited a concentration of 0.53 ug/l at 131 feet bgs.
- TCE exceedances were detected in monitoring wells MW14 and MW16 with concentrations of 4.2 ug/l and 3.4 ug/l, respectively;
- Cis-1,2-dichloroethene exceedances were detected in monitoring wells MW14 and MW16 with concentrations of 13.4 ug/l and 0.52 ug/l, respectively These concentrations are above the MDL but below the Class IIA GWQS;
- Trans-1,2-dichloroethene one exceedance was observed in MW14 with a concentration of 0.57 ug/l. This concentration is above the MDL but below the Class IIA GWQS;
- 1,1,2,2-tetrachloroethane one exceedance was observed in MW16 with a concentration of 0.66 ug/l. This concentration is above the MDL but below the Class IIA GWQS, and
- 1,2-dichloroethane one exceedance was observed in MW15 with a concentration of 2 ug/l.

3.4.4 Summary of Groundwater Investigation

Using lithology from soil borings, groundwater screening locations, and monitoring well locations cross-sections have been generated. Figure 10 shows the longitudinal and latitudinal axis of the cross sections and Figure 11 presents the lithological cross-sections with PCE concentration isopleths from groundwater screening and monitoring well sampling results.

Plume Longitudinal Axis (A - A')

Along the longitudinal axis of the groundwater plume, concentrations of chlorinated solvent related compounds generally decrease as they migrate to the northeast, driven by horizontal groundwater flow (Figures 6, 7 and 11). There is an area with high concentrations near the center of the plume (MW14), which may have migrated as a "slug" with groundwater flow

Based on groundwater elevations from adjacent monitoring wells MW13 (deep) and MW14 (intermediate), a vertical hydraulic gradient is indiscernible. Although there is virtually no vertical gradient, the trend is reflected in the vertical contaminant distribution; with shallow groundwater (water table) concentrations typically decreasing to the northeast while intermediate and deep groundwater concentrations (40 to 133 feet bgs) continue to exhibit exceedances toward Carranza Road and the Seneca High School [GW145, MW15 and MW07] (Figure 11). At the northeastern extent of this plume groundwater screening locations GW-148, GW-203 and GW-151 provide delineation.

Plume Latitudinal Axis (B – B')

This cross-section depicts the groundwater contamination along the latitudinal axis of the groundwater plume from MW04 to MW09. Groundwater data shows the highest concentrations of PCE in the center of the plume, between 50 to 70 feet bgs (51-31 feet msl).

3.5 SURFACE WATER AND SEDIMENT INVESTIGATION

Based on the results of the groundwater investigation, sampling the surface water of the ephemeral headwaters of the Bear Swamp River was deemed to not be necessary by LBG and NJDEP. No exceedances were identified in the shallow groundwater locations immediately west of the Bear Swamp River. Furthermore, contamination was encountered at depths below at least 40 feet of clean water. The clean water would be the water that ultimately feeds headwaters of the stream.

3.6 HYDROGEOLOGIC TESTING

Hydraulic conductivity testing (slug testing) was performed in an effort to calculate the horizontal permeability of the groundwater within soils across the investigation area. On October 5, 2012 rising and/or falling head slug tests were performed on monitoring wells MW01, MW12 and MW13. These wells represent three interconnected depths of the Kirkwood-Cohansey aquifer.

Prior to beginning the slug test at each well, a static water table elevation to water measurement was recorded. A pressure transducer probe was placed in the well. Following a waiting period to allow the disturbed water level in the well to equilibrate to natural conditions, the slug test was initiated.

Water was displaced by removing a five-foot long, 1½-inch PVC pipe filled with sand and capped on both ends into the water column. As the displaced water recharged from the

formation, the automatic datalogger continuously recorded the rising water level until it reached a level corresponding to a recovery of greater than 85% of the maximum drawdown. The slug test data was subsequently downloaded from the datalogger, graphed, and analyzed using both the *Bouwer and Rice* (Bouwer and Rice, 1976) and the *Hvorslev* (Hvorslev, 1951) methods for calculating hydraulic conductivities. The results of the slug test analyses are summarized in Appendix G in addition to all test computations and graphs.

Monitoring well MW01, located on the Joan's site, is constructed with the screen bridging the shallow water table (17 to 27 feet bgs) in coarse to fine sand with trace silt. Six falling head tests were conducted at this well and the average hydraulic conductivity (permeability) of the aquifer was calculated to be 316 feet/day using the Bower-Rice method and 555 feet/day using the Hvorslev method. Using the Hvorslev method, which is more appropriate in these cases due to the well placement in the top or middle of the aquifer, and a vertical gradient of 0.0021 feet/feet, the horizontal seepage velocity was calculated. Using an effective porosity of 25%, the seepage velocity is 1,708 feet/year. Using an effective porosity of 30%, the seepage velocity is 1,423 feet/year.

Monitoring well MW12, located within the investigation area, is constructed with a submerged screen from 33 to 43 feet bgs in medium to fine sand with some silt. Six rising head tests and six falling head tests were conducted at this well and the average hydraulic conductivity of the aquifer was calculated to be 50 feet/day using the Bower-Rice method and 63 feet/day using the Hvorslev method. Using the Hvorslev method and a vertical gradient of 0.0021 feet/feet, the horizontal seepage velocity was calculated to be 164 feet/year with a porosity of 30%, and 140 feet/year using an effective porosity of 35%.

Monitoring well MW13, located witin the investigation area, is constructed with a submerged screen from 87 to 97 feet bgs in silty sand. Five rising head and falling head tests were conducted at this well and the average hydraulic conductivity of the aquifer was calculated to be 22 feet/day using the Bower-Rice method and 23 feet/day using the Hvorslev method. Using the Hvorslev method and a vertical gradient of 0.0021 feet/feet, the horizontal seepage velocity was calculated to be 53 feet/year with a porosity of 35%, and 46 feet/year using an effective porosity of 40%.

3.7 IDW CHARACTERIZATION

The majority of the soil and groundwater generated by drilling activities as well as purge water pumped during groundwater the groundwater sampling activities at the Site were containerized in 55-gallon steel drums as investigative derived waste (IDW). Sixty-nine (69) 55-gallon drums

of IDW were immediately removed from site at the conclusion of each sample activity. The containerized materials consisted of the following:

- Soil cuttings generated during drilling activities
- Groundwater generated during drilling activities
- Purge water generated during groundwater sampling activities.

The drums were removed from the Site and disposed of by Prime Environmental Inc., as non-hazardous material. Documentation is provided as Appendix H.

3.8 SITE SURVEY AND MAPPING

Upon completion of the monitoring wells, a New Jersey-licensed surveyor conducted a survey of the locations and elevations of all site wells. All horizontal data on the plan were plotted in the New Jersey State Plane Coordinate System (NAD83) and all spot elevations are in the North American Geodetic Vertical Datum (NAGVD88). The survey was conducted in accordance with standards described in the *NJDEP Geographic Information System Digital Data Standards* in accordance with the requirements set forth in the *New Jersey State Board of Professional Engineers and Land Surveyors Administrative Rules and Regulations*. Form A's and B's are included with the Monitoring Well logs in Appendix E.

3.9 RECEPTOR EVALUATION

In an effort to identify receptors that could be affected by potential off-site migration of contaminants, a receptor evaluation was performed as part of the RI. The evaluation included a well search and Baseline Ecological Evaluation (BEE).

3.9.1 Well Search

For the well search, the NJDEP Bureau of Water Allocation was contacted to identify any domestic wells within the investigation area. The well search results provided by the NJDEP Bureau of Water Allocation identified 234 domestic wells within the investigation area.

The potable supply well for the Seneca High School is located at the eastern most extent of the groundwater contamination area; however that well is screened in the deeper Mt. Laurel-Wenonah aquifer.

Table 10 includes a summary of the domestic wells and Figure 9 depicts each domestic well location. It is LBGs understanding that the local health department along with the NJDEP

previously sampled residential wells in the area in 2006 and that the potable wells impacted by PCE contamination were retrofitted with POET systems; however, the contamination plume likely has migrated since that time and additional potable well sampling may be warranted.

It should also be noted that sampling for vapor intrusion (VI) had previously been conducted by NJDEP during or shortly after the potable well testing and no VI issues were identified. Based on the results of this remedial investigation, it is evident that within the neighborhood where residential properties are located, a clean water lens exists between any surface structure and contaminated groundwater present at depth, and therefore no additional VI investigations are warranted within the residential neighborhood. However, at onsite monitoring well MW02 which bridges the water table, a PCE concentration of 53 ug/l was detected above the NJDEP Groundwater Screening Level (GWSL) of 30 ug/l. The only structure within 100 feet of MW02 is the Haas Plaza building and a vapor intrusion assessment may be warranted for this building.

3.9.2 Baseline Ecological Evaluation

On August 20, 2010, a Site inspection was conducted by LBG scientists experienced in the use of techniques and methodologies for conducting ecological risk assessments in accordance with the *U.S. Environmental Protection Agency's Final Guidelines for Ecological Risk Assessment* (April 1998). The BEE is conducted to identify

- Environmentally sensitive areas on, or immediately adjacent to, the Site;
- Contaminants of ecological concern exist on-Site; and
- Potential contamination migration pathways to an environmentally sensitive area exist.

Based on the data collected during this investigation, there are no known contaminants of ecological concern within the Site boundaries. Contaminated groundwater identified at the Site was found at depths that are not directly accessible to wildlife.

Environmentally sensitive areas were identified down-gradient of the Site and include wetlands and surface waters associated with Bread and Cheese Run and Bear Swamp River.

The only potential contaminant migration pathways from Site contaminants to environmentally sensitive areas would be in the form of the discharging to down-gradient surface water features. However, based on the results of the groundwater investigation, the contaminant plume is observed to be fairly deep, with the majority of exceedances appearing to range from 40 to 63 feet bgs with the highest frequency of exceedances occurring between 60-63 feet bgs.

Horizontally, no exceedances were identified in the monitoring wells and groundwater screening locations immediately west (upgradient) of the Bear Swamp River.

No other pathways to environmentally sensitive areas, such as seeps or discharges, were identified. There was no evidence of stressed or dead vegetation within, adjacent to, or downgradient of the Site. No discolored soil, sediment, or surface water was observed within, adjacent to, or down-gradient of the Site. Based on the results of this BEE, Berger does not recommend further ecological sampling or evaluation pursuant to NJAC 7:26E-4.7. The complete BEE is included as Appendix I.

4.0 CONCLUSIONS AND RECOMMENDATIONS

Through the completion of soil sampling, groundwater screening, monitoring well installation and sampling, this Remedial Investigation was implemented to achieve the following objectives:

- Confirm and delineate the source(s) of contamination;
- Characterize site geologic and hydrogeologic conditions;
- Characterize the groundwater flow regime,
- Assess groundwater quality and delineate the extent of groundwater contamination using Class I-PL (protection Area) criterion;
- Identify potential contaminant impacts to surrounding surface water; and
- Evaluate potential effects to human receptors and natural ecological resources.

The following sections provide conclusions and recommendations regarding the objectives of the remedial investigative activities.

4.1 SOIL

The results of the two initial soil sampling events did not reveal any site-related soil contamination present on the Joan's Cleaners property. Two additional soil sampling events were conducted to investigate any potential spillage areas near the former Joan's Cleaners space. The results of these sampling events also did not reveal any site related contamination with the exception of some low level PCE concentrations, below the soil remediation standards, found in the rear of the shopping center between the former Joan's space and the septic system at a depth corresponding to the water table approximately, 17 feet bgs,

Based on the results of the July 2010 and June 2011 sampling events, there is no conclusive evidence of product discharges to the subsurface. Rather, it appears that dissolved PCE may have been discharged into the ground surface either through the septic system, dumpsters or direct spillage. The septic system and all associated components have been twice removed and upgraded and potentially contaminated soil may have been removed at that time. No remedial actions are recommended with regard to soil.

4.2 GROUNDWATER

Groundwater contamination was identified in 20 of the 46 groundwater screening locations and eight (8) of the 18 monitoring wells sampled. Exceedances of chlorinated solvent related compounds appear to be originating at the Joan's Site and are comprised of PCE and derivative chlorinated products such as TCE and cis-1,2-dichloroethene. The spatial distribution of the groundwater analytical exceedances from the groundwater screening phase of the investigation shows one large "Main Plume" of CVOC contaminated groundwater emanating from the Joan's Site and flowing northeast, towards the Bear Swamp River headwaters. In addition, there is a secondary "Branch Plume" flowing east towards Carranza Road. The results of the monitoring well sampling indicate a similar spatial distribution, however the presence of CVOCs in MW15 does not support that there are two disparate plumes; rather a single large plume with varying concentrations of CVOCs, particularly away from the main spine of the plume which exhibits the highest concentrations.

The flow direction of the plume appears to coincide with the overall northeast groundwater flow direction. The presence of the varying concentrations may be due to the effect of historic variations in groundwater flow possibly due to local groundwater withdrawals east of the investigation area by commercial or agricultural wells screened in the Cohansey aquifer.

Based on data generated during the groundwater investigation, the horizontal extent of groundwater contamination has been successfully characterized and delineated. The following sample locations provide adequate horizontal delineation for the purpose of establishing a CEA and to serve as the baseline for anticipated long term monitoring at the Site:

- To the north, monitoring wells MW03, MW04 and MW05 along with screening locations GW109, GW122 and GW148;
- To the west and south, monitoring wells MW01 and MW10 along with groundwater screening locations GW103, GW118, GW119, GW136 and GW144;
- To the southeast, monitoring well MW09 and screening location GW205; and
- To the east, monitoring wells MW08 and MW06 along with screening locations GW204, and GW203.

Vertical delineation of the chlorinated solvent exceedances was achieved at all deep groundwater screening locations with the exception of GW202. At this location a low level of 1,1-dichloroethylene (0.28 ug/l) was detected at the maximum depth interval sampled (150 to 151

feet bgs). However, this concentration is below the Class IIA GWQS. A clay confining layer was also encountered immediately beneath this sampling interval.

The initial sampling of MW07, located on the property of the Seneca High School, exhibited PCE concentrations at the Class IIA GWQS of 1 ug/l at a depth of approximately 135 feet bgs. The second round of sampling revealed that PCE had decreased below the Class IIA GWQS to a concentration of 0.53 ug/l.

The NJDEP has filed an interim indeterminate-duration Classification Exception Area/Well Restriction Area (CEA/WRA) on the entire investigation area. That document is provided as Appendix J.

4.3 POTENTIAL HUMAN AND ECOLOGICAL RECEPTORS

There are approximately 234 potable wells within the down-gradient investigation area and 110 within the NJDEP's CEA extent. Of those properties, based on previous reports, only 70 wells were sampled and only 30 have a POET system to provide clean drinking water. These wells were sampled in 2006, and the contaminant distribution in groundwater may be different today than in was six years ago. Considering this, there may be current potential impact to human health through the use of potable wells within the CEA area.

Within the residential neighborhood, a clean water lens of greater than 10 feet exists between surface structures and groundwater contamination present at depth and therefore no VI investigations are warranted in the neighborhood. However, a concentration of PCE from onsite monitoring well MW02, which bridges the water table, was detected above the GWSL and further vapor intrusion assessments are required within 100 feet of the well.

Potential ecological receptors associated with the Site include wetland habitat to the southeast and northwest of the Site, surface waters associated with the Bear Swamp, located approximately 3,800 feet northeast of the Site, and Bread and Cheese Run located approximately 2,500 feet southwest of the Site. The only potential contaminant migration pathways from Site contaminants to environmentally sensitive areas would be in the form of the recharging of downgradient surface water features by Site-contaminated groundwater. However, based on the results of the groundwater investigation, the contaminant plume is observed to be fairly deep with the majority of exceedances appearing to range from 40 to 63 feet bgs with the highest frequency of exceedances occurring between 60-63 feet bgs. Horizontally, no exceedances were identified in the monitoring wells and groundwater screening locations immediately west of the Bear Swamp River.

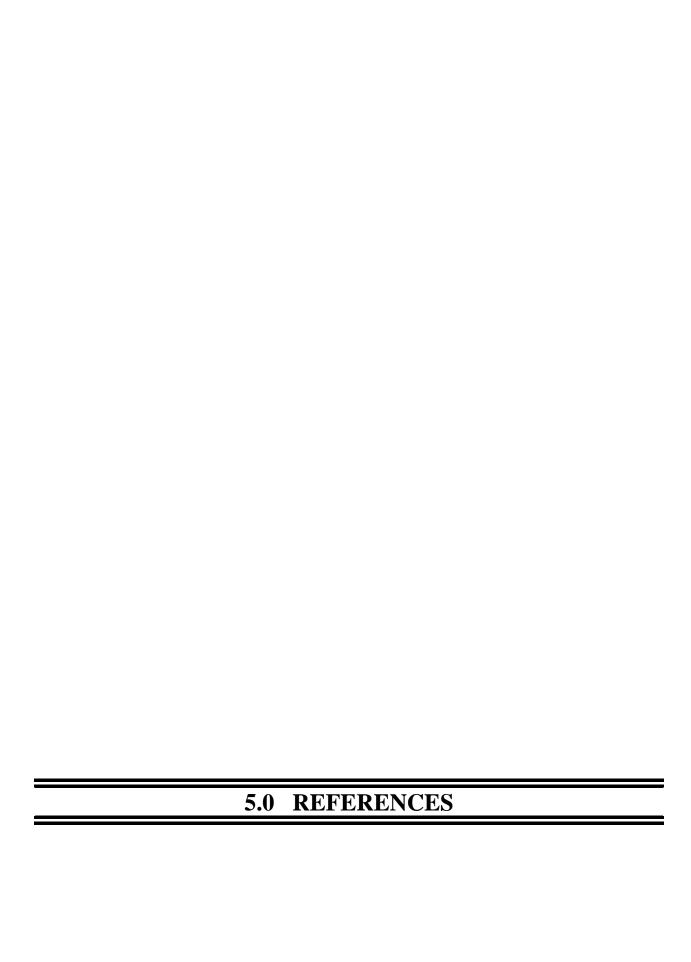
No other pathways to environmentally sensitive areas, such as seeps or discharges, were identified. There was no evidence of stressed or dead vegetation within, adjacent to, or downgradient of the Site. No discolored soil, sediment, or surface water was observed within, adjacent to, or down-gradient of the Site. Based on the results of receptor evaluation, LBG does not recommend further ecological sampling or evaluation pursuant to N.J.A.C. 7:26E-4.7 at this time.

4.4 RECOMMENDATIONS

A summary of the recommendations associated with the RI is presented below for soil, groundwater and potential receptors.

4.4.1 Soil

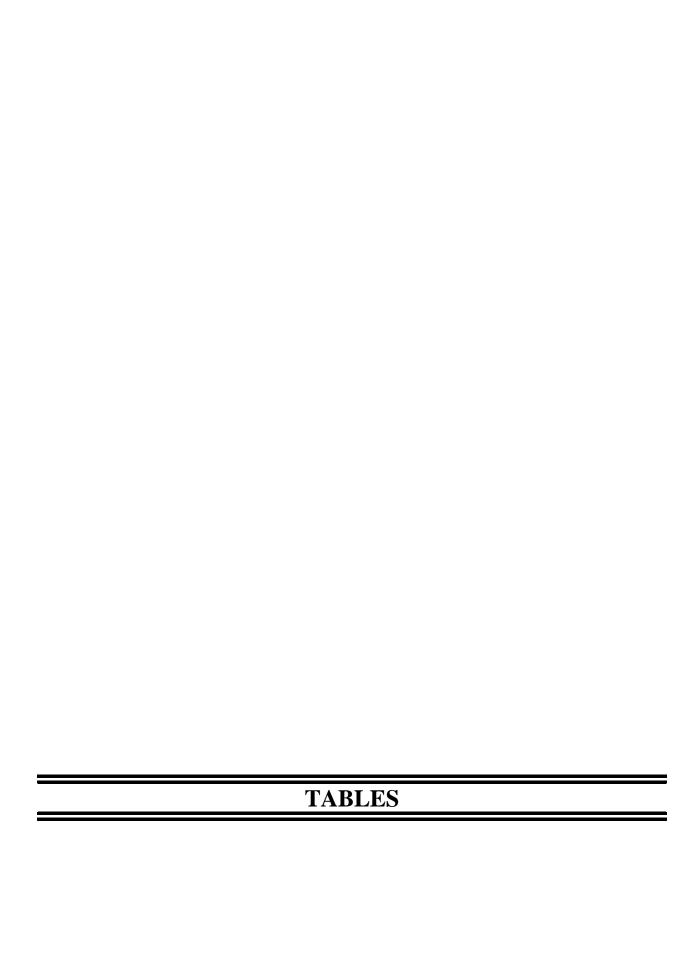
Based on the findings of the soil investigation, no site related contamination was observed to be present onsite. As such, no additional soil investigation or remedial action is proposed.


4.4.2 Groundwater

Chlorinated solvent related contamination in association with the former Joan's Cleaners facility has been horizontally and vertically delineated using a combination of groundwater screening results along with permanent monitoring wells. Due to the documented presence of contamination in groundwater at concentrations above the Class IIA and Class I-PL GWQS, a CEA has been established for the entire investigation area. LBG recommends updating the NJDEP's CEA with data presented in this RIR and the use of monitored natural attenuation (MNA) as the remedial action. Additional sampling data will be necessary to determine if conditions are viable for MNA, calculate degradation of the PCE contamination, and conduct the Mann-Whitney U test for trend analysis.

4.4.3 Receptor Evaluation

The last time residential wells were sampled was 2006; since then, groundwater and the contaminants within the groundwater have migrated to the east-northeast. Therefore, LBG recommends reassessing domestic wells that are within the CEA extent and not currently utilizing POET systems to determine if contamination is currently present in the potable wells.


Furthermore, a vapor intrusion assessment in accordance with NJAC 7:26E-1.12 and the NJDEP Vapor Intrusion Technical Guidance document is recommended for the Haas Plaza building due to the presence of PCE in shallow groundwater within 100 feet of the building.

5.0 REFERENCES

- Bouwer, H. and R.C. Rice, 1976. A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, Water Resources Research, vol. 12, no. 3, pp. 423-428.
- Drake, Avery Jr., Volkert, Richard A., et al., 1996. Bedrock Geologic Map of Southern New Jersey, U.S. Department of the Interior, U.S. Geological Survey.
- Hvorslev, M.J., 1951. Time Lag and Soil Permeability in Ground-Water Observations, Bull. No. 36, Waterways Exper. Sta. Corps of Engrs, U.S. Army, Vicksburg, Mississippi, pp. 1-50
- LBG (The Louis Berger Group, Inc.), *Final Programmatic Health and Safety Plan*. Louis Berger & Associates, Inc., June 2009.
- LBG, Conceptual Approach for Remedial Investigation, Joan's Cleaners, Tabernacle Township, New Jersey. Louis Berger Group, Inc., February 2009.
- LBG, Site Sampling and Investigation Plan, Joan's Cleaners, Tabernacle Township, New Jersey. Louis Berger Group, Inc., May 2009.
- NJDEP (New Jersey Department of Environmental Protection), New *Jersey Technical Requirements for Site Remediation*, N.J.A.C. 7:26 E, November 4, 2009 (last amended April 19, 2010).
- NJDEP (New Jersey Department of Environmental Protection), Residential Direct Contact, Non-Residential Direct Contact, and Impact to Groundwater Soil Cleanup Criteria, November 2009.
- NJDEP (New Jersey Department of Environmental Protection), *NJDEP Field Sampling Procedures Manual*, August 2005 (updated April 30, 2009).
- NJDEP (New Jersey Department of Environmental Protection), *Surface Water Quality Standards*, N.J.A.C. 7:9B, November 2009 (last amended January 2010)
- NJDEP (New Jersey Department of Environmental Protection), *Ground Water Quality Standards*, N.J.A.C. 7:9C, July 2008 (last amended November 4, 2009).
- NJDEP (New Jersey Department of Environmental Protection), Division of Water Resources, Bureau of Geology and Topography, Drainage *Basin Map of New Jersey*, 1972.

- NJDEP (New Jersey Department of Environmental Protection), *Alternative Groundwater Sampling Techniques Guide*, July 1994.
- NJDEP, Well Construction; Maintenance and Sealing of Abandoned Wells, NJAC 7:9D
- Stanford, Scott D., Surficial *Geologic Map of the Indian Mills and Medford Lakes Quadrangles, Burlington County, New Jersey*, New Jersey Geological Survey (NJGS) Geological Map Series GMS 93-1, 1981
- USEPA (United States Environmental Protection Agency) Region II, March 1998, Groundwater Sampling Procedure for Low Stress Purging and Sampling.
- United States Department of the Interior, Department of Fish and Wildlife, National Wetlands
 Inventory Map Series

Table 1 Joan's Cleaners Tabernacle Township, New Jersey **Soil Sample Summary Table**

Location ID	Sample ID	Lab ID	Sample Depth (ft bgs)	Analytical Parameters	Sampling Method	Date
SB01	SB01	JA51830-4	17.5-18.0	VOC+10, MTBE, TBA, TOC	Acetate sleeve, Bowl and Spoon	7/19/2010
SB02	SB02	JA51830-5	18.0-18.5	VOC+10, MTBE, TBA	Acetate sleeve, Bowl and Spoon	7/19/2010
SB03	SB03	JA51915-5	17.5-18.0	VOC+10, TBA, MTBE (%SOLIDS)	Acetate sleeve, Bowl and Spoon	7/20/2010
SB04	SB04	JA51915-4	16.5-17.0	VOC+10, TBA, MTBE (%SOLIDS)	Acetate sleeve, Bowl and Spoon	7/20/2010
SB05	SB05	JA51915-3	16.9-17.4	VOC+10, TBA, MTBE (%SOLIDS)	Acetate sleeve, Bowl and Spoon	7/20/2010
SB06	SB06	JA51915-1	16.5-17.0	VOC+10, TBA, MTBE (%SOLIDS)	Acetate sleeve, Bowl and Spoon	7/20/2010
SB07	SB07	JA51830-1	16.5-17.0	VOC+10, MTBE, TBA	Acetate sleeve, Bowl and Spoon	7/19/2010
SB08	SB08	JA51830-2	17.0-17.5	VOC+10, MTBE, TBA, TOC	Acetate sleeve, Bowl and Spoon	7/19/2010
SB09	SB09	JA51830-3	17.0-17.5	VOC+10, MTBE, TBA	Acetate sleeve, Bowl and Spoon	7/19/2010
SB10	SB10	JA51830-6	16.0-17.0	VOC+10, MTBE, TBA	Acetate sleeve, Bowl and Spoon	7/19/2010
SB11	SB11	JA78413-1	17.7 - 18.2	TCL VOC+10, MTBE, TBA	Acetate Sleeve, Bowl and Spoon	6/13/2011
SB12	SB12	JA78413-2	18.0 - 18.5	TCL VOC+10, MTBE, TBA	Acetate Sleeve, Bowl and Spoon	6/13/2011
SB13	SB13	JA78413-3	18.0 - 18.5	TCL VOC+10, MTBE, TBA	Acetate Sleeve, Bowl and Spoon	6/13/2011
SB14	SB14	JA78413-4	18.3 - 18.8	TCL VOC+10, MTBE, TBA	Acetate Sleeve, Bowl and Spoon	6/13/2011
SB15	SB15	JA78413-5	20.0 - 20.5	TCL VOC+10, MTBE, TBA	Acetate Sleeve, Bowl and Spoon	6/13/2011
SB16	SB16	JA78413-6	18.0 - 18.5	TCL VOC+10, MTBE, TBA	Acetate Sleeve, Bowl and Spoon	6/13/2011

- ft bgs = feet below ground surface
- NA = Not Analyzed
- VOC+10 = Volatile Organic Compounds +10 (search for 10 non-target tentatively identified compounds (TICs)
- MTBE = Methyl tert-butyl ether TBA = Tertiary-Butyl Alcohol
- TOC = Total Organic Carbon
- TOC and Grain Size are contingent analyses.

Table 1 Joan's Cleaners Tabernacle Township, New Jersey **Soil Sample Summary Table**

Location ID	Sample ID	Lab ID	Sample Depth (ft bgs)	Analytical Parameters	Sampling Method	Date
SB17	SB17	JA78413-7	17.5 - 18.0	TCL VOC+10, MTBE, TBA	Acetate Sleeve, Bowl and Spoon	6/13/2011
SB18	SB18	JA78413-8	18.0 - 18.5	TCL VOC+10, MTBE, TBA	Acetate Sleeve, Bowl and Spoon	6/13/2011
SB19A	SB19A	JA98559-1	20.5-21.0	TCL VOC+10, % Solid	Acetate sleeve	2/2/2012
SB19B	SB19B	JA98559-2	38.7-39.3	TCL VOC+10, % Solid	Acetate sleeve	2/2/2012
SB20A	SB20A	JA98559-3	17.0-17.5	TCL VOC+10, % Solid	Acetate sleeve	2/2/2012
SB20B	SB20B	JA98559-4	36.5-37.0	TCL VOC+10, % Solid	Acetate sleeve	2/2/2012
SB21A	SB21A	JA98613-1	17-17.5	TCL VOC+10, % Solid	Acetate sleeve	2/3/2012
SB21B	SB21B	JA98613-2	38.5-39.0	TCL VOC+10, % Solid	Acetate sleeve	2/3/2012
SB22A	SB22A	JA98613-3	17.4-17.9	TCL VOC+10, % Solid	Acetate sleeve	2/3/2012
SB22B	SB22B	JA98613-4	38.6-39.1	TCL VOC+10, % Solid	Acetate sleeve	2/3/2012
SB23A	SB23A	JA98613-5	17.7-18.2	TCL VOC+10, % Solid	Acetate sleeve	2/3/2012
SB23B	SB23B	JA98613-6	23.8-24.3	TCL VOC+10, % Solid	Acetate sleeve	2/3/2012
SB24A	SB24A	JB5629-1	17.5-18.0	TCL VOC+10, % Solid	Acetate sleeve	5/3/2012
SB24AE	SB24AE	JB5629-2	17.5-18.0	TCL VOC+10, % Solid	Acetate sleeve	5/3/2012
SB25A	SB25A	JB5629-3	18.5-19.0	TCL VOC+10, % Solid	Acetate sleeve	5/3/2012
SB25AE	SB25AE	JB5629-4	18.5-19.0	TCL VOC+10, % Solid	Acetate sleeve	5/3/2012

- ft bgs = feet below ground surface
- NA = Not Analyzed
- VOC+10 = Volatile Organic Compounds +10 (search for 10 non-target tentatively identified compounds (TICs)
- MTBE = Methyl tert-butyl ether TBA = Tertiary-Butyl Alcohol
- TOC = Total Organic Carbon
- TOC and Grain Size are contingent analyses.

Table 1 Joan's Cleaners Tabernacle Township, New Jersey Soil Sample Summary Table

Location ID	Sample ID	Lab ID	Sample Depth (ft bgs)	Analytical Parameters	Sampling Method	Date
SB26A	SB26A	JB5629-5	18-18.5	TCL VOC+10, % Solid	Acetate sleeve	5/3/2012
SB26AE	SB26AE	JB5629-6	18-18.5	TCL VOC+10, % Solid	Acetate sleeve	5/3/2012
SB27A	SB27A	JB5629-7	18-18.5	TCL VOC+10, % Solid	Acetate sleeve	5/3/2012
SB27AE	SB27AE	JB5629-8	18-18.5	TCL VOC+10, % Solid	Acetate sleeve	5/3/2012
SB28A	SB28A	JB5629-9	15.0-15.5	TCL VOC+10, % Solid	Acetate sleeve	5/3/2012
SB28AE	SB28AE	JB5629-10	15.0-15.5	TCL VOC+10, % Solid	Acetate sleeve	5/3/2012
SB29A	SB29A	JB5629-11	15.0-15.5	TCL VOC+10, % Solid	Acetate sleeve	5/3/2012
SB29AE	SB29AE	JB5629-12	15.0-15.5	TCL VOC+10, % Solid	Acetate sleeve	5/3/2012
SB30A	SB30A	JB5629-13	17.0-17.5	TCL VOC+10, % Solid	Acetate sleeve	5/3/2012
SB30AE	SB30AE	JB5629-14	17.0-17.5	TCL VOC+10, % Solid	Acetate sleeve	5/3/2012
				QA/QC		
SB14	DUP01	JA78413-9	18.3 - 18.8	TCL VOC+10, MTBE, TBA	Acetate Sleeve, Bowl and Spoon	6/13/2011
Trip Blank	TB01	JA51915-7	NA	TCL VOC+10	NA	7/20/2010
Trip Blank	Trip Blank	JA78413-10	NA	TCL VOC+10	NA	6/9/2011
Trip Blank	TB01	JA98559-5	NA	TCL VOC+10	NA	2/1/2012

- ft bgs = feet below ground surface
- NA = Not Analyzed
- VOC+10 = Volatile Organic Compounds +10 (search for 10 non-target tentatively identified compounds (TICs)
- MTBE = Methyl tert-butyl ether
- TBA = Tertiary-Butyl Alcohol
- TOC = Total Organic Carbon
- TOC and Grain Size are contingent analyses.

Joan's Cleaners Tabernacle Township, New Jersey Soil Sampling Results Table

			Location ID	SB01	SB02	SB03	SB04	SB05	SB06	SB07	SB08	SB09	SB10
			Sample ID	SB01	SB02	SB03	SB04	SB05	SB06	SB07	SB08	SB09	SB10
			Lab ID	JA51830-4	JA51830-5	JA51915-5	JA51915-4	JA51915-2	JA51915-1	JA51830-1	JA51830-2	JA51830-3	JA51830-6
	Sample Dat					7/20/2010	7/20/2010	7/20/2010	7/20/2010	7/19/2010	7/19/2010	7/19/2010	7/19/2010
		Sample Inte	erval (ft bgs)	17.5 - 18.0	18.0 - 18.5	17.5 - 18.0	16.5 - 17.0	16.9 - 17.4	16.5 - 17.0	16.5 - 17.0	17.0 - 17.5	17.0 - 17.5	16.5 - 17.0
voc	NRDCSRS	RDCSRS	IGWSRS										
Acetone	NC	70000	12	0.015 U	0.011 U	0.015 U	0.014 U	0.013 U	0.013 U	0.0498	0.014 U	0.01 U	0.0096 U
Methyl tert-butyl ether	320	110	0.2	0.0015 U	0.0011 U	0.0015 U	0.0014 U	0.0013 U	0.0013 U	0.0011 U	0.0014 U	0.001 U	0.00096 U
Methylene Chloride	97	34	0.007	0.0075 U	0.0053 U	0.0075 U	0.0068 U	0.0066 U	0.0063 U	0.0053 U	0.0068 U	0.0051 U	0.0048 U
Tetrachloroethene	5	2	0.005	0.0075 U	0.0053 U	0.0075 U	0.0068 U	0.0066 U	0.0063 U	0.0053 U	0.0068 U	0.0051 U	0.0048 U
тос													
Total Organic Carbon	al Organic Carbon NC NC NC					N/A	N/A	N/A	N/A	N/A	401	N/A	N/A

- All results are dry weight and are reported in parts per million (mg/kg)
- NRDCSRS = Non Residential Direct Contact Soil Remediation Standards, NJDEP, June 2008
- RDCSRS = Residential Direct Contact Soil Remediation Standards, NJDEP, June 2008
- IGWSRS = Default Impact to Ground Water Soil Remediation Standard is from the NJDEP's "Soil-Water Partition Equation Guidance Document" dated June 2008 (revised December 2008)
- NC = No Criteria
- U = Not detected above the quantitation limit; the value presented is the sample quantitation limit
- N/A = Not Analyzed
- Bold = Positive Detection

Joan's Cleaners Tabernacle Township, New Jersey Soil Sampling Results Table

			Location ID	SB11	SB12	SB13	SE	314	SB15	SB16	SB17	SB18
			Sample ID	SB11	SB12	SB13	SB14	DUP01	SB15	SB16	SB17	SB18
	Lab ID					JA78413-3	JA78413-4	JA78413-9	JA78413-5	JA78413-6	JA78413-7	JA78413-8
	6/13/2011	6/13/2011	6/13/2011	6/13/2011	6/13/2011	6/13/2011	6/13/2011	6/13/2011	6/13/2011			
	17.7 - 18.2	18.0 - 18.5	18.0 - 18.5	18.3 - 18.8	18.3 - 18.8	20.0 - 20.5	18.0 - 18.5	17.5 - 18.0	18.0 - 18.5			
VOC	NRDCSRS	RDCSRS	IGWSRS									
Acetone	NC	70000	12	0.012 U	0.014 U	0.014 U	0.012 U	0.016 U	0.012 U	0.015 U	0.012 U	0.012 U
Methyl tert-butyl ether	320	110	0.2	0.0012 U	0.0014 U	0.0014 U	0.0012 U	0.0016 U	0.0012 U	0.0015 U	0.0012 U	0.0012 U
Methylene Chloride	97	34	0.007	0.0058 U	0.0068 U	0.0068 U	0.006 U	0.0078 U	0.006 U	0.0074 U	0.0058 U	0.006 U
Tetrachloroethene	5	2	0.005	0.0058 U	0.0068 U	0.0068 U	0.006 U	0.0078 U	0.006 U	0.0074 U	0.0058 U	0.006 U
TOC												
Total Organic Carbon	NC	NC	NC	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

- All results are dry weight and are reported in parts per million (mg/kg)
- NRDCSRS = Non Residential Direct Contact Soil Remediation Standards, NJDEP, June 2008
- RDCSRS = Residential Direct Contact Soil Remediation Standards, NJDEP, June 2008
- IGWSRS = Default Impact to Ground Water Soil Remediation Standard is from the NJDEP's "Soil-Water Partition Equation Guidance Document" dated June 2008 (revised December 2008)
- NC = No Criteria
- U = Not detected above the quantitation limit; the value presented is the sample quantitation limit
- N/A = Not Analyzed
- Bold = Positive Detection

Joan's Cleaners Tabernacle Township, New Jersey Soil Sampling Results Table

			Location ID	SB	19	SE	20	SE	321	SB	22	SB	23
			Sample ID	SB19A	SB19B	SB20A	SB20B	SB21A	SB21B	SB22A	SB22B	SB23A	SB23B
	Lab II					JA98559-3	JA98559-4	JA98613-1	JA98613-2	JA98613-3	JA98613-4	JA98613-5	JA98613-6
	2/2/2012	2/2/2012	2/2/2012	2/2/2012	2/3/2012	2/3/2012	2/3/2012	2/3/2012	2/3/2012	2/3/2012			
		Sample Inte	erval (ft bgs)	20.5 - 21.0	38.7 -39.3	17.0 - 17.5	36.5 - 37.0	17.0 - 17.5	38.5 - 39.0	17.4 - 17.9	38.6 - 39.1	17.7 - 18.2	23.8 - 24.3
VOC	NRDCSRS	RDCSRS	IGWSRS										
Acetone	NC	70000	12	0.0255	0.011 U	0.013 U	0.011 U	0.013 U	0.015 U	0.012 U	0.011 U	0.01 U	0.01 U
Methyl tert-butyl ether	320	110	0.2	0.0011 U	0.0011 U	0.0013 U	0.0011 U	0.0013 U	0.0015 U	0.0012 U	0.0011 U	0.001 U	0.001 U
Methylene Chloride	97	34	0.007	0.0053 U	0.0055 U	0.0064 U	0.0054 U	0.0067 U	0.0076 U	0.0058 U	0.0053 U	0.0051 U	0.0052 U
Tetrachloroethene	5	2	0.005	0.0053 U	0.0055 U	0.0064 U	0.0054 U	0.0067 U	0.0076 U	0.0058 U	0.0053 U	0.0051 U	0.0052 U
TOC													
Total Organic Carbon	NC	NC	NC	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

- All results are dry weight and are reported in parts per million (mg/kg)
- NRDCSRS = Non Residential Direct Contact Soil Remediation Standards, NJDEP, June 2008
- RDCSRS = Residential Direct Contact Soil Remediation Standards, NJDEP, June 2008
- IGWSRS = Default Impact to Ground Water Soil Remediation Standard is from the NJDEP's "Soil-Water Partition Equation Guidance Document" dated June 2008 (revised December 2008)
- NC = No Criteria
- U = Not detected above the quantitation limit; the value presented is the sample quantitation limit
- N/A = Not Analyzed
- Bold = Positive Detection

Joan's Cleaners Tabernacle Township, New Jersey Soil Sampling Results Table

			Location ID	SB	324	SE	325	SE	26	SB	327	SB	28
			Sample ID	SB24A	SB24AE	SB25A	SB25AE	SB26A	SB26AE	SB27A	SB27AE	SB28A	SB28AE
	Lab II					JB5629-3	JB5629-4	JB5629-5	JB5629-6	JB5629-7	JB5629-8	JB5629-9	JB5629-10
	Sample Date	5/3/2012	5/3/2012	5/3/2012	5/3/2012	5/3/2012	5/3/2012	5/3/2012	5/3/2012	5/3/2012	5/3/2012		
		Sample Inte	erval (ft bgs)	17.5 - 18.0	17.5 - 18.0	18.5 - 19.0	18.5 - 19.0	18.0 - 18.5	18.0 - 18.5	18.0 - 18.5	18.0 - 18.5	15.0 - 15.5	15.0 - 15.5
voc	NRDCSRS	RDCSRS	IGWSRS										
Acetone	NC	70000	12	0.0098 U	0.01 U	0.011 U	0.011 U	0.01 U	0.01 U	0.011 U	0.0098 U	0.012 U	0.011 U
Methyl tert-butyl ether	320	110	0.2	0.00098 U	0.001 U	0.0011 U	0.0011 U	0.001 U	0.001 U	0.0011 U	0.00098 U	0.0012 U	0.0011 U
Methylene Chloride	97	34	0.007	0.0049 U	0.005 U	0.002 J	0.0015 J	0.0023 J	0.0014 J	0.0029 J	0.0016 J	0.0026 J	0.0054 U
Tetrachloroethene	5	2	0.005	0.0049 U	0.005 U	0.00059 J	0.0057 U	0.00059 J	0.00038 J	0.00074 J	0.00047 J	0.0059 U	0.0054 U
TOC													
Total Organic Carbon	NC	NC	NC	N/A									

- All results are dry weight and are reported in parts per million (mg/kg)
- NRDCSRS = Non Residential Direct Contact Soil Remediation Standards, NJDEP, June 2008
- RDCSRS = Residential Direct Contact Soil Remediation Standards, NJDEP, June 2008
- IGWSRS = Default Impact to Ground Water Soil Remediation Standard is from the NJDEP's "Soil-Water Partition Equation Guidance Document" dated June 2008 (revised December 2008)
- NC = No Criteria
- U = Not detected above the quantitation limit; the value presented is the sample quantitation limit
- N/A = Not Analyzed
- Bold = Positive Detection

Joan's Cleaners Tabernacle Township, New Jersey Soil Sampling Results Table

			Location ID	SE	329	SB	30		TRIP BLANK	
			Sample ID	SB29A	SB29AE	SB30A	SB30AE	TB01	TRIP BLANK	TB
			Lab ID	JB5629-11	JB5629-12	JB5629-13	JB5629-14	JA51915-7	JA78413-10	JA98559-5
	Sample Date						5/3/2012	7/20/2010	6/13/2011	2/2/2012
		Sample Inte	erval (ft bgs)	15.0 - 15.5	15.0 - 15.5	17.0 - 17.5	17.0 - 17.5	-		
VOC	NRDCSRS	RDCSRS	IGWSRS							
Acetone	NC	70000	12	0.011 U	0.012 U	0.012 U	0.011 U	0.01 U	0.01 U	0.01 U
Methyl tert-butyl ether	320	110	0.2	0.0011 U	0.0012 U	0.0012 U	0.0011 U	0.001 U	0.001 U	0.001 U
Methylene Chloride	97	34	0.007	0.0019 J	0.0018 J	0.0034 J	0.0053 U	0.002 U	0.002 U	0.002 U
Tetrachloroethene	5	2	0.005	0.0054 U	0.0061 U	0.002 J	0.0017 J	0.001 U	0.001 U	0.001 U
TOC										·
Total Organic Carbon	NC	NC	NC	N/A	N/A	N/A	N/A	N/A	N/A	N/A

- All results are dry weight and are reported in parts per million (mg/kg)
- NRDCSRS = Non Residential Direct Contact Soil Remediation Standards, NJDEP, June 2008
- RDCSRS = Residential Direct Contact Soil Remediation Standards, NJDEP, June 2008
- IGWSRS = Default Impact to Ground Water Soil Remediation Standard is from the NJDEP's "Soil-Water Partition Equation Guidance Document" dated June 2008 (revised December 2008)
- NC = No Criteria
- U = Not detected above the quantitation limit; the value presented is the sample quantitation limit
- N/A = Not Analyzed
- Bold = Positive Detection

Joan's Cleaners

Tabernacle Township, New Jersey

Shallow Groundwater Screening Sample Summary Table

Location ID	Sample ID	Lab ID	Sample Depth ft bgs	Analytical Parameters	Sampling Method	Date
	GW101	JA52001-1	16.0 - 19.0	VOC+10, MTBE, TBA	Hydro-punch	7/21/2010
	GW101A	JA52001-2	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	7/21/2010
	GW101B	JA52001-3	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	7/21/2010
GW101	GW101C	JA52001-4	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	7/21/2010
	GW101D	JA52001-5	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	7/21/2010
	GW101E	JA52001-6	70.0 - 73.0	VOC+10, MTBE, TBA	Hydro-punch	7/21/2010
	GW101F	JA52001-7	80.0 - 83.0	VOC+10, MTBE, TBA	Hydro-punch	7/21/2010
	GW102	JA52179-1	16.0 - 19.0	VOC+10, MTBE, TBA	Hydro-punch	7/22/2010
	GW102A	JA52179-2	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	7/22/2010
	GW102B	JA52179-3	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	7/22/2010
GW102	GW102C	JA52179-4	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	7/22/2010
	GW102D	JA52179-5	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	7/22/2010
	GW102E	JA52179-6	70.0 - 73.0	VOC+10, MTBE, TBA	Hydro-punch	7/22/2010
	GW102F	JA52179-9	80.0 - 83.0	VOC+10, MTBE, TBA	Hydro-punch	7/22/2010
	GW103AP	JA57487-1	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	9/28/2010
	GW103BP	JA57487-2	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	9/28/2010
	GW103CU	JA57487-12	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	9/28/2010
GW103	GW103DU	JA57487-13	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	9/28/2010
	GW103EP	JA57487-5	70.0 - 73.0	VOC+10, MTBE, TBA	Hydro-punch	9/28/2010
	GW103FU	JA57487-15	80.0 - 83.0	VOC+10, MTBE, TBA	Hydro-punch	9/28/2010
	GW103DUPP	JA57487-9			, ,	
	GW105	JA52577-1	12.0 - 15.0	VOC+10, MTBE, TBA	Hydro-punch	7/24/2010
	GW105A	JA52577-2	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	7/24/2010
GW105	GW105B	JA52577-3	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	7/24/2010
	GW105C	JA52577-4	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	7/24/2010
	GW105D	JA52577-5	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	7/24/2010
	GW105E	JA52577-6	70.0 - 73.0	VOC+10, MTBE, TBA	Hydro-punch	7/24/2010
	GW106AP	JA58277-10	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	10/7/2010
	GW106BU	JA58277-21	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	10/7/2010
GW106	GW106CU	JA58277-22	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	10/7/2010
	GW106DUPP	JA58277-27				
	GW106DU	JA58277-23	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	10/7/2010
	GW106EP	JA58277-26	70.0 - 73.0	VOC+10, MTBE, TBA	Hydro-punch	10/7/2010

- Sample depth is reported in feet below ground surface (ft bgs).
 NA= Not Applicable
- VOC = Volatile Organic Compounds (VOCs)+10 (search for 10 non-target tentatively identified compounds (TICS))
 MTBE = Methyl Tert Butyl Ether
 TBA =Tertiary Butyl Alcohol

Joan's Cleaners

Tabernacle Township, New Jersey

Shallow Groundwater Screening Sample Summary Table

Location ID	Sample ID	Lab ID	Sample Depth ft bgs	Analytical Parameters	Sampling Method	Date
	GW107A	JA52208-1	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	7/23/2010
	GW107B	JA52208-2	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	7/23/2010
GW107	GW107C	JA52208-3	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	7/23/2010
GW107	GW107D	JA52208-4	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	7/23/2010
	GW107E	JA52208-5	70.0 - 73.0	VOC+10, MTBE, TBA	Hydro-punch	7/23/2010
	GW107F	JA52208-6	76.0 - 79.0	VOC+10, MTBE, TBA	Hydro-punch	7/23/2010
	GW108AAP	JA58277-1	23.0 - 26.0	VOC+10, MTBE, TBA	Hydro-punch	10/6/2010
	GW108AU	JA58277-14	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	10/6/2010
	GW108BP	JA58277-3	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	10/6/2010
GW108	GW108CP	JA58277-4	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	10/6/2010
	GW108DP	JA58277-5	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	10/6/2010
	GW108EP	JA58277-6	70.0 - 73.0	VOC+10, MTBE, TBA	Hydro-punch	10/6/2010
	GW108FU	JA58277-19	76.0 - 79.0	VOC+10, MTBE, TBA	Hydro-punch	10/6/2010
	GW109AAP	JA58104-1	23.0 - 26.0	VOC+10, MTBE, TBA	Hydro-punch	10/5/2010
	GW109AP	JA58104-2	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	10/5/2010
	GW109BP	JA58104-3	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	10/5/2010
GW109	GW109CP GW109DUPP	JA58104-4 JA58104-17	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	10/5/2010
	GW109DP	JA58104-5	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	10/5/2010
	GW109EU	JA58104-15	70.0 - 73.0	VOC+10, MTBE, TBA	Hydro-punch	10/5/2010
	GW109FU	JA58104-16	76.0 - 79.0	VOC+10, MTBE, TBA	Hydro-punch	10/5/2010
	GW110AAP	JA57961-1	20.0 - 23.0	VOC+10, MTBE, TBA	Hydro-punch	10/4/2010
	GW110AP	JA57961-2	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	10/4/2010
	GW110BU	JA57961-12	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	10/4/2010
GW110	GW110CP	JA57961-4	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	10/4/2010
	GW110DU	JA57961-14	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	10/4/2010
	GW110EP	JA57961-6	70.0 - 73.0	VOC+10, MTBE, TBA	Hydro-punch	10/4/2010
	GW110FU	JA57961-16	80.0 - 83.0	VOC+10, MTBE, TBA	Hydro-punch	10/4/2010

- Sample depth is reported in feet below ground surface (ft bgs).
 NA= Not Applicable
 VOC = Volatile Organic Compounds (VOCs)+10 (search for 10 non-target tentatively identified compounds (TICS))
 MTBE = Methyl Tert Butyl Ether
- TBA =Tertiary Butyl Alcohol

Joan's Cleaners

Tabernacle Township, New Jersey

Shallow Groundwater Screening Sample Summary Table

Location ID	Sample ID	Lab ID	Sample Depth ft bgs	Analytical Parameters	Sampling Method	Date
	GW111AAP	JA57758-1	20.0 - 23.0	VOC+10, MTBE, TBA	Hydro-punch	10/1/2010
	GW111AU	JA57758-10	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	10/1/2010
GW111	GW111BU	JA57758-11	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	10/1/2010
GWIII	GW111CP	JA57758-4	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	10/1/2010
	GW111DU	JA57758-13	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	10/1/2010
	GW111EU	JA57758-14	70.0 - 73.0	VOC+10, MTBE, TBA	Hydro-punch	10/1/2010
	GW112AP	JA55343-1	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	8/30/2010
	GW112BP	JA55343-2	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	8/30/2010
	GW112CP	JA55343-3	50.0 52.0	VOC-10 MTDE TDA	Huduo mumoh	9/20/2010
GW112	GW112DUPP	JA55343-9	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	8/30/2010
	GW112DP	JA55343-4	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	8/30/2010
	GW112EP	JA55343-5	70.0 - 73.0	VOC+10, MTBE, TBA	Hydro-punch	8/30/2010
	GW112FP	JA55343-6	80.0 - 83.0	VOC+10, MTBE, TBA	Hydro-punch	8/30/2010
	GW115P	JA55107-12	13.0 - 16.0	VOC+10, MTBE, TBA	Hydro-punch	8/27/2010
	GW115AAP	JA55107-24	20.0 - 23.0	VOC+10, MTBE, TBA	Hydro-punch	8/27/2010
GW115	GW115AP	JA55107-25	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	8/27/2010
GW113	GW115BP	JA55107-26	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	8/27/2010
	GW115CP	JA55107-27	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	8/27/2010
	GW115DU	JA55107-33	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	8/27/2010
	GW116AAP	JA57429-1	20.0 - 23.0	VOC+10, MTBE, TBA	Hydro-punch	9/27/2010
	GW116AP	JA57429-2	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	9/27/2010
GW116	GW116BU	JA57429-11	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	9/27/2010
GW110	GW116CU	JA57429-12	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	9/27/2010
	GW116DP	JA57429-5	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	9/27/2010
	GW116EU	JA57429-14	70.0 - 73.0	VOC+10, MTBE, TBA	Hydro-punch	9/27/2010
	GW118P	JA57091-1	13.0 - 16.0	VOC+10, MTBE, TBA	Hydro-punch	9/22/2010
	GW118AAU	JA57091-12	20.0 - 23.0	VOC+10, MTBE, TBA	Hydro-punch	9/22/2010
	GW118AP	JA57091-3	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	9/22/2010
CW110	GW118BP	JA57091-4	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	9/22/2010
GW118	GW118CU	JA57091-15	50.0 52.0	VOC. 10 MTDE TD	II-1	0/22/2010
	GW118DUPU	JA57091-18	50.0 - 53.0	0 VOC+10, MTBE, TBA	Hydro-punch	9/22/2010
	GW118DU	JA57091-16	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	9/22/2010
	GW118EP	JA57091-7	70.0 - 73.0	VOC+10, MTBE, TBA	Hydro-punch	9/22/2010

- Sample depth is reported in feet below ground surface (ft bgs).
 NA= Not Applicable
- VOC = Volatile Organic Compounds (VOCs)+10 (search for 10 non-target tentatively identified compounds (TICS))
 MTBE = Methyl Tert Butyl Ether
 TBA =Tertiary Butyl Alcohol

Joan's Cleaners

Tabernacle Township, New Jersey

Shallow Groundwater Screening Sample Summary Table

Location ID	Sample ID	Lab ID	Sample Depth ft bgs	Analytical Parameters	Sampling Method	Date
	GW119P	JA56687-10	13.0 - 16.0	VOC+10, MTBE, TBA	Hydro-punch	9/17/2010
	GW119AAP	JA56687-11	20.0 - 23.0	VOC+10, MTBE, TBA	Hydro-punch	9/17/2010
	GW119AU	JA56687-22	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	9/17/2010
GW119	GW119BP	JA56687-25	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	9/17/2010
	GW119CU	JA56687-24	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	9/17/2010
	GW119DU	JA56687-30	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	9/17/2010
	GW119EU	JA56687-31	68.0 - 71.0	VOC+10, MTBE, TBA	Hydro-punch	9/17/2010
	GW120P	JA53742-16	8.0 - 11.0	VOC+10, MTBE, TBA	Hydro-punch	8/10/2010
	GW120AAP	JA53742-2	20.0 - 23.0	VOC+10, MTBE, TBA	Hydro-punch	8/10/2010
	GW120AP	JA53742-3	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	8/10/2010
GW120	GW120BP	JA53742-4	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	8/10/2010
	GW120CP	JA53742-5	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	8/10/2010
	GW120DU	JA53742-16	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	8/10/2010
	GW120EP	JA53742-7	70.0 - 73.0	VOC+10, MTBE, TBA	Hydro-punch	8/10/2010
	GW122AAP	JA53742-10	20.0 - 23.0	VOC+10, MTBE, TBA	Hydro-punch	8/13/2010
	GW122AP	JA54003-30	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	8/13/2010
GW122	GW122BU	JA54003-31	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	8/13/2010
	GW122CP	JA54003-34	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	8/13/2010
	GW122DU	JA54003-35	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	8/13/2010
	GW123P	JA54003-2	13.0 - 16.0	VOC+10, MTBE, TBA	Hydro-punch	8/12/2010
	GW123AAP	JA54003-4	20.0 - 23.0	VOC+10, MTBE, TBA	Hydro-punch	8/12/2010
	GW123AP	JA54003-6	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	8/12/2010
GW123	GW123DUPU	JA54003-13	30.0 - 33.0	VOC+10, MIDE, IBA	Trydro-punen	6/12/2010
	GW123BP	JA54003-8	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	8/12/2010
	GW123CP	JA54003-10	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	8/12/2010
	GW123DP	JA54003-12	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	8/12/2010
	GW124P	JA54003-17	13.0 - 16.0	VOC+10, MTBE, TBA	Hydro-punch	8/12/2010
	GW124AAU	JA54003-18	20.0 - 23.0	VOC+10, MTBE, TBA	Hydro-punch	8/12/2010
GW124	GW124AP	JA54003-21	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	8/12/2010
UW124	GW124BP	JA54003-23	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	8/12/2010
	GW124CP	JA54003-26	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	8/13/2010
	GW124DP	JA54003-28	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	8/13/2010

- Sample depth is reported in feet below ground surface (ft bgs).

 NA= Not Applicable

 VOC = Volatile Organic Compounds (VOCs)+10 (search for 10 non-target tentatively identified compounds (TICS))

 MTBE = Methyl Tert Butyl Ether

 TBA = Tertiary Butyl Alcohol

Joan's Cleaners

Tabernacle Township, New Jersey

Shallow Groundwater Screening Sample Summary Table

Location ID	Sample ID	Lab ID	Sample Depth ft bgs	Analytical Parameters	Sampling Method	Date
	GW126P	JA54219-1	13.0 - 16.0	VOC+10, MTBE, TBA	Hydro-punch	8/17/2010
	GW126AAP	JA54219-2	20.0 - 23.0	VOC+10, MTBE, TBA	Hydro-punch	8/17/2010
	GW126AP	JA54219-3	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	8/17/2010
GW126	GW126BP	JA54219-4	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	8/17/2010
	GW126CP	JA54219-5	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	8/17/2010
	GW126DP	JA54219-6	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	8/17/2010
	GW126EP	JA54219-7	68.0 - 71.0	VOC+10, MTBE, TBA	Hydro-punch	8/17/2010
	GW127P	JA54407-1	15.0 - 18.0	VOC+10, MTBE, TBA	Hydro-punch	8/18/2010
	GW127AP	JA54407-2	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	8/18/2010
GW127	GW127BP	JA54407-3	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	8/18/2010
GW127	GW127CP	JA54407-4	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	8/18/2010
	GW127DP	JA54407-5	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	8/18/2010
	GW127EP	JA54407-6	70.0 - 73.0	VOC+10, MTBE, TBA	Hydro-punch	8/18/2010
	GW128P	JA54548-1	15.0 - 18.0	VOC+10, MTBE, TBA	Hydro-punch	8/19/2010
	GW128AP	JA54548-2	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	8/19/2010
GW128	GW128BP	JA54548-3	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	8/19/2010
GW126	GW128CU	JA54548-12	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	8/19/2010
	GW128DU	JA54548-13	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	8/19/2010
	GW128EP	JA54548-6	70.0 - 73.0	VOC+10, MTBE, TBA	Hydro-punch	8/19/2010
	GW129P	JA54634-1	12.0 - 15.0	VOC+10, MTBE, TBA	Hydro-punch	8/23/2010
	GW129AAP	JA54634-2	20.0 - 23.0	VOC+10, MTBE, TBA	Hydro-punch	8/23/2010
	GW129AP	JA54634-3	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	8/23/2010
	GW129BP	JA54634-4	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	8/23/2010
	GW129DUPU	JA54634-20	40.0 - 43.0	VOC+10, WIIDE, IBA	Trydro-punen	6/23/2010
GW129	GW129CU	JA54634-16	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	8/23/2010
	GW129CP	JA54634-5	30.0 - 33.0	VOC+10, WIIDE, IBA	Trydro-punen	6/23/2010
	GW129DU	JA54634-17	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	8/23/2010
	GW129EU	Not Analyzed	70.0 - 73.0	VOC+10, MTBE, TBA	Hydro-punch	8/23/2010
	GW129EP	Not Analyzed	70.0 - 73.0	VOC+10, WIDE, IDA	Trydro-punch	0/23/2010
	GW129FP	JA54634-8	80.0 - 83.0	VOC+10, MTBE, TBA	Hydro-punch	8/23/2010

- Sample depth is reported in feet below ground surface (ft bgs).
 NA= Not Applicable
 VOC = Volatile Organic Compounds (VOCs)+10 (search for 10 non-target tentatively identified compounds (TICS))
 MTBE = Methyl Tert Butyl Ether
- TBA =Tertiary Butyl Alcohol

Joan's Cleaners

Tabernacle Township, New Jersey

Shallow Groundwater Screening Sample Summary Table

Location ID	Sample ID	Lab ID	Sample Depth ft bgs	Analytical Parameters	Sampling Method	Date
	GW131P	JA54749-1	13.0 - 16.0	VOC+10, MTBE, TBA	Hydro-punch	8/24/2010
	GW131AAP	JA54749-2	20.0 - 23.0	VOC+10, MTBE, TBA	Hydro-punch	8/24/2010
	GW131AP	JA54749-3	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	8/24/2010
GW131	GW131BU	JA54749-13	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	8/24/2010
GW131	GW131CP	JA54749-5	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	8/24/2010
	GW131DU	JA54749-15	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	8/24/2010
	GW131EU	JA54749-17	70.0 - 73.0	VOC+10, MTBE, TBA	Hydro-punch	8/24/2010
	GW131FP	JA54749-8	80.0 - 83.0	VOC+10, MTBE, TBA	Hydro-punch	8/24/2010
	GW132AAP	JA55107-1	20.0 - 23.0	VOC+10, MTBE, TBA	Hydro-punch	8/26/2010
CW122	GW132AP	JA55107-2	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	8/26/2010
GW132	GW132BP	JA55107-33	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	8/26/2010
	GW132CP	JA55107-4	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	8/26/2010
	GW133P	JA56687-1	12.0 - 15.0	VOC+10, MTBE, TBA	Hydro-punch	9/16/2010
	GW133AAU	JA56687-14	20.0 - 23.0	VOC+10, MTBE, TBA	Hydro-punch	9/16/2010
	GW133AU	JA56687-15	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	9/16/2010
GW133	GW133BP	JA56687-4	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	9/16/2010
	GW133CP	JA56687-5	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	9/16/2010
	GW133DP	JA56687-6	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	9/16/2010
	GW133EP	JA56687-7	70.0 - 73.0	VOC+10, MTBE, TBA	Hydro-punch	9/16/2010
	GW135P	JA55107-29	13.0 - 16.0	VOC+10, MTBE, TBA	Hydro-punch	8/27/2010
	GW135AAP	JA55107-7	20.0 - 23.0	VOC+10, MTBE, TBA	Hydro-punch	8/26/2010
CW125	GW135AP	JA55107-8	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	8/26/2010
GW135	GW135BP	JA55107-9	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	8/26/2010
	GW135CP	JA55107-10	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	8/26/2010
	GW135DU	JA55107-20	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	8/26/2010
	GW136P	JA56177-1	12.0 - 15.0	VOC+10, MTBE, TBA	Hydro-punch	9/13/2010
	GW136AAP	JA56177-2	20.0 - 23.0	VOC+10, MTBE, TBA	Hydro-punch	9/13/2010
	GW136AU	JA56177-13	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	9/13/2010
CW126	GW136BP	JA56177-4	40.0 42.0	VOC. 10 MEDE TD A	Hardan	0/12/2010
GW136	GW136DUPU	JA56177-18	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	9/13/2010
	GW136CP	JA56177-5	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	9/13/2010
	GW136DP	JA56177-6	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	9/13/2010
	GW136EU	JA56177-17	70.0 - 73.0	VOC+10, MTBE, TBA	Hydro-punch	9/13/2010

- Sample depth is reported in feet below ground surface (ft bgs).
 NA= Not Applicable
- VOC = Volatile Organic Compounds (VOCs)+10 (search for 10 non-target tentatively identified compounds (TICS))
 MTBE = Methyl Tert Butyl Ether
 TBA =Tertiary Butyl Alcohol

Joan's Cleaners

Tabernacle Township, New Jersey

Shallow Groundwater Screening Sample Summary Table

Location ID	Sample ID	Lab ID	Sample Depth ft bgs	Analytical Parameters	Sampling Method	Date
	GW137P	JA56090-1	12.0 - 15.0	VOC+10, MTBE, TBA	Hydro-punch	9/10/2010
	GW137AAP	JA56090-2	20.0 - 23.0	VOC+10, MTBE, TBA	Hydro-punch	9/10/2010
	GW137AP	JA56090-3	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	9/10/2010
GW137	GW137BP	JA56090-4	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	9/10/2010
	GW137CP	JA56090-5	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	9/10/2010
	GW137DP	JA56090-6	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	9/10/2010
	GW137EP	JA56090-7	70.0 - 73.0	VOC+10, MTBE, TBA	Hydro-punch	9/10/2010
	GW138P	JA55790-1	12.0 - 15.0	VOC+10, MTBE, TBA	Hydro-punch	9/7/2010
	GW138AAU	JA55790-11	20.0 - 23.0	VOC+10, MTBE, TBA	Hydro-punch	9/7/2010
	GW138AP	JA55790-3	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	9/7/2010
GW138	GW138BP	JA55790-4	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	9/7/2010
	GW138CU	JA55790-14	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	9/7/2010
	GW138DUPP	JA55790-7	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	9/7/2010
	GW138DU	JA55790-15	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	9/7/2010
	GW139P	JA55951-1	12.0 - 15.0	VOC+10, MTBE, TBA	Hydro-punch	9/8/2010
	GW139AAP	JA55951-2	20.0 - 23.0	VOC+10, MTBE, TBA	Hydro-punch	9/8/2010
GW139	GW139AU	JA55951-11	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	9/8/2010
GW 139	GW139BP	JA55951-4	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	9/8/2010
	GW139CP	JA55951-5	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	9/8/2010
	GW139DU	JA55951-14	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	9/8/2010
	GW143P	JA55639-1	10.0 - 13.0	VOC+10, MTBE, TBA	Hydro-punch	9/2/2010
	GW143AAU	JA55639-14	20.0 - 23.0	VOC+10, MTBE, TBA	Hydro-punch	9/2/2010
	GW143AU	JA55639-15	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	9/2/2010
GW143	GW143BP	JA55639-4	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	9/2/2010
	GW143CP	JA55639-5	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	9/2/2010
	GW143DP	JA55639-6	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	9/2/2010
	GW143EP	JA55639-7	70.0 - 73.0	VOC+10, MTBE, TBA	Hydro-punch	9/2/2010
	GW144P	JA55639-10	12.0 - 15.0	VOC+10, MTBE, TBA	Hydro-punch	9/3/2010
	GW144AAP	JA55639-11	20.0 - 23.0	VOC+10, MTBE, TBA	Hydro-punch	9/3/2010
CW144	GW144AP	JA55639-12	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	9/3/2010
GW144	GW144BP	JA55639-25	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	9/3/2010
	GW144CU	JA55639-24	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	9/3/2010
	GW144DP	JA55639-27	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	9/3/2010

- Sample depth is reported in feet below ground surface (ft bgs).
 NA= Not Applicable
- VOC = Volatile Organic Compounds (VOCs)+10 (search for 10 non-target tentatively identified compounds (TICS))
 MTBE = Methyl Tert Butyl Ether
 TBA =Tertiary Butyl Alcohol

Joan's Cleaners

Tabernacle Township, New Jersey

Shallow Groundwater Screening Sample Summary Table

Location ID	Sample ID	Lab ID	Sample Depth ft bgs	Analytical Parameters	Sampling Method	Date
	GW145	JA52764-1	12.0 - 15.0	VOC+10, MTBE, TBA	Hydro-punch	7/30/2010
	GW145AA	JA52764-2	20.0 - 23.0	VOC+10, MTBE, TBA	Hydro-punch	7/30/2010
	GW145A	JA52764-3	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	7/30/2010
GW145	GW145B	JA52764-4	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	7/30/2010
GW 143	GW145C	JA52764-5	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	7/30/2010
	GW145D	JA52764-6	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	7/30/2010
	GW145DUP	JA52764-8	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	7/30/2010
	GW145E	JA52764-7	70.0 - 73.0	VOC+10, MTBE, TBA	Hydro-punch	7/30/2010
	GW146P	JA57240-9	9.0 - 12.0	VOC+10, MTBE, TBA	Hydro-punch	9/24/2010
	GW146AAP	JA57240-10	20.0 - 23.0	VOC+10, MTBE, TBA	Hydro-punch	9/24/2010
GW146	GW146AP	JA57240-11	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	9/24/2010
GW 140	GW146BP	JA57240-12	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	9/24/2010
	GW146CP	JA57240-25	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	9/24/2010
	GW146DU	JA57240-24	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	9/24/2010
	GW147U	JA57240-13	9.0 - 12.0	VOC+10, MTBE, TBA	Hydro-punch	9/23/2010
	GW147AAU	JA57240-14	20.0 - 23.0	VOC+10, MTBE, TBA	Hydro-punch	9/23/2010
GW147	GW147AP	JA57240-3	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	9/23/2010
GW147	GW147BP	JA57240-4	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	9/23/2010
	GW147CP	JA57240-5	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	9/23/2010
	GW147DU	JA57240-18	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	9/23/2010
	GW148	JA53433-1	8.0 - 11.0	VOC+10, MTBE, TBA	Hydro-punch	8/5/2010
	GW148AA	JA53433-2	20.0 - 23.0	VOC+10, MTBE, TBA	Hydro-punch	8/5/2010
	GW148A	JA53433-3	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	8/5/2010
GW148	GW148DUP	JA53433-7	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	8/5/2010
	GW148B	JA53433-4	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	8/5/2010
	GW148C	JA53433-5	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	8/5/2010
	GW148D	JA53433-6	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	8/5/2010
	GW149	JA53433-10	16.0 - 19.0	VOC+10, MTBE, TBA	Hydro-punch	8/5/2010
	GW149A	JA53433-11	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	8/5/2010
GW149	GW149B	JA53433-12	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	8/5/2010
	GW149C	JA53433-13	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	8/5/2010
	GW149D	JA53433-14	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	8/6/2010

- Sample depth is reported in feet below ground surface (ft bgs).

 NA= Not Applicable

 VOC = Volatile Organic Compounds (VOCs)+10 (search for 10 non-target tentatively identified compounds (TICS))

 MTBE = Methyl Tert Butyl Ether

 TBA = Tertiary Butyl Alcohol

Joan's Cleaners

Tabernacle Township, New Jersey

Shallow Groundwater Screening Sample Summary Table

Location ID	Sample ID	Lab ID	Sample Depth ft bgs	Analytical Parameters	Sampling Method	Date
	GW150	JA53118-1	16.0 - 19.0	VOC+10, MTBE, TBA	Hydro-punch	8/3/2010
	GW150A	JA53118-2	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	8/3/2010
GW150	GW150B	JA53118-3	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	8/3/2010
GW130	GW150C	JA53118-4	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	8/3/2010
	GW150D	JA53118-5	60.0 - 63.0	VOC+10, MTBE, TBA	Hydro-punch	8/3/2010
	GW150E	JA53118-6	67.0 - 70.0	VOC+10, MTBE, TBA	Hydro-punch	8/3/2010
	GW151	JA53433-15	16.0 - 19.0	VOC+10, MTBE, TBA	Hydro-punch	8/6/2010
	GW151A	JA53433-16	30.0 - 33.0	VOC+10, MTBE, TBA	Hydro-punch	8/6/2010
GW151	GW151B	JA53433-17	40.0 - 43.0	VOC+10, MTBE, TBA	Hydro-punch	8/6/2010
	GW151C	JA53433-18	50.0 - 53.0	VOC+10, MTBE, TBA	Hydro-punch	8/6/2010
	GW151D	JA53433-19	56.0 - 59.0	VOC+10, MTBE, TBA	Hydro-punch	8/6/2010
SB03	TWP02	JA51915-6	10.0 - 20.0	VOC+10, MTBE, TBA	Teflon Tubing	7/20/2010
SB05	TWP01	JA51915-3	10.0 - 20.0	VOC+10, MTBE, TBA	Teflon Tubing	7/20/2010

- Notes:
 Sample depth is reported in feet below ground surface (ft bgs).
 NA= Not Applicable
- VOC = Volatile Organic Compounds (VOCs)+10 (search for 10 non-target tentatively identified compounds (TICS))
 MTBE = Methyl Tert Butyl Ether
- TBA =Tertiary Butyl Alcohol

Joan's Cleaners

Tabernacle Township, New Jersey

Shallow Groundwater Screening Sample Summary Table

Location ID	Sample ID	Lab ID	Sample Depth ft bgs	Analytical Parameters	Sampling Method	Date
			QA/Q0	C SAMPLES		
	FB01	JA52001-8	-	VOC+10, MTBE, TBA	NA	7/21/2010
-	FB02	JA52179-7	-	VOC+10, MTBE, TBA	NA	7/22/2010
-	FB03	JA52208-7	-	VOC+10, MTBE, TBA	NA	7/23/2010
-	FB04	JA52577-7	-	VOC+10, MTBE, TBA	NA	7/24/2010
-	FB05	JA52764-9	-	VOC+10, MTBE, TBA	NA	7/30/2010
-	FB06	JA53118-7	-	VOC+10, MTBE, TBA	NA	8/3/2010
-	FB07	JA53433-8	-	VOC+10, MTBE, TBA	NA	8/5/2010
-	FB08	JA53433-20	-	VOC+10, MTBE, TBA	NA	8/6/2010
-	FB09	JA53742-8	-	VOC+10, MTBE, TBA	NA	8/10/2010
-	FB10	JA54003-24	-	VOC+10, MTBE, TBA	NA	8/12/2010
-	FB11	JA54003-36	-	VOC+10, MTBE, TBA	NA	8/13/2010
-	FB12	JA54219-8	-	VOC+10, MTBE, TBA	NA	8/17/2010
-	FB13	JA54407-7	-	VOC+10, MTBE, TBA	NA	8/18/2010
	FB14	JA54548-7	-	VOC+10, MTBE, TBA	NA	8/19/2010
-	FB15	JA54634-9	-	VOC+10, MTBE, TBA	NA	8/23/2010
	FB16	JA54749-9	-	VOC+10, MTBE, TBA	NA	8/24/2010
Field Blanks	FB17	JA55107-5	-	VOC+10, MTBE, TBA	NA	8/26/2010
-	FB18	JA55107-30	-	VOC+10, MTBE, TBA	NA	8/27/2010
-	FB19	JA55343-7	-	VOC+10, MTBE, TBA	NA	8/30/2010
-	FB20	JA55639-8	-	VOC+10, MTBE, TBA	NA	9/2/2010
-	FB21	JA55639-28	-	VOC+10, MTBE, TBA	NA	9/3/2010
-	FB22	JA55790-8	-	VOC+10, MTBE, TBA	NA	9/7/2010
-	FB23	JA55951-7	-	VOC+10, MTBE, TBA	NA	9/8/2010
-	FB24	JA56090-8	-	VOC+10, MTBE, TBA	NA	9/10/2010
-	FB25	JA56177-9	-	VOC+10, MTBE, TBA	NA	9/17/2010
	FB26	JA56687-8	-	VOC+10, MTBE, TBA	NA	9/16/2010
	FB27	JA56687-29	-	VOC+10, MTBE, TBA	NA	9/17/2010
	FB28	JA57091-9	-	VOC+10, MTBE, TBA	NA	9/22/2010
-	FB29	JA57240-7	-	VOC+10, MTBE, TBA	NA	9/23/2010
	FB30	JA57240-27	-	VOC+10, MTBE, TBA	NA	9/24/2010
-	FB31	JA57429-7	-	VOC+10, MTBE, TBA	NA	9/27/2010
-	FB32	JA57487-7	-	VOC+10, MTBE, TBA	NA	9/28/2010

- Sample depth is reported in feet below ground surface (ft bgs).
 NA= Not Applicable
- VOC = Volatile Organic Compounds (VOCs)+10 (search for 10 non-target tentatively identified compounds (TICS))
 MTBE = Methyl Tert Butyl Ether
- TBA =Tertiary Butyl Alcohol

Joan's Cleaners

Tabernacle Township, New Jersey

Shallow Groundwater Screening Sample Summary Table

Location ID	Sample ID	Lab ID	Sample Depth ft bgs	Analytical Parameters	Sampling Method	Date
			QA/Q0	CSAMPLES		
	FB33	JA57758-7	-	VOC+10, MTBE, TBA	NA	10/1/2010
	FB34	JA57961-8	-	VOC+10, MTBE, TBA	NA	10/4/2010
Field Blanks	FB35	JA58104-8	-	VOC+10, MTBE, TBA	NA	10/5/2010
	FB36	JA58277-8	-	VOC+10, MTBE, TBA	NA	10/6/2010
-	FB37	JA58277-28	-	VOC+10, MTBE, TBA	NA	10/7/2010
	TB01	JA51915-7	-	VOC+10, MTBE, TBA	NA	7/20/2010
-	TB02	JA52001-9	-	VOC+10, MTBE, TBA	NA	7/21/2010
-	TB03	JA52179-8	-	VOC+10, MTBE, TBA	NA	7/22/2010
-	TB04	JA52208-8	-	VOC+10, MTBE, TBA	NA	7/23/2010
-	TB05	JA52577-8	-	VOC+10, MTBE, TBA	NA	7/24/2010
-	TB06	JA52764-10	-	VOC+10, MTBE, TBA	NA	7/27/2010
-	TB07	JA53118-8	-	VOC+10, MTBE, TBA	NA	8/3/2010
-	TB08	JA53433-9	-	VOC+10, MTBE, TBA	NA	7/27/2010
-	TB09	JA53742-9	-	VOC+10, MTBE, TBA	NA	8/10/2010
-	TB10	JA54003-15	-	VOC+10, MTBE, TBA	NA	8/12/2010
-	TB11	JA54219-9	-	VOC+10, MTBE, TBA	NA	8/17/2010
	TB12	JA54407-8	-	VOC+10, MTBE, TBA	NA	8/18/2010
	TB13	JA54548-8	-	VOC+10, MTBE, TBA	NA	8/19/2010
Trip Blanks	TB14	JA54634-10	-	VOC+10, MTBE, TBA	NA	8/23/2010
-	TB15	JA54749-10	-	VOC+10, MTBE, TBA	NA	8/24/2010
-	TB16	JA55107-6	-	VOC+10, MTBE, TBA	NA	8/26/2010
-	TB17	JA55343-8	-	VOC+10, MTBE, TBA	NA	8/30/2010
	TB18	JA55639-9	-	VOC+10, MTBE, TBA	NA	9/3/2010
	TB19	JA55790-9	-	VOC+10, MTBE, TBA	NA	9/7/2010
	TB20	JA55951-8	-	VOC+10, MTBE, TBA	NA	9/8/2010
	TB21	JA56090-9	-	VOC+10, MTBE, TBA	NA	9/10/2010
-	TB22	JA56177-10	-	VOC+10, MTBE, TBA	NA	9/13/2010
	TB23	JA56687-9	-	VOC+10, MTBE, TBA	NA	9/17/2010
	TB24	JA57091-10	-	VOC+10, MTBE, TBA	NA	9/22/2010
	TB25	JA57240-8	-	VOC+10, MTBE, TBA	NA	9/24/2010
	TB26	JA57429-8	-	VOC+10, MTBE, TBA	NA	9/27/2010
	TB27	JA57487-8	-	VOC+10, MTBE, TBA	NA	9/28/2010

- Notes:
 Sample depth is reported in feet below ground surface (ft bgs).
 NA= Not Applicable
- VOC = Volatile Organic Compounds (VOCs)+10 (search for 10 non-target tentatively identified compounds (TICS))
 MTBE = Methyl Tert Butyl Ether
 TBA =Tertiary Butyl Alcohol

Joan's Cleaners

Tabernacle Township, New Jersey

Shallow Groundwater Screening Sample Summary Table

Location	Sample ID	Lab ID	Sample Depth	Analytical Parameters	Sampling Method	Date
			QA/Q	C SAMPLES		
	TB28	JA57758-8	-	VOC+10, MTBE, TBA	NA	10/1/2010
Trip Blanks	TB29	JA57961-9	-	VOC+10, MTBE, TBA	NA	10/4/2010
тпр Бинкз	TB30	JA58104-9	-	VOC+10, MTBE, TBA	NA	10/5/2010
	TB31	JA58277-9	-	VOC+10, MTBE, TBA	NA	10/7/2010

- Sample depth is reported in feet below ground surface (ft bgs).NA= Not Applicable
- VOC = Volatile Organic Compounds (VOCs)+10 (search for 10 non-target tentatively identified compounds (TICS))
 MTBE = Methyl Tert Butyl Ether
 TBA =Tertiary Butyl Alcohol

Joan's Cleaners Tabernacle Township, New Jersey Shallow Groundwater Screening Sampling Results Table

	I ID	GD 0 F	CD 02	1			CHILADA			1				CHILADA				1			CHILAGO			1
	Location ID	SB05	SB03	CWILLIA	CWIIOII	CWILLIA	GW101	CWILLIAM	CWILLIA	CWILLIA	GWIIOO	CIVII OO I	CWILLOAD	GW102	CWILLOAD	CWILDON	CWILLOOF	CWILLIAND	GWHAADD	CWITTOGGW	GW103	CWILLDER	CIVILOREIX	CHILLOADAIDD
	Sample ID	TWP01	TWP02	GW101	GW101A	GW101B	GW101C	GW101D	GW101E	GW101F	GW102	GW102A	GW102B	GW102C	GW102D	GW102E	GW102F	GW103AP	GW103BP	GW103CU	GW103DU	GW103EP		GW103DUPP
	Lab ID	JA51915-3	JA51915-6	JA52001-1	JA52001-2	JA52001-3	JA52001-4	JA52001-5	JA52001-6	JA52001-7	JA52179-1	JA52179-2	JA52179-3	JA52179-4	JA52179-5	JA52179-6	JA52179-9		JA57487-2		JA57487-13	JA57487-5		JA57487-9
	Sample Date	7/20/2010	7/20/2010	7/21/2010	7/21/2010	7/21/2010	7/21/2010	7/21/2010	7/21/2010	7/21/2010	7/22/2010	7/22/2010	7/22/2010	7/22/2010	7/22/2010	7/22/2010	7/22/2010	9/28/2010	9/28/2010	9/28/2010	9/28/2010	9/28/2010	9/28/2010	9/28/2010
Sa	mple Interval (ft)	10-20	10-20	16-19	30-33	40-43	50-53	60-63	70-73	80-83	16-19	30-33	40-43	50-53	60-63	70-73	80-83	30-33	40-43	50-53	60-63	70-73	80)-83
Analyte	GWQS																							
Volatile Organic Compo	unds																							
1,1,2,2-Tetrachloroethane	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Acetone	6000	10 U	10 U	10 U	10 U	10 U	10.1	10 U	10 U	10 U	10 U	10 U	10 U	10 U										
Benzene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.27 J	1 U	0.35 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	70	1 U	0.65 J	1 U	1 U	0.51 J	0.36 J	0.66 J	1 U	1 U	1 U	0.43 J	0.44 J	3.4	0.28 J	0.4 J	1 U	1 U	0.34 J	1	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	700	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.34 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
m,p-Xylene	NC	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.95 J	1 U	1 U	1 U	1 U	0.29 J	1 U	0.28 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl Tert Butyl Ether	70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.29 J	0.29 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	3	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Tert Butyl Alcohol	100	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U										
Tetrachloroethene	1	1 U	1 U	0.61 J	0.7 J	1 U	1 U	1 U	1 U	1 U	47.2	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	600	1 U	1 U	1 U	1 U	1 U	1 U	0.32 J	0.3 J	0.39 J	1 U	1 U	1 U	1 U	0.55 J	0.51 J	0.7 J	1 U	1 U	1 U	1 U	1 U	0.33 J	0.39 J
Trichloroethene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.25 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylene (total)	1000	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.2	1 U	1 U	1 U	1 U	0.29 J	1 U	0.28 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U

-																				•						
	Location ID			GV	V105					G'	W106					GW	107						GW108			
	Sample ID	GW105	GW105A	GW105B	GW105C	GW105D	GW105E	GW106AP	GW106BU	GW106CU	GW106DUPP	GW106DU	GW106EP	GW107A	GW107B	GW107C	GW107D	GW107E	GW107F	GW108AAP	GW108AU	GW108BP	GW108CP	GW108DP	GW108EP	GW108FU
	Lab ID	JA52577-1	JA52577-2	JA52577-3	JA52577-4	JA52577-5	JA52577-6	JA58277-10	JA58277-21	JA58277-22	JA58277-27	JA58277-23	JA58277-26	JA52208-1	JA52208-2	JA52208-3	JA52208-4	JA52208-5	JA52208-6	JA58277-1	JA58277-14	JA58277-3	JA58277-4	JA58277-5	JA58277-6	JA58277-19
	Sample Date	7/28/2010	7/28/2010	7/28/2010	7/28/2010	7/28/2010	7/28/2010	10/7/2010	10/7/2010	10/7/2010	10/7/2010	10/7/2010	10/7/2010	7/23/2010	7/23/2010	7/23/2010	7/23/2010	7/23/2010	7/23/2010	10/6/2010	10/6/2010	10/6/2010	10/6/2010	10/6/2010	10/6/2010	10/6/2010
Samp	ple Interval (ft)	12-15	30-33	40-43	50-53	60-63	70-73	30-33	40-43	5	0-53	60-63	70-73	30-33	40-43	50-53	60-63	70-73	76-79	23-26	30-33	40-43	50-53	60-63	70-73	76-79
Analyte	GWQS		•	•	•	•	•		•	•				•		•	•				•	•			•	
Volatile Organic Compoun	nds																									
1,1,2,2-Tetrachloroethane	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Acetone	6000	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U						
Benzene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.36 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.32 J	1 U	0.31 J	0.35 J	1 U	1 U
cis-1,2-Dichloroethene	70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	700	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
m,p-Xylene	NC	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl Tert Butyl Ether	70	1 U	1 U	1 U	0.8 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	3	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Tert Butyl Alcohol	100	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U						
Tetrachloroethene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	600	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.34 J	0.36 J	1 U	1 U	1 U	1 U	1 U	0.51 J	1 U	0.35 J	1 U	1 U	1 U	0.31 J	0.31 J
Trichloroethene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylene (total)	1000	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

Notes:
All results are presented in ug/l (ppb)
GWQS = NJDEP Ground Water Quality Standards, July 2008
J = Estimated Value
U = Non Detection

Bold = Concentration above the method detection limit

Contaminent of concern above detection limit.

Joan's Cleaners

Tabernacle Township, New Jersey Shallow Groundwater Screening Sampling Results Table

	Location ID				G	W109							GW110						G	W111					GW112		
		GW109AAP		_	_	GW109DUPP																GW111EU	GW112AP		GW112CP		
	Lab ID	JA58104-1	JA58104-2	JA58104-3	JA58104-4	JA58104-17	JA58104-5	JA58104-15	JA58104-16	JA57961-1	JA57961-2	JA57961-12	JA57961-4	JA57961-14	JA57961-6	JA57961-16	JA57758-1	JA57758-10	JA57758-11	JA57758-4	JA57758-13	JA57758-14	JA55343-1	JA55343-2	JA55343-3	JA55343-9	JA55343-4
	Sample Date	10/5/2010	10/5/2010	10/5/2010	10/5/2010	10/5/2010	10/5/2010	10/5/2010	10/5/2010	10/4/2010	10/4/2010	10/4/2010	10/4/2010	10/4/2010	10/4/2010	10/4/2010	10/1/2010	10/1/2010	10/1/2010	10/1/2010	10/1/2010	10/1/2010	8/30/2010	8/30/2010	8/30/2010	8/30/2010	8/30/2010
	Sample Interval (ft)	23-26	30-33	40-43		50-53	60-63	70-73	76-79	20-23	30-33	40-43	50-53	60-63	70-73	80-83	20-23	30-33	40-43	50-53	60-63	70-73	30-33	40-43	50	-53	60-63
Analyte	GWQS																										
Volatile Organic Con	npounds																										
1,1,2,2-Tetrachloroetl	ane 1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Acetone	6000	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U				
Benzene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.26 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	70	0.33 J	1 U	1 U	0.59 J	0.55 J	0.68 J	1 U	1 U	1.1	1 U	0.25 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.88 J	1 U	1 U	0.28 J	1 U	0.66 J
cis-1,2-Dichloroethen	e 70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	700	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
m,p-Xylene	NC	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.56 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl Tert Butyl Eth	er 70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.52 J	0.78 J	0.71 J	1 U
Methylene chloride	3	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Tert Butyl Alcohol	100	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U				
Tetrachloroethene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	4.4	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	600	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.41 J	1 U	1 U	1 U	1 U	1 U	1 U	0.34 J	0.51 J	1 U	0.72 J	0.64 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylene (total)	1000	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.56 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

																1							
	Location ID	GW	112EP			GW1	115					GW	116						G	W118			
	Sample ID	GW112EP	GW112FP	GW115P	GW115AAP	GW115AP	GW115BP	GW115CP	GW115DU	GW116AA	GW116AP	GW116BU	GW116CU	GW116DP	GW116EU	GW118P	GW118AAU	GW118AP	GW118BP	GW118CU	GW118DUPU	GW118DU	GW118EP
	Lab ID	JA55343-5	JA55343-6	JA55107-12	JA55107-24	JA55107-25	JA55107-26	JA55107-27	JA55107-33	JA57429-1	JA57429-2	JA57429-11	JA57429-12	JA57429-5	JA57429-14	JA57091-1	JA57091-12	JA57091-3	JA57091-4	JA57091-15	JA57091-18	JA57091-16	JA57091-7
	Sample Date	8/30/2010	8/30/2010	8/27/2010	8/27/2010	8/27/2010	8/27/2010	8/27/2010	8/27/2010	9/27/2010	9/27/2010	9/27/2010	9/27/2010	9/27/2010	9/27/2010	9/22/2010	9/22/2010	9/22/2010	9/22/2010	9/22/2010	9/22/2010	9/22/2010	9/22/2010
Sam	ple Interval (ft)	70-73	80-83	13-16	20-23	30-33	40-43	50-53	60-63	20-23	30-33	40-43	50-53	60-63	70-73	13-16	20-23	30-33	40-43	5	0-53	60-63	70-73
Analyte	GWQS																						
Volatile Organic Compour	nds																						
1,1,2,2-Tetrachloroethane	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Acetone	6000	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Benzene	1	1 U	0.30 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	70	0.35 J	1 U	1 U	1 U	1 U	1 U	1.2	1 U	1 U	1 U	1.3	1.8	1 U	1 U	1 U	1 U	1 U	1.3	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.46 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	700	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
m,p-Xylene	NC	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl Tert Butyl Ether	70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	3.6	1 U	1 U	1 U	1 U
Methylene chloride	3	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Tert Butyl Alcohol	100	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U
Tetrachloroethene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.9	0.64	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	600	1 U	0.44 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylene (total)	1000	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

Notes:
All results are presented in ug/l (ppb)
GWQS = NJDEP Ground Water Quality Standards, July 2008
J = Estimated Value
U = Non Detection

Bold = Concentration above the method detection limit

Contaminent of Concern above detection limit.

Joan's Cleaners

Tabernacle Township, New Jersey Shallow Groundwater Screening Sampling Results Table

	Location ID				GW119							GW120						GW122						GW123			
	Sample ID	GW119P	GW110AAD	GW119AU	GW119RP	GW110CH	GW119DU	GW110EII	GW120P	GW120AAP	GW120AP		GW120CP	GW120DII	GW120ED	GW122AAP	CW122AD	GW122BU	GW122CP	GW122DU	GW123P	GW123AAP	GW123AP		CW122DD	GW123CP	GW123DB
	Lab ID	01111/1		011117110	O 11 11/DI	0	0	JA56687-31		JA53742-2	JA53742-3	JA53742-4	01112001	01112020		JA53742-10		JA54003-31		JA54003-35	JA54003-2	JA54003-4	JA54003-6				JA54003-12
	Sample Date	9/17/2010	_		9/17/2010	9/17/2010		9/17/2010	8/10/2010	8/10/2010	8/10/2010	8/10/2010	8/10/2010	8/10/2010			8/13/2010	8/13/2010		8/13/2010	8/12/2010	8/12/2010	8/12/2010		8/12/2010	8/12/2010	8/12/2010
,	Sample Interval (ft)	13-16	20-23	30-33	40-43	50-53	60-63	68-71	8-11	20-23	30-33	40-43	50-53	60-63	70-73	20-23	30-33	40-43	50-53	60-63	13-16	20-23		0,12,2010	40-43	50-53	60-63
Analyte	GWOS	13-10	20-23	30-33	40-43	30-33	00-03	00-71	0-11	20-23	30-33	40-43	30-33	00-03	70-73	20-23	30-33	40-43	30-33	00-03	13-10	20-23	5.	, 55	40-43	30-33	00-03
Volatile Organic Comp	~																										
1,1,2,2-Tetrachloroetha		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Acetone	6000	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	9.8 J	10 U	10 U	10 U	10 U	16.6	10 U	10 U	10 U	10 U	8.6 J	10 U	4.6 J	10 U	10 U	10 U	10 U	4.8 J
Benzene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.30 J
Chloroform	70	1 U	1 U	1 U	1.5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.64 J	1 U	1 U	0.57 J	1 U	1 U	1 U	1 U	1 U	1 U	0.71 J	0.28 J
cis-1,2-Dichloroethene	70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.32 J
Ethylbenzene	700	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
m,p-Xylene	NC	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl Tert Butyl Ether	70	1 U	1 U	1 U	3.2	1 U	1 U	1 U	1 U	1 U	1 U	3.8	1 U	1 U	0.52 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	3	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Tert Butyl Alcohol	100	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U
Tetrachloroethene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.49 J
Toluene	600	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.44 J	1 U	1 U	1 U	1 U	0.37 J	1 U	1 U	1 U	1 U	1 U	1 U	0.54 J
Trichloroethene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylene (total)	1000	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

	Location ID			GV	V124						GW126						GW	127					GV	V128		
	Sample ID	GW124P	GW124AAU	GW124AP	GW124BP	GW124CP	GW124DP	GW126P	GW126AAP	GW126AP	GW126BP	GW126CP	GW126DP	GW126EP	GW127P	GW127AP	GW127BP	GW127CP	GW127DP	GW127EP	GW128P	GW128AP	GW128BP	GW128CU	GW128DU	GW128EP
	Lab ID	JA54003-17	JA54003-18	JA54003-21	JA54003-23	JA54003-26	JA54003-28	JA54219-1	JA54219-2	JA54219-3	JA54219-4	JA54219-5	JA54219-6	JA54219-7	JA54407-1	JA54407-2	JA54407-3	JA54407-4	JA54407-5	JA54407-6	JA54548-1	JA54548-2	JA54548-3	JA54548-12	JA54548-13	JA54548-6
	Sample Date	8/12/2010	8/12/2010	8/12/2010	8/12/2010	8/13/2010	8/13/2010	8/17/2010	8/17/2010	8/17/2010	8/17/2010	8/17/2010	8/17/2010	8/17/2010	8/18/2010	8/18/2010	8/18/2010	8/18/2010	8/18/2010	8/18/2010	8/19/2010	8/19/2010	8/19/2010	8/19/2010	8/19/2010	8/19/2010
Se	ample Interval (ft)	13-16	20-23	30-33	40-43	50-53	60-63	13-16	20-23	30-33	40-43	50-53	60-63	68-71	15-18	20-23	30-33	40-43	50-53	60-63	15-18	30-33	40-43	50-53	60-63	70-73
Analyte	GWQS		-		-	-					-	-			-		-		-							
Volatile Organic Compo	ounds	-																								
1,1,2,2-Tetrachloroethan	ie 1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Acetone	6000	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U					
Benzene	1	1 U	1 U	1 U	1 U	1 U	0.29 J	1 U	1 U	1 U	1 U	1 U	1 U	0.38 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	70	1 U	1 U	1 U	1 U	0.77 J	1 U	1 U	1 U	0.50 J	1 U	1 U	0.31 J	1 U	0.75 J	1 U	1 U	1 U	0.28 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2.7	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	700	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
m,p-Xylene	NC	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl Tert Butyl Ether	70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1	0.59 J	1 U	1 U	1 U	1 U	0.57 J	1 U	1 U	1 U	1 U	1 U	1 U	4.1	1 U	0.26 J
Methylene chloride	3	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Tert Butyl Alcohol	100	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U					
Tetrachloroethene	1	1 U	1 U	1 U	1 U	1 U	4.6	1 U	1 U	1 U	1.6	2.5	11.7	1.1	1 U	1 U	13.6	35.9	3.2	0.40 J	1 U	0.80 J	10.7	12	1 U	1 U
Toluene	600	1 U	1 U	0.32 J	0.32 J	1 U	0.49 J	1 U	1 U	1 U	1 U	0.41 J	1 U	0.59 J	1 U	1 U	0.33 J	1 U	1 U	0.36 J	1 U	0.31 J	0.40 J	1 U	1 U	0.42 J
Trichloroethene	1	1 U	1 U	1 U	1 U	1 U	0.69 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylene (total)	1000	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

Notes:
All results are presented in ug/l (ppb)
GWQS = NJDEP Ground Water Quality Standards, July 2008
J = Estimated Value
U = Non Detection

Bold = Concentration above the method detection limit
Contaminent of concern above detection limit.
Concentration exceeds GWQS

Joan's Cleaners Tabernacle Township, New Jersey Shallow Groundwater Screening Sampling Results Table

	Location ID					GW129								GW	/131					GW1	32	
	Sample ID	GW129P	GW129AAP	GW129AP	GW129RP	GW129DUPU	GW129CP	GW129CU	GW129DU	GW129FP	GW131P	GW131AAP	GW131AP	GW131BU	GW131CP	GW131DU	GW131EU	GW131FP	GW132AAP	GW132AP		GW132CP
		JA54634-1	JA54634-2			JA54634-20	JA54634-5				JA54749-1	JA54749-2		JA54749-13		JA54749-15			JA55107-1		JA55107-3	
	Sample Date	8/23/2010	8/23/2010	8/23/2010	8/23/2010	8/23/2010	8/23/2010	8/23/2010	8/23/2010	8/23/2010	8/24/2010	8/24/2010	8/24/2010	8/24/2010	8/24/2010	8/24/2010	8/24/2010	8/24/2010	8/26/2010	8/26/2010	8/26/2010	8/26/2010
Samp	ole Interval (ft)	12-15	20-23	30-33		0-43	50-		60-63	80-83	13-16	20-23	30-33	40-43	50-53	60-63	70-73	80-83	20-23	30-33	40-43	50-53
Analyte	GWQS				L	L.																,
Volatile Organic Compoun	ds																					
1,1,2,2-Tetrachloroethane	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Acetone	6000	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	4.5 J	10 U	10 U	10 U	9.5 J	10 U	10 U	10 U	10 U				
Benzene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.29 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	4.3	0.23 J	1 U	0.26 J	1 U	1 U	1 U	1 U	1.1	1 U	7.4	0.60 J
cis-1,2-Dichloroethene	70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	700	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
m,p-Xylene	NC	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl Tert Butyl Ether	70	1 U	1 U	1.1	1.2	1.1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.7	0.40 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	3	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Tert Butyl Alcohol	100	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U				
Tetrachloroethene	1	1 U	1 U	0.50 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	600	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.58 J	1 U	1 U	1 U	1 U	0.38 J	1 U	1 U	0.32 J	1 U	1 U	1 U	1 U
Trichloroethene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylene (total)	1000	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

i v.																						
	Location ID				GW133						GW	135						G	W136			
	Sample ID	GW133P	GW133AAU	GW133AU	GW133BP	GW133CP	GW133DP	GW133EP	GW135P	GW135AAP	GW135AP	GW135BP	GW135CP	GW135DU	GW136P	GW136AA	GW136AU	GW136BP	GW136DUPU	GW136CP	GW136DP	GW136EU
	Lab ID	JA56687-1	JA56687-14	JA56687-15	JA56687-4	JA56687-5	JA56687-6	JA56687-7	JA55107-29	JA55107-7	JA55107-8	JA55107-9	JA55107-10	JA55107-20	JA56177-1	JA56177-2	JA56177-13	JA56177-4	JA56177-18	JA56177-5	JA56177-6	JA56177-17
	Sample Date	9/16/2010	9/16/2010	9/16/2010	9/16/2010	9/16/2010	9/16/2010	9/16/2010	8/27/2010	8/26/2010	8/26/2010	8/26/2010	8/26/2010	8/26/2010	9/13/2010	9/13/2010	9/13/2010	9/13/2010	9/13/2010	9/13/2010	9/13/2010	9/13/2010
Samp	ole Interval (ft)	12-15	20-23	30-33	40-43	50-53	60-63	70-73	13-16	20-23	30-33	40-43	50-53	60-63	12-15	20-23	30-33	4	10-43	50-53	60-63	70-73
Analyte	GWQS				-					-			-									
Volatile Organic Compour	ds																					
1,1,2,2-Tetrachloroethane	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Acetone	6000	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Benzene	1	1 U	1 U	1 U	1 U	1 U	1 U	0.26 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	70	0.72 J	1 U	1 U	0.59 J	0.32 J	1 U	1 U	1 U	1.3	1 U	1 U	0.71 J	1 U	6.1	0.64	1 U	0.60	0.34	0.33	1 U	1 U
cis-1,2-Dichloroethene	70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.3	28.4	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	700	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
m,p-Xylene	NC	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl Tert Butyl Ether	70	1 U	1 U	0.34 J	1.6	0.24 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	3	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Tert Butyl Alcohol	100	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U
Tetrachloroethene	1	1 U	1 U	1 U	2.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	3.8	42.1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	600	1 U	1 U	1 U	1 U	1 U	1 U	0.48 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylene (total)	1000	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

Notes:
All results are presented in ug/l (ppb)
GWQS = NJDEP Ground Water Quality Standards, July 2008
J = Estimated Value
U = Non Detection

Bold = Concentration above the method detection limit
Contaminent of concern above detection limit.
Concentration exceeds GWQS

Joan's Cleaners Tabernacle Township, New Jersey Shallow Groundwater Screening Sampling Results Table

	Location ID				GW137							GW138						GV	V139		$\overline{}$
	Sample ID	GW137P	GW137AAP	GW137AP	GW137BP	GW137CP	GW137DP	GW137EP	GW138P	GW138AAU	GW138AP	GW138BP	GW138CU	GW138DUPP	GW138DU	GW139P	GW139AAP		GW139BP	GW139CP	GW139DU
	Lab ID	JA56090-1	JA56090-2	JA56090-3	JA56090-4	JA56090-5	JA56090-6	JA56090-7	JA55790-1	JA55790-11	JA55790-3		JA55790-14	JA55790-7	JA55790-15	JA55951-1	JA55951-2	JA55951-11	JA55951-4	JA55951-5	JA55951-14
	Sample Date	9/10/2010	9/10/2010	9/10/2010	9/10/2010	9/10/2010	9/10/2010	9/10/2010	9/7/2010	9/7/2010	9/7/2010	9/7/2010	9/7/2010	9/7/2010	9/7/2010	9/8/2010	9/8/2010	9/8/2010	9/8/2010	9/8/2010	9/8/2010
Sam	ole Interval (ft)	12-15	20-23	30-33	40-43	50-53	60-63	70-73	12-15	20-23	30-33	40-43		0-53	60-63	12-15	20-23	30-33	40-43	50-53	60-63
Analyte	GWQS												ı								
Volatile Organic Compour	nds																				
1,1,2,2-Tetrachloroethane	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Acetone	6000	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U								
Benzene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	70	1 U	1 U	0.35 J	0.63 J	1 U	1 U	1 U	0.26 J	0.75 J	0.52 J	1 U	1 U	1 U	0.30 J	0.89 J	0.47 J	1 U	3.7	0.34 J	1 U
cis-1,2-Dichloroethene	70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	4	6.7
Ethylbenzene	700	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
m,p-Xylene	NC	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl Tert Butyl Ether	70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	3	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Tert Butyl Alcohol	100	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U								
Tetrachloroethene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.3	3.1	60	62.2	7.8	1 U	1 U	1 U	1 U	35.9	196
Toluene	600	1 U	1 U	1 U	1 U	1 U	1 U	0.42 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.79 J	2.6
Vinyl chloride	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylene (total)	1000	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

	Location ID				GW143						GV	V144						GV	V145			
	Sample ID	GW143P	GW143AAU	J GW143AU	GW143BP	GW143CP	GW143DP	GW143EP	GW144P	GW144AAP	GW144AP	GW144BP	GW144CU	GW144DP	GW145	GW145AA	GW145A	GW145B	GW145C	GW145D	GW145DUP	GW145E
	Lab ID	JA55639-1	JA55639-14	JA55639-15	JA55639-4	JA55639-5	JA55639-6	JA55639-7	JA55639-10	JA55639-11	JA55639-12	JA55639-25	JA55639-24	JA55639-27	JA52764-1	JA52764-2	JA52764-3	JA52764-4	JA52764-5	JA52764-6	JA52764-8	JA52764-7
	Sample Date	9/2/2010	9/2/2010	9/2/2010	9/2/2010	9/2/2010	9/2/2010	9/2/2010	9/3/2010	9/3/2010	9/3/2010	9/3/2010	9/3/2010	9/3/2010	7/30/2010	7/30/2010	7/30/2010	7/30/2010	7/30/2010	7/30/2010	7/30/2010	7/30/2010
Samp	le Interval (ft)	10-13	20-23	30-33	40-43	50-53	60-63	70-73	12-15	20-23	30-33	40-43	50-53	60-63	12-15	20-23	30-33	40-43	50-53	60)-63	70-73
Analyte	GWQS																					
Volatile Organic Compoun	ds																					
1,1,2,2-Tetrachloroethane	1	1 U	1 U	1 U	1.1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Acetone	6000	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Benzene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	70	1 U	1 U	1 U	0.71 J	1 U	1 U	0.33 J	1 U	0.92 J	0.86 J	0.73 J	1 U	1 U	1 U	1 U	1 U	1 U	0.57 J	1 U	0.45 J	1 U
cis-1,2-Dichloroethene	70	1 U	1 U	1 U	1 U	0.91 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.51 J	0.43 J	1 U
Ethylbenzene	700	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
m,p-Xylene	NC	1 U	1 U	1 U	0.59 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl Tert Butyl Ether	70	1 U	0.28 J	1.2	0.78 J	1 U	1 U	1 U	1 U	0.57 J	1 U	0.49 J	1 U	1 U	1 U	1 U	7.6	1.2	1 U	1.2	1.1	1 U
Methylene chloride	3	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Tert Butyl Alcohol	100	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U
Tetrachloroethene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.45 J	10.2	8.6	1 U
Toluene	600	1 U	1 U	1 U	1 U	0.33 J	1 U	1 U	1 U	1 U	1 U	0.33 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.38 J	0.41 J	1 U
Trichloroethene	1	1 U	1 U	1 U	1 U	6.3	0.83 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylene (total)	1000	1 U	1 U	1 U	0.59 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

Notes:
All results are presented in ug/l (ppb)
GWQS = NJDEP Ground Water Quality Standards, July 2008
J = Estimated Value
U = Non Detection

Bold = Concentration above the method detection limit

Contaminent of concern above detection limit.

Joan's Cleaners Tabernacle Township, New Jersey Shallow Groundwater Screening Sampling Results Table

	7 .: ID			~**	****			1		~**				1			OFFI 10				1		OFFI		
	Location ID		1		V146	1	1		ı	GW	/147				1	1	GW148						GW149	1	т
	Sample ID	0 11 1 101			GW146BP	GW146CP			GW147AAU		GW147BP	GW147CP	GW147DU	GW148	GW148AA	GW148A	GW148DUP	GW148B	GW148C	GW148D	GW149	GW149A	GW149B	GW149C	GW149D
	Lab ID	JA57240-9	JA57240-10	JA57240-11	JA57240-12	JA57240-25	JA57240-24	JA57240-13	JA57240-14	JA57240-3	JA57240-4	JA57240-5	JA57240-18	JA53433-1	JA53433-2	JA53433-3	JA53433-7	JA53433-4	JA53433-5	JA53433-6	JA53433-10	JA53433-11	JA53433-12	JA53433-13	JA53433-14
	Sample Date	9/23/2010	9/23/2010	9/24/2010	9/24/2010	9/24/2010	9/24/2010	9/23/2010	9/23/2010	9/23/2010	9/23/2010	9/23/2010	9/23/2010	8/5/2010	8/5/2010	8/5/2010	8/5/2010	8/5/2010	8/5/2010	8/5/2010	8/5/2010	8/5/2010	8/5/2010	8/5/2010	8/6/2010
Sam	ple Interval (ft)	9-12	20-23	30-33	40-43	50-53	60-63	9-12	20-23	30-33	40-43	50-53	60-63	8-11	20-23	30	-33	40-43	50-53	60-63	16-19	30-33	40-43	50-53	60-63
Analyte	GWQS																								
Volatile Organic Compour	nds																								
1,1,2,2-Tetrachloroethane	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Acetone	6000	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	8.2 J	10 U	5.0 J	10 U	6.9 J	4.8 J							
Benzene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.29 J	1 U	1 U	1 U	0.28 J	1 U
Chloroform	70	1 U	1.5	1.1	0.71 J	1 U	1 U	1.1	2.8	1 U	1 U	1 U	1 U	1 U	0.40 J	1.5	1.5	0.99 J	0.28 J	1 U	0.58 J	1 U	0.56 J	1.2	0.40 J
cis-1,2-Dichloroethene	70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	700	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
m,p-Xylene	NC	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl Tert Butyl Ether	70	1 U	1 U	1 U	1 U	1.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2.1	0.82 J	0.56 J	1 U
Methylene chloride	3	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Tert Butyl Alcohol	100	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U							
Tetrachloroethene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.94 J	1 U	1 U
Toluene	600	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.39 J	0.54 J	1 U	0.30 J	1 U	0.49 J	0.35 J
Trichloroethene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylene (total)	1000	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

	Location ID			GW	V150					GW151									Field Blanks						
	Sample ID	GW150	GW150A	GW150B	GW150C	GW150D	GW150E	GW151	GW151A	GW151B	GW151C	GW151D	FB01	FB02	FB03	FB04	FB05	FB06	FB07	FB08	FB09	FB10	FB11	FB12	FB13
	Lab ID	JA53118-1	JA53118-2	JA53118-3	JA53118-4	JA53118-5	JA53118-6	JA53433-15	JA53433-16	JA53433-17	JA53433-18	JA53433-19	JA52001-8	JA52179-7	JA52208-7	JA52577-7	JA52764-9	JA53118-7	JA53433-8	JA53433-20	JA53742-8	JA54003-24	JA54003-36	JA54219-8	JA54407-7
	Sample Date	8/3/2010	8/3/2010	8/3/2010	8/3/2010	8/3/2010	8/3/2010	8/6/2010	8/6/2010	8/6/2010	8/6/2010	8/6/2010	7/21/2010	7/22/2010	7/23/2010	7/28/2010	7/30/2010	8/3/2010	8/5/2010	8/6/2010	8/10/2010	8/12/2010	8/13/2010	8/17/2010	8/18/2010
Samp	ole Interval (ft)	16-19	30-33	40-43	50-53	60-63	67-70	16-19	30-33	40-43	50-53	56-59													
Analyte	GWQS																								
Volatile Organic Compoun	ıds																								
1,1,2,2-Tetrachloroethane	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Acetone	6000	10 U	11.7	10 U	4.9 J	3.0 J	3.8 J	8.2 J	10 U	10 U	10 U	10 U	10 U	10 U	10 U										
Benzene	1	1 U	1 U	1 U	1 U	1 U	0.38 J	1 U	1 U	1 U	1 U	0.27 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	70	1 U	1 U	1 U	1 U	1 U	1 U	0.41 J	0.38 J	0.71 J	0.38 J	0.31 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	700	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
m,p-Xylene	NC	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl Tert Butyl Ether	70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.77 J	0.27 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	3	2 U	0.38 J	2 U	2 U	0.48 J	0.59 J	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Tert Butyl Alcohol	100	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U						
Tetrachloroethene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	600	1 U	1 U	1 U	1 U	0.38 J	0.64 J	1 U	0.35 J	1 U	1 U	0.42 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethene	1	1 U	1 U	1 U	0.89 J	2.1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylene (total)	1000	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

Notes:
All results are presented in ug/l (ppb)
GWQS = NJDEP Ground Water Quality Standards, July 2008
J = Estimated Value
U = Non Detection

Bold = Concentration above the method detection limit
Contaminent of concern above detection limit.
Concentration exceeds GWQS

Joan's Cleaners Tabernacle Township, New Jersey Shallow Groundwater Screening Sampling Results Table

	Location ID													Field	Blanks														Trip Blanks	
	Sample ID	FB12	FB13	FB14	FB15	FB16	FB17	FB18	FB19	FB20	FB21	FB22	FB23	FB24	FB25	FB25	FB26	FB28	FB29	FB30	FB31	FB32	FB33	FB34	FB35	FB36	FB37	TB01	TB02	TB03
	Lab ID	JA54219-8	JA54407-7	JA54548-7	JA54634-9	JA54749-9	JA55107-5	JA55107-30	JA55343-7	JA55639-8	JA55639-28	JA55790-8	JA55951-7	JA56090-8	JA56177-9	JA56687-29	JA56687-8	JA57091-9	JA57240-7	JA57240-27	JA57429-7	JA57487-7	JA57758-7	JA57961-8	JA58104-8	JA58277-8	JA58277-28	JA51915-7	JA52001-9	JA52179-
	Sample Date	8/17/2010	8/18/2010	8/19/2010	8/23/2010	8/24/2010	8/26/2010	8/27/2010	8/30/2010	9/2/2010	9/3/2010	9/7/2010	9/8/2010	9/10/2010	9/13/2010	9/17/2010	9/16/2010	9/22/2010	9/23/2010	9/24/2010	9/27/2010	9/28/2010	10/1/2010	10/4/2010	10/5/2010	10/6/2010	10/7/2010	7/20/2010	7/21/2010	7/22/2010
Samp	ple Interval (ft)																													
Analyte	GWQS																													
Volatile Organic Compoun	nds																													
,1,2,2-Tetrachloroethane	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Acetone	6000	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U						
Benzene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
eis-1,2-Dichloroethene	70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	700	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
n,p-Xylene	NC	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl Tert Butyl Ether	70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	3	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Γert Butyl Alcohol	100	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U						
Γetrachloroethene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Γoluene	600	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Γrichloroethene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Kylene (total)	1000	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

	Location ID														Trip	Blanks													
	Sample ID	TB04	TB05	TB06	TB07	TB08	TB09	TB10	TB11	TB12	TB13	TB14	TB15	TB16	TB17	TB18	TB19	TB20	TB21	TB22	TB23	TB24	TB25	TB26	TB27	TB28	TB29	TB30	TB31
	Lab ID	JA52208-8	JA52577-8	JA52764-10	JA53118-8	JA53433-9	JA53742-9	JA54003-15	JA54219-9	JA54407-8	JA54548-8	JA54634-10	JA54749-10	JA55107-6	JA55343-8	JA55639-9	JA55790-9	JA55951-8	JA56090-9	JA56177-10	JA56687-9	JA57091-10	JA57240-8	JA57429-8	JA57487-8	JA57758-8	JA57961-9	JA58104-9	JA58277-9
	Sample Date	7/23/2010	7/28/2010	7/30/2010	8/3/2010	8/6/2010	8/10/2010	8/13/2010	8/17/2010	8/18/2010	8/19/2010	8/23/2010	8/24/2010	8/27/2010	8/30/2010	9/3/2010	9/7/2010	9/8/2010	9/10/2010	9/13/2010	9/17/2010	9/22/2010	9/24/2010	9/27/2010	9/28/2010	10/1/2010	10/4/2010	10/5/2010	10/7/2010
Sam	ple Interval (ft)																												
Analyte	GWQS												1	•		•		1			1								
Volatile Organic Compou	nds																												
1,1,2,2-Tetrachloroethane	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Acetone	6000	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Benzene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	700	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
m,p-Xylene	NC	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl Tert Butyl Ether	70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	3	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Tert Butyl Alcohol	100	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U
Tetrachloroethene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	600	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylene (total)	1000	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

Notes:
All results are presented in ug/l (ppb)
GWQS = NJDEP Ground Water Quality Standards, July 2008
J = Estimated Value
U = Non Detection

Bold = Concentration above the method detection limit

Contaminent of concern above detection limit.

Concentration exceeds GWQS

Joan's Cleaners

Tabernacle Township, New Jersey

Deep Groundwater Screening Sample Summary Table

Location ID	Sample ID	Lab ID	Sample Depth (ft bgs)	Analytical Parameters	Sampling Method	Date
	GW201AA	JA79452-13	20.5 - 21.5	TCL VOC+10, MTBE, TBA	Hydropunch	6/23/11
	GW201A	JA79452-14	32.5 - 33.5	TCL VOC+10, MTBE, TBA	Hydropunch	6/23/11
	GW201B	JA79452-15	42.5 - 43.5	TCL VOC+10, MTBE, TBA	Hydropunch	6/23/11
GW201	GW201C	JA79452-21	52.5 - 53.5	TCL VOC+10, MTBE, TBA	Hydropunch	6/24/11
GW201	GW201D	JA79452-16	62.5 - 63.5	TCL VOC+10, MTBE, TBA	Hydropunch	6/24/11
	GW201E	JA79452-17	72.5 - 73.5	TCL VOC+10, MTBE, TBA	Hydropunch	6/24/11
	GW201F	JA79452-18	82.5 - 83.5	TCL VOC+10, MTBE, TBA	Hydropunch	6/24/11
	GW201H	JA79452-19	102.5 - 103.5	TCL VOC+10, MTBE, TBA	Hydropunch	6/24/11
	GW202E	JA79452-5	71.0 - 72.0	TCL VOC+10, MTBE, TBA	Hydropunch	6/22/11
	GW202F	JA79452-6	81.0 - 82.0	TCL VOC+10, MTBE, TBA	Hydropunch	6/22/11
-	GW202G	JA79452-7	91.0 - 92.0	TCL VOC+10, MTBE, TBA	Hydropunch	6/23/11
	GW202H	JA79452-8	100.0 - 101.0	TCL VOC+10, MTBE, TBA	Hydropunch	6/23/11
GW202	GW202I	JA79452-9	110.0 - 111.0	TCL VOC+10, MTBE, TBA	Hydropunch	6/23/11
	GW202J	JA79452-10	120.0 - 121.0	TCL VOC+10, MTBE, TBA	Hydropunch	6/23/11
	GW202K	JA79452-11	129.0 - 130.0	TCL VOC+10, MTBE, TBA	Hydropunch	6/24/11
	GW202L	JA79452-12	140.0 - 141.0	TCL VOC+10, MTBE, TBA	Hydropunch	6/24/11
	GW202M	JA79452-20	105.0 - 151.0	TCL VOC+10, MTBE, TBA	Hydropunch	6/24/11
	GW203B	JA78573-12	39.0 - 40.0	TCL VOC+10, MTBE, TBA	Hydropunch	6/16/11
	GW203C	JA78573-13	49.0 - 50.0	TCL VOC+10, MTBE, TBA	Hydropunch	6/16/11
	GW203D	JA78573-14	62.0 - 63.0	TCL VOC+10, MTBE, TBA	Hydropunch	6/17/11
	GW203E	JA78573-15	69.5 - 70.5	TCL VOC+10, MTBE, TBA	Hydropunch	6/17/11
	GW203F	JA78573-16	81.5 - 82.5	TCL VOC+10, MTBE, TBA	Hydropunch	6/17/11
GW203	GW203G	JA78573-17	90.0 - 91.0	TCL VOC+10, MTBE, TBA	Hydropunch	6/17/11
G W 203	GW203H	JA78573-20	99.0 - 100.0	TCL VOC+10, MTBE, TBA	Hydropunch	6/20/11
	GW203I	JA78573-21	109.0 - 110.0	TCL VOC+10, MTBE, TBA	Hydropunch	6/20/11
	GW203J	JA78573-22	119.0 - 120.0	TCL VOC+10, MTBE, TBA	Hydropunch	6/20/11
	GW203K	JA78573-23	129.0 - 130.0	TCL VOC+10, MTBE, TBA	Hydropunch	6/21/11
	GW203L	No Recovery	139.0 - 140.0	N	lo Recovery	
	GW203M	No Recovery	149.0 - 150.0	N	lo Recovery	

- Notes:
 Sample depth is reported in feet below ground surface (ft bgs)
 TCL VOC+10 = Target compound list volatile organic compounds with a library search for 10 tentatively identified compounds (TICS)
- MTBE = Methyl tert-butyl etherTBA = Tertiary-Butyl Alcohol

Joan's Cleaners

Tabernacle Township, New Jersey

Deep Groundwater Screening Sample Summary Table

Location ID	Sample ID	Lab ID	Sample Depth (ft bgs)	Analytical Parameters	Sampling Method	Date
	GW204B	JA79637-19	39.5 - 40.5	TCL VOC+10, MTBE, TBA	Hydropunch	6/30/11
	DUP03	JA79637-18	39.5 - 40.5	TCL VOC+10, MTBE, TBA	Hydropunch	6/30/11
GW204	GW204C	JA79637-20	49.5 - 50.5	TCL VOC+10, MTBE, TBA	Hydropunch	6/30/11
GW 204	GW204D	JA79637-21	59.5 - 60.5	TCL VOC+10, MTBE, TBA	Hydropunch	6/30/11
	GW204E	JA79637-22	69.5 - 70.5	TCL VOC+10, MTBE, TBA	Hydropunch	6/30/11
	GW204F	JA79637-23	79.5 - 80.5	TCL VOC+10, MTBE, TBA	Hydropunch	7/1/11
	GW205B	JA78573-4	39.0 - 40.0	TCL VOC+10, MTBE, TBA	Hydropunch	6/14/11
	GW205C	JA78573-5	49.0 - 50.0	TCL VOC+10, MTBE, TBA	Hydropunch	6/14/11
GW205	GW205D	JA78573-6	59.0 - 60.0	TCL VOC+10, MTBE, TBA	Hydropunch	6/15/11
	GW205E	JA78573-7	69.0 - 70.0	TCL VOC+10, MTBE, TBA	Hydropunch	6/15/11
	GW205F	JA78573-8	79.0 - 80.0	TCL VOC+10, MTBE, TBA	Hydropunch	6/15/11
	GW206B	JA79637-1	39.0 - 40.0	TCL VOC+10, MTBE, TBA	Hydropunch	6/27/11
	GW206C	JA79637-2	49.0 - 50.0	TCL VOC+10, MTBE, TBA	Hydropunch	6/27/11
	GW206D	JA79637-3	59.0 - 60.0	TCL VOC+10, MTBE, TBA	Hydropunch	6/27/11
	GW206E	JA79637-4	69.0 - 70.0	TCL VOC+10, MTBE, TBA	Hydropunch	6/28/11
	DUP01	JA79637-10	69.0 - 70.0	TCL VOC+10, MTBE, TBA	Hydropunch	6/28/11
	GW206F	JA79637-5	79.0 - 80.0	TCL VOC+10, MTBE, TBA	Hydropunch	6/28/11
GW206	GW206G	JA79637-6	89.0 - 90.0	TCL VOC+10, MTBE, TBA	Hydropunch	6/28/11
	GW206H	No Recovery	109.0 - 100.0	N	lo Recovery	
	GW206I	JA79637-15	109.0 - 110.0	TCL VOC+10, MTBE, TBA	Hydropunch	6/29/11
	DUP02	JA79637-17	109.0 - 110.0	TCL VOC+10, MTBE, TBA	Hydropunch	6/29/11
 	GW206J	No Recovery	119.0 - 120.0	N	lo Recovery	
	GW206K	JA79637-16	129.0 - 130.0	TCL VOC+10, MTBE, TBA	Hydropunch	6/29/11
	GW206L	No Recovery	139.0 - 140.0	N	lo Recovery	

- Sample depth is reported in feet below ground surface (ft bgs)
 TCL VOC+10 = Target compound list volatile organic compounds with a library search for 10 tentatively identified compounds (TICS)
 MTBE = Methyl tert-butyl ether
- TBA = Tertiary-Butyl Alcohol

Joan's Cleaners

Tabernacle Township, New Jersey

Deep Groundwater Screening Sample Summary Table

Location ID	Sample ID	Lab ID	Sample Depth (ft bgs)	Analytical Parameters	Sampling Method	Date
			QA	QC SAMPLES		
Field Blank	FB01	JA78573-1	-	TCL VOC+10, MTBE, TBA	Grab Sample	6/14/11
Field Blank	FB02	JA78573-2	-	TCL VOC+10, MTBE, TBA	Grab Sample	6/15/11
Field Blank	FB03	JA78573-9	-	TCL VOC+10, MTBE, TBA	Grab Sample	6/16/11
Field Blank	FB04	JA78573-10	-	TCL VOC+10, MTBE, TBA	Grab Sample	6/17/11
Field Blank	FB05	JA78573-18	-	TCL VOC+10, MTBE, TBA	Grab Sample	6/20/11
Field Blank	FB06	JA78573-24	-	TCL VOC+10, MTBE, TBA	Grab Sample	6/21/11
Field Blank	FB07	JA79452-1	-	TCL VOC+10, MTBE, TBA	Grab Sample	6/22/11
Field Blank	FB08	JA79452-2	-	TCL VOC+10, MTBE, TBA	Grab Sample	6/23/11
Field Blank	FB09	JA79452-3	-	TCL VOC+10, MTBE, TBA	Grab Sample	6/24/11
Field Blank	FB10	JA79637-8	-	TCL VOC+10, MTBE, TBA	Grab Sample	6/27/11
Field Blank	FB11	JA79637-9	-	TCL VOC+10, MTBE, TBA	Grab Sample	6/28/11
Field Blank	FB12	JA79637-12	-	TCL VOC+10, MTBE, TBA	Grab Sample	6/29/11
Field Blank	FB13	JA79637-13	-	TCL VOC+10, MTBE, TBA	Grab Sample	6/30/11
Field Blank	FB14	JA79637-14	-	TCL VOC+10, MTBE, TBA	Grab Sample	7/1/11
Trip Blank	Trip Blank	JA78573-3	-	TCL VOC+10, MTBE, TBA	Grab Sample	6/9/11
Trip Blank	Trip Blank	JA78573-11	-	TCL VOC+10, MTBE, TBA	Grab Sample	6/9/11
Trip Blank	Trip Blank	JA78573-19	-	TCL VOC+10, MTBE, TBA	Grab Sample	6/14/11
Trip Blank	Trip Blank	JA79452-4	-	TCL VOC+10, MTBE, TBA	Grab Sample	6/24/11
Trip Blank	Trip Blank	JA79637-7	-	TCL VOC+10, MTBE, TBA	Grab Sample	6/28/11
Trip Blank	Trip Blank	JA79637-11	-	TCL VOC+10, MTBE, TBA	Grab Sample	7/1/11

Notes:

- Sample depth is reported in feet below ground surface (ft bgs)
- TCL VOC+10 = Target compound list volatile organic compounds with a library search for 10 tentatively identified compounds (TICS)
- MTBE = Methyl tert-butyl ether
- TBA = Tertiary-Butyl Alcohol

Joan's Cleaners

Tabernacle Township, New Jersey

Deep Groundwater Screening Sampling Results Table

	Location ID	GW201											GW202				GW203											
	Sample ID	GW201AA	GW201A	GW201B	GW201C	GW201D	GW201E	GW201F	GW201H	GW202E	GW202F	GW202G	GW202H	GW202I	GW202J	GW202K	GW202L	GW202M	GW203B	GW203C	GW203D	GW203E	GW203F	GW203G	GW203H	GW203I	GW203J	GW203K
	Lab ID	JA79452-13	JA79452-14	JA79452-15	JA79452-21	JA79452-16	JA79452-17	JA79452-18			JA79452-6						JA79452-12			JA78573-13	JA78573-14	JA78573-15	JA78573-16	JA78573-17	JA78573-20	JA78573-21	JA78573-22	JA78573-23
	Sample Date	6/23/2011	6/23/2011	6/23/2011	6/24/2011	6/24/2011	6/24/2011	6/24/2011	6/24/2011	6/22/2011	6/22/2011	6/23/2011	6/23/2011	6/23/2011	6/23/2011	6/24/2011	6/24/2011	6/24/2011	6/16/2011	6/16/2011	6/17/2011	6/17/2011	6/17/2011	6/17/2011	6/20/2011	6/20/2011	6/20/2011	6/21/2011
Sampel	Interval (ft, bgs)	20.5 - 21.5	32.5 - 33.5	42.5 43.5	52.5 - 53.5	_	72.5 - 73.5	82.5 - 83.5	102.5 - 103.5	71 - 72	81 - 82	91 - 92	100 - 101	110 - 111	120 - 121	129 - 130	140 - 141	150 - 151	39 - 40	49 - 50	62 - 63	69.5 - 70.5	81.5 - 82.5	90 - 91	99 - 100	109 - 110	119 - 120	129 - 130
Analyte	GWQS			-																		-				-		
Volatile Organic Compounds	s																											
1,1,1-Trichloroethane	30	1 U	1 U	1 U	1 U	0.54 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethylene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.28 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Butanone (MEK)	300	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	11	60.4	20.5	30.6	8.6 J
4-Methyl-2-Pentanone(MIBK)) NC	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	1.4 J	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	6000	10 U	10 U	10 U	10 U	13.6	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	18.4	10 U	10 U	10 U	10 U	10 U	10 U	10 U	11.4	11.2	10 U	10 U
Benzene	1	0.26 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon Disulfide	700	0.53 J	2 U	0.2 J	0.92 J	0.4 J	2 U	2 U	2 U	0.46 J	0.87 J	0.59 J	0.37 J	0.5 J	0.43 J	2 U	0.23 J	1.8 J	4.1	2 U	0.28 J	2 U	2 U	2 U	2 U	2 U	0.2 J	0.26 J
Chloroform	70	1 U	0.63 J	0.26 J	0.4 J	1 U	0.24 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2.8	0.42 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloromethane	NC	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.57 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	70	1 U	2.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	700	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.28 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
m,p-Xylene	NC	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.98 J	1 U	1 U	1 U	1 U	0.36 J	1 U	1 U	1 U	1 U	1 U
Methyl tert-butyl ether	70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.21 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methylcylohexane	NC	5 U	0.18 J	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
o-Xylene	NC	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.48 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Styrene	100	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	0.95 J	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Toluene	600	1 U	13.1	0.22 J	1 U	1 U	1 U	1 U	1 U	0.58 J	0.47 J	1 U	0.32 J	4.5	2.8	1 U	0.5 J	6.9	4.5	5.7	1.8	2.9	6.6	16.5	2.4	4	5.5	5.3
Xylene (Total)	1000	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.5	1 U	1 U	1 U	1 U	0.36 J	0.22 J	1 U	1 U	1 U	1 U

Notes:

All results are presented in ug/l (ppb)

GWQS = NJDEP Ground Water Quality Standards, July 2008

J = Estimated Value

U = Non Detection

Bold = Concentration above the method detection limit
Contaminant of Concern (COC) above detection limit
Concentration Exceeds Class HA GWQS

Joan's Cleaners

Tabernacle Township, New Jersey

Deep Groundwater Screening Sampling Results Table

									GW206															
	Location ID			· ·	V204	1			1	GW205	1													
	Sample ID	GW204B	DUP3	GW204C	GW204D	GW204E	GW204F	GW205B	GW205C	GW205D	GW205E	GW205F	GW206B	GW206C	GW206D	GW206E	DUP01	GW206F	GW206G	GW206I	DUP2	GW206K		
	Lab ID	JA79637-19	JA79637-18	JA79637-20	JA79637-21	JA79637-22	JA79637-23	JA78573-4	JA78573-5	JA78573-6	JA78573-7	JA78573-8	JA79637-1	JA79637-2	JA79637-3	JA79637-4	JA79637-10	JA79637-5	JA79637-6	JA79637-15	JA79637-17	JA79637-16		
	Sample Date	6/30/2011	6/30/2011	6/30/2011	6/30/2011	6/30/2011	7/1/2011	6/14/2011	6/14/2011	6/15/2011	6/15/2011	6/15/2011	6/27/2011	6/27/2011	6/27/2011	6/28/2011	6/28/2011	6/28/2011	6/28/2011	6/29/2011	6/29/2011	6/29/2011		
Sampel In	terval (ft, bgs)	39.5 - 40.5	39.5 40.5	49.5 - 50.5	59.5 - 60.5	69.5 - 70.5	79.5 - 80.5	39 - 40	49 - 50	59 - 60	69 - 70	79 - 80	39 - 40	49 - 50	59 - 60	69 - 70	69 - 70	79 - 80	89 - 90	109 - 110	109 - 110	129 - 130		
Analyte GWQS																								
Volatile Organic Compounds																								
1,1,1-Trichloroethane	30	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
1,1-Dichloroethylene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
2-Butanone (MEK)	300	16.4	17.5	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	5.4 J	14.1	10 U	10 U	12.5	33.8	4 J	10 U	15.7		
4-Methyl-2-Pentanone(MIBK)	NC	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U		
Acetone	6000	10 U	10 U	10 U	21.6	10 U	10 U	19	8.2 J	28.1	10 U	12.3	10 U	10 U	7.8 J	10 U	10 U	10 U	10 U	7.9 J	8.7 J	10 U		
Benzene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
Carbon Disulfide	700	0.57 J	0.44 J	2 U	2 U	0.91 J	0.96 J	2 U	0.61 J	2 U	2 U	2 U	2 U	2 U	0.46 J	0.97 J	1.1 J	0.42 J	0.88 J	0.45 J	0.4 J	1.3 J		
Chloroform	70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
Chloromethane	NC	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
cis-1,2-Dichloroethene	70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
Ethylbenzene	700	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
m,p-Xylene	NC	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
Methyl tert-butyl ether	70	0.63 J	0.54 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
Methylcylohexane	NC	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U		
o-Xylene	NC	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
Styrene	100	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U		
Toluene	600	2.1	2.3	0.79 J	1.2	0.73 J	0.52 J	6.1	10	38.2	5.4	4.4	0.84 J	13.9	2.3	1	1	6.7	6.6	3.2	3	3.3		
Xylene (Total)	1000	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		

Notes:
All results are presented in ug/l (ppb)
GWQS = NJDEP Ground Water Quality Standards, July 2008

J = Estimated Value

U = Non Detection

Bold = Concentration above the method detection limit

Contaminant of Concern (COC) above detection limit

Concentration Exceeds Class IIA GWQS

Joan's Cleaners

Tabernacle Township, New Jersey

Deep Groundwater Screening Sampling Results Table

	Location ID							FIELD	BLANK									TRIP E	LANK		
	Sample ID	FB01	FB02	FB03	FB04	FB05	FB06	FB07	FB08	FB09	FB10	FB11	FB12	FB13	FB14	TRIP BL	TRIP BL	TRIP BL	TRIP BL	TRIP BL	TRIP BL
	Lab ID	JA78573-1	JA78573-2	JA78573-9	JA78573-10	JA78573-18	JA78573-24	JA79452-1	JA79452-2	JA79452-3	JA79637-8	JA79637-9	JA79637-12	JA79637-13	JA79637-14	JA78573-3	JA78573-11	JA78573-19	JA79452-4	JA79637-7	JA79637-11
	Sample Date	6/14/2011	6/15/2011	6/16/2011	6/17/2011	6/20/2011	6/21/2011	6/22/2011	6/23/2011	6/24/2011	6/27/2011	6/28/2011	6/29/2011	6/30/2011	7/1/2011	6/15/2011	6/17/2011	6/20/2011	6/24/2011	6/28/2011	7/1/2011
Sampel In	nterval (ft, bgs)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Analyte	GWQS			•	•	•	•		•				•	•			•			•	
Volatile Organic Compounds																					
1,1,1-Trichloroethane	30	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethylene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Butanone (MEK)	300	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
4-Methyl-2-Pentanone(MIBK)	NC	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	6000	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Benzene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon Disulfide	700	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	1.7 J	2.4	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Chloroform	70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloromethane	NC	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	700	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
m,p-Xylene	NC	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl tert-butyl ether	70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methylcylohexane	NC	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
o-Xylene	NC	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Styrene	100	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Toluene	600	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylene (Total)	1000	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

All results are presented in ug/l (ppb)

GWQS = NJDEP Ground Water Quality Standards, July 2008

J = Estimated Value

U = Non Detection

Bold = Concentration above the method detection limit

Contaminant of Concern (COC) above detection limit

Concentration Exceeds Class IIA GWQS

Table 7 Joan's Cleaners Tabernacle Township, New Jersey **Groundwater Elevations Table**

		We	ll Construction Dat	a		March	5th, 2012	May	1st, 2012
Well ID	Top of Casing Elevation (1)	Ground Elevation	Screen Interval	Top of Screen Elevation ⁽³⁾	Bottom of Screen Elevation (3)	Depth to Water ⁽⁴⁾	Groundwater Elevation (5)	Depth to Water ⁽⁴⁾	Groundwater Elevation (5)
MW01	113.48	113.78	17.77 - 27.77	96.01	86.01	14.64	98.84	15.25	98.23
MW02	114.11	114.44	14.77 - 24.77	99.67	89.67	16.07	98.04	16.66	97.45
MW03	112.31	112.77	57.65 - 67.65	55.12	45.12	16.71	95.60	17.34	94.97
MW04	100.49	100.92	56.65 - 66.75	44.27	34.17	7.50	92.99	8.25	92.24
MW05	93.30	93.69	58.25 - 68.25	35.44	25.44	6.11	87.19	6.46	86.84
MW06	91.77	91.99	56.10 - 66.10	35.89	25.89	2.72	89.05	3.92	87.85
MW07	94.16	94.43	128.71 - 138.71	-34.28	-44.28	5.95	88.21	6.25	87.91
MW08	92.76	92.98	57.80 - 67.80	35.18	25.18	5.96	86.80	6.90	85.86
MW09	101.24	101.61	54.16 - 64.16	47.45	37.45	13.99	87.25	14.60	86.64
MW10	102.98	103.41	37.72 - 47.72	65.69	55.69	9.32	93.66	9.95	93.03
MW11	108.04	108.24	24.00 - 34.00	84.24	74.24	11.13	96.91	11.43	96.61
MW12	106.45	106.86	33.57 - 43.57	73.29	63.29	10.73	95.72	11.35	95.10
MW13	100.37	100.79	87.96 - 97.96	12.83	2.83	6.94	93.43	7.40	92.97
MW14	100.94	101.32	59.00 - 69.00	42.32	32.32	7.49	93.45	8.19	92.75
MW15	95.23	95.52	51.55 - 61.55	43.97	33.97	4.19	91.04	4.90	90.33
MW16	98.28	98.71	43.60 - 53.60	55.11	45.11	6.13	92.15	6.90	91.38
HPIMW2	112.59		5.56 - 20.56	-5.56	-20.56	14.47	98.12	15.25	97.34
HPIMW4	113.69		14.05 - 27.05	-14.05	-27.05	16.24	97.45	16.72	96.97
HPIMW5	113.97		9.60 - 24.60	-9.60	-24.60	16.45	97.52	16.90	97.07
HPIMW6	113.89		9.25 - 24.25	-9.25	-24.25	16.37	97.52	16.90	96.99
HPIMW7	113.16		9.50 - 24.50	-9.50	-24.50	15.52	97.64	16.00	97.16

Notes:

- (1) All elevations are reported in feet above mean sea level.
 (2) Screen interval measurements reported in feet below ground surface.
 (3) Screen elevations derived using well survey data and well construction details.
- (4) Depth to water measured in feet below the top of well casing.
- (5) Groundwater elevations derived using well survey data and depth to water measurements.

*Note: HPIMW2 during initial gauging (May) had a DTW of 19.0

Joan's Cleaners

Tabernacle Township, New Jersey

Monitoring Well Sample Summary Table

Location ID	Sample ID	Lab ID	Sample Depth (ft bgs)	Analytical Parameters	Sampling Method	Date
	MW01A	JB844-41	20.27	MTBE, TBA, TCL VOC+10	Bladder Pump	3/9/2012
MW01	MW01A	JB5628-12	20.27	MTBE, TBA, TCL VOC+10	Bladder Pump	5/2/2012
	MW01B	JB844-42	25.27	MTBE, TBA, TCL VOC+10	Bladder Pump	3/9/2012
MWO2	MW02	JB844-43	20.07	MTBE, TBA, TCL VOC+10	Bladder Pump	3/9/2012
MW02	MW02	JB5628-20	20.07	MTBE, TBA, TCL VOC+10	Bladder Pump	5/3/2012
	MW03A	JB844-7	60.15	MTBE, TBA, TCL VOC+10	Bladder Pump	3/6/2012
MW03	MW03A	JB5628-14	60.15	MTBE, TBA, TCL VOC+10	Bladder Pump	5/2/2012
	MW03B	JB844-8	65.15	MTBE, TBA, TCL VOC+10	Bladder Pump	3/6/2012
	MW04A	JB844-9	59.25	MTBE, TBA, TCL VOC+10	Bladder Pump	3/6/2012
MW04	MW04B	JB844-10	64.25	MTBE, TBA, TCL VOC+10	Bladder Pump	3/6/2012
	MW04B	JB5628-10	64.25	MTBE, TBA, TCL VOC+10	Bladder Pump	5/2/2012
	MW05A	JB844-24	60.75	MTBE, TBA, TCL VOC+10	Bladder Pump	3/7/2012
MW05	MW05B	JB844-25	65.75	MTBE, TBA, TCL VOC+10	Bladder Pump	3/7/2012
	MW05B	JB5628-5	65.75	MTBE, TBA, TCL VOC+10	Bladder Pump	5/1/2012
	MW06A	JB844-21	60.70	MTBE, TBA, TCL VOC+10	Bladder Pump	3/7/2012
MW06	MW06B	JB844-22	65.00	MTBE, TBA, TCL VOC+10	Bladder Pump	3/7/2012
IVI VV OO	DUP01	JB844-23	65.00	MTBE, TBA, TCL VOC+10	Bladder Pump	3/7/2012
	MW06B	JB5628-3	65.00	MTBE, TBA, TCL VOC+10	Bladder Pump	5/1/2012
	MW07A	JB844-3	132.50	MTBE, TBA, TCL VOC+10	Bladder Pump	3/5/2012
MW07	MW07A	JB5628-1	131.21	MTBE, TBA, TCL VOC+10	Bladder Pump	5/1/2012
	MW07B	JB844-4	136.50	MTBE, TBA, TCL VOC+10	Bladder Pump	3/5/2012
	MW08A	JB844-1	62.50	MTBE, TBA, TCL VOC+10	Bladder Pump	3/5/2012
MW08	MW08A	JB5628-2	60.30	MTBE, TBA, TCL VOC+10	Bladder Pump	5/1/2012
	MW08B	JB844-2	65.50	MTBE, TBA, TCL VOC+10	Bladder Pump	3/5/2012
	MW09A	JB844-26	56.66	MTBE, TBA, TCL VOC+10	Bladder Pump	3/7/2012
MW09	MW09A	JB5628-4	56.66	MTBE, TBA, TCL VOC+10	Bladder Pump	5/1/2012
IVI VV O	DUP01	JB5628-6	56.66	MTBE, TBA, TCL VOC+10	Bladder Pump	5/1/2012
	MW09B	JB844-27	61.66	MTBE, TBA, TCL VOC+10	Bladder Pump	3/7/2012
	MW10A	JB844-11	40.22	MTBE, TBA, TCL VOC+10	Bladder Pump	3/6/2012
MW10	MW10A	JB5628-9	40.22	MTBE, TBA, TCL VOC+10	Bladder Pump	5/2/2012
	MW10B	JB844-12	45.22	MTBE, TBA, TCL VOC+10	Bladder Pump	3/6/2012
	MW11A	JB844-13	26.50	MTBE, TBA, TCL VOC+10	Bladder Pump	3/6/2012
MW11	MW11B	JB844-14	31.50	MTBE, TBA, TCL VOC+10	Bladder Pump	3/6/2012
	MW11B	JB5628-8	31.50	MTBE, TBA, TCL VOC+10	Bladder Pump	5/2/2012
	MW12A	JB844-30	36.07	MTBE, TBA, TCL VOC+10	Bladder Pump	3/8/2012
MW12	MW12A	JB5628-13	36.07	MTBE, TBA, TCL VOC+10	Bladder Pump	5/2/2012
	MW12B	JB844-31	41.07	MTBE, TBA, TCL VOC+10	Bladder Pump	3/8/2012
	MW13A	JB844-32	90.46	MTBE, TBA, TCL VOC+10	Bladder Pump	3/8/2012
MW13	MW13A	JB5628-11	90.46	MTBE, TBA, TCL VOC+10	Bladder Pump	5/2/2012
171 77 13	MW13B	JB844-33	95.46	MTBE, TBA, TCL VOC+10	Bladder Pump	3/8/2012
	DUP02	JB844-39	95.46	MTBE, TBA, TCL VOC+10	Bladder Pump	3/8/2012

Notes:

- -MTBE = Methyl Tertiary Butyl Ether
- -TBA = Tertiary Butyl Alcohol
- -VOC+10 = Volatile Organic Compounds +10 (search for 10 non-target tentatively identified compounds (TICs))
- -NA = Not Applicable

Joan's Cleaners

Tabernacle Township, New Jersey

Monitoring Well Sample Summary Table

Location ID	Sample ID	Lab ID	Sample Depth (ft bgs)	Analytical Parameters	Sampling Method	Date
	MW14A	JB844-34	61.50	MTBE, TBA, TCL VOC+10	Bladder Pump	3/8/2012
MW14	MW14A	JB5628-19	61.50	MTBE, TBA, TCL VOC+10	Bladder Pump	5/3/2012
	MW14B	JB844-35	66.50	MTBE, TBA, TCL VOC+10	Bladder Pump	3/8/2012
	MW15A	JB844-36	54.00	MTBE, TBA, TCL VOC+10	Bladder Pump	3/8/2012
MW15	MW15A	JB5628-15	54.10	MTBE, TBA, TCL VOC+10	Bladder Pump	5/2/2012
	MW15B	JB844-37	59.00	MTBE, TBA, TCL VOC+10	Bladder Pump	3/8/2012
	MW16A	JB844-19	46.10	MTBE, TBA, TCL VOC+10	Bladder Pump	3/7/2012
MW16	MW16B	JB844-20	51.10	MTBE, TBA, TCL VOC+10	Bladder Pump	3/7/2012
	MW16B	JB5628-16	51.10	MTBE, TBA, TCL VOC+10	Bladder Pump	5/2/2012
HPIMW2	HPIMW2	JB844-18	18.00	MTBE, TBA, TCL VOC+10	Bladder Pump	3/7/2012
HPIMW2	HPIMW2	JB5628-17	18.00	MTBE, TBA, TCL VOC+10	Bladder Pump	5/3/2012
HPIMW4	HPIMW4A	JB844-16	19.00	MTBE, TBA, TCL VOC+10	Bladder Pump	3/7/2012
HPIMW4	HPIMW4B	JB844-17	24.50	MTBE, TBA, TCL VOC+10	Bladder Pump	3/7/2012
HFIIVI W 4	HPIMW4B	JB5628-18	24.50	MTBE, TBA, TCL VOC+10	Bladder Pump	5/3/2012
			QA/QC	CSAMPLES		
	FB01	JB844-5	NA	MTBE, TBA, TCL VOC+10	Teflon Tubing	3/5/2012
	FBUI	JB5628-7	NA	MTBE, TBA, TCL VOC+10	Teflon Tubing	5/1/2012
	FB02	JB844-15	NA	MTBE, TBA, TCL VOC+10	Teflon Tubing	3/6/2012
Field Blanks	1.002	JB5628-22	NA	MTBE, TBA, TCL VOC+10	Teflon Tubing	5/2/2012
rieiu Dialiks	FB03	JB844-28	NA	MTBE, TBA, TCL VOC+10	Teflon Tubing	3/7/2012
	1.003	JB5628-21	NA	MTBE, TBA, TCL VOC+10	Teflon Tubing	5/3/2012
	FB04	JB844-38	NA	MTBE, TBA, TCL VOC+10	Teflon Tubing	3/8/2012
	FB05	JB844-44	NA	MTBE, TBA, TCL VOC+10	Teflon Tubing	3/9/2012
	Trip Blank	JB844-6	NA	TCL VOC+10	NA	3/5/2012
Trip Blanks	Trip Blank	JB844-29	NA	TCL VOC+10	NA	3/7/2012
Trip Blanks	Trip Blank	JB844-40	NA	TCL VOC+10	NA	3/8/2012
	Trip Blank	JB5628-23	NA	TCL VOC+10	NA	5/3/2012

Notes:

- -MTBE = Methyl Tertiary Butyl Ether
- -TBA = Tertiary Butyl Alcohol
- -VOC+10 = Volatile Organic Compounds +10 (search for 10 non-target tentatively identified compounds (TICs))
- -NA = Not Applicable

Joan's Cleaners

Tabernacle Township, New Jersey

Monitoring Well Sampling Results Summary Table

	Location ID		MW01		MV	V02		MW03			MW04			MW05			MV	V06	
	Sample ID	MW01A	MW01A	MW01B	MW02	MW02	MW03A	MW03A	MW03B	MW04A	MW04B	MW04B	MW05A	MW05B	MW05B	MW06A	MW06B	DUP01	MW06B
	Lab ID	JB844-41	JB5628-12	JB844-42	JB844-43	JB5628-20	JB844-7	JB5628-14	JB844-8	JB844-9	JB844-10	JB5628-10	JB844-24	JB844-25	JB5628-5	JB844-21	JB844-22	JB844-23	JB5628-3
	Sample Date	3/9/2012	5/2/2012	3/9/2012	3/9/2012	5/3/2012	3/6/2012	5/2/2012	3/6/2012	3/6/2012	3/6/2012	5/2/2012	3/7/2012	3/7/2012	5/1/2012	3/7/2012	3/7/2012	3/7/2012	5/1/2012
Sample	Depth (ft bgs)	20.27	20.27	25.27	20.07	20.07	60.15	60.15	65.15	59.25	64.25	64.25	60.75	65.75	65.75	60.70	65.70	65.70	65.00
Analyte	GWQS																		
Volatile Organic Compounds																			
1,1,2,2-Tetrachloroethane	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	2	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
4-Methyl-2-Pentanone(MIBK)	NC	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	6000	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Benzene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon Disulfide	700	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	0.27 J	0.39 J	0.37 J	2 U
Chloroform	70	1 U	1 U	1 U	1 U	1 U	0.57 J	0.79 J	0.56 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Cyclohexane	NC	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Methyl tert-butyl ether	70	1 U	1 U	1 U	1 U	1 U	1 U	0.43 J	0.38 J	0.68 J	0.93 J	1.1	1 U	1 U	1 U	1 U	1 U	1 U	1 U
o-Xylene	NC	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Tert-Butyl Alcohol	100	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U
Tetrachloroethene	1	1 U	1 U	1 U	51.6	53.3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	600	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trans-1,2-Dichloroethene	100	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylene (Total)	1000	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

Notes:

All results are presented in ug/l (ppb)

GWQS = NJDEP Ground Water Quality Standards, November 2009

NC= No Criteria

J = Estimated Value

U = Non Detection

Bold = Concentration above the method detection limit

Contaminant of Concern (COC) above detection limit

Joan's Cleaners

Tabernacle Township, New Jersey

Monitoring Well Sampling Results Summary Table

	Location ID		MW07			MW08			MV	V09			MW10			MW11			MW12	
	Sample ID	MW07A	MW07A	MW07B	MW08A	MW08A	MW08B	MW09A	MW09A	DUP01	MW09B	MW10A	MW10A	MW10B	MW11A	MW11B	MW11B	MW12A	MW12A	MW12B
	Lab ID	JB844-3	JB5628-1	JB844-4	JB844-1	JB5628-2	JB844-2	JB844-26	JB5628-4	JB5628-6	JB844-27	JB844-11	JB5628-9	JB844-12	JB844-13	JB844-14	JB5628-8	JB844-30	JB5628-13	JB844-31
	Sample Date	3/5/2012	5/1/2012	3/5/2012	3/5/2012	5/1/2012	3/5/2012	3/7/2012	5/1/2012	5/1/2012	3/7/2012	3/6/2012	5/2/2012	3/6/2012	3/6/2012	3/6/2012	5/2/2012	3/8/2012	5/2/2012	3/8/2012
Sample	Depth (ft bgs)	132.50	131.21	136.50	62.50	60.30	65.50	56.66	56.66	51.10	61.66	40.22	40.22	45.22	26.50	31.50	31.50	36.07	36.07	41.07
Analyte	GWQS			•	•		•							•		•	•	•		
Volatile Organic Compounds	5																			
1,1,2,2-Tetrachloroethane	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	2	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
4-Methyl-2-Pentanone(MIBK)	NC	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	6000	10 U	10 U																	
Benzene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon Disulfide	700	2 U	2 U	2 U	2 U	2 U	2 U	0.4 J	2 U	2 U	0.25 J	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Chloroform	70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.91 J	0.96 J	0.81 J	1 U	0.35 J	0.44 J	1 U	1 U	1 U
cis-1,2-Dichloroethene	70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Cyclohexane	NC	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Methyl tert-butyl ether	70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.25 J	0.34 J	0.23 J
o-Xylene	NC	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Tert-Butyl Alcohol	100	25 U	25 U																	
Tetrachloroethene	1	1	0.53 J	0.42 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	11.5	9.8	11.3
Toluene	600	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trans-1,2-Dichloroethene	100	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylene (Total)	1000	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

Notes:

All results are presented in ug/l (ppb)

GWQS = NJDEP Ground Water Quality Standards, November 2009

NC= No Criteria

J = Estimated Value

U = Non Detection

Bold = Concentration above the method detection limit

Contaminant of Concern (COC) above detection limit

Joan's Cleaners

Tabernacle Township, New Jersey

Monitoring Well Sampling Results Summary Table

	Location ID		MV	W13			MW14			MW15			MW16		HPI	MW2		HPIMW4	
	Sample ID	MW13A	MW13A	MW13B	DUP02	MW14A	MW14A	MW14B	MW15A	MW15A	MW15B	MW16A	MW16B	MW16B	HPIMW2	HPIMW2	HPIMW4A	HPIMW4B	HPIMW4B
	Lab ID	JB844-32	JB5628-11	JB844-33	JB844-39	JB844-34	JB5628-19	JB844-35	JB844-36	JB5628-15	JB844-37	JB844-19	JB844-20	JB5628-16	JB844-18	JB5628-17	JB844-16	JB844-17	JB5628-18
	Sample Date	3/8/2012	5/2/2012	3/8/2012	3/8/2012	3/8/2012	5/3/2012	3/8/2012	3/8/2012	5/2/2012	3/8/2012	3/7/2012	3/7/2012	5/2/2012	3/7/2012	5/3/2012	3/7/2012	3/7/2012	5/3/2012
Sample	Depth (ft bgs)	90.46	90.46	95.46	95.46	61.50	61.50	66.50	54.00	54.10	59.00	46.10	51.10	51.10	18.00	18.00	19.00	24.50	24.50
Analyte	GWQS						I .											I .	
Volatile Organic Compounds	S																		
1,1,2,2-Tetrachloroethane	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.43 J	0.31 J	0.66 J	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	2	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.5	2	1.3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
4-Methyl-2-Pentanone(MIBK)	NC	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	4.1 J	5 U	5 U	5 U	5 U
Acetone	6000	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	5.6 J	10 U	10 U	10 U
Benzene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	11.5	12.3	1 U	1 U	1 U
Carbon Disulfide	700	2 U	2 U	2 U	2 U	2 U	2 U	2 U	0.25 J	2 U	2 U	0.26 J	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Chloroform	70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.57 J	0.45 J	0.73 J	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	70	1 U	1 U	1 U	1 U	13.9	13.4	15.3	1 U	1 U	1 U	1 U	0.52 J	0.58 J	1 U	1 U	1 U	1 U	1 U
Cyclohexane	NC	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	1.9 J	3.8 J	5 U	5 U	5 U
Methyl tert-butyl ether	70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.6 J	0.59 J	1	1 U	1 U	1 U	1 U	1 U
o-Xylene	NC	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.32 J	1 U	1 U	1 U	1 U
Tert-Butyl Alcohol	100	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	111	137	25 U	25 U	25 U
Tetrachloroethene	1	1 U	1 U	1 U	1 U	268	241	221	0.64 J	0.63 J	0.43 J	1 U	1 U	1 U	1 U	0.36 J	1.6	2.2	1.1
Toluene	600	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.66 J	0.82 J	1 U	1 U	1 U
trans-1,2-Dichloroethene	100	1 U	1 U	1 U	1 U	0.33 J	0.57 J	0.32 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethene	1	1 U	1 U	1 U	1 U	4.4	4.2	4	1 U	1 U	1 U	2.4	4	3.4	1 U	1 U	1 U	1 U	1 U
Xylene (Total)	1000	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.32 J	1 U	1 U	1 U	1 U

Notes:

All results are presented in ug/l (ppb)

GWQS = NJDEP Ground Water Quality Standards, November 2009

NC= No Criteria

J = Estimated Value

U = Non Detection

Bold = Concentration above the method detection limit

Contaminant of Concern (COC) above detection limit

Joan's Cleaners

Tabernacle Township, New Jersey

Monitoring Well Sampling Results Summary Table

	Location ID				FIELD	BLANK					TRIP I	BLANK	
	Sample ID	FB01	FB02	FB03	FB04	FB05	FB01	FB02	FB03	TRIP BL	ТВ	TB	TRIP BL
	Lab ID	JB844-5	JB844-15	JB844-28	JB844-38	JB844-44	JB5628-7	JB5628-22	JB5628-21	JB844-6	JB844-29	JB844-40	JB5628-23
	Sample Date	3/5/2012	3/6/2012	3/7/2012	3/8/2012	3/9/2012	5/1/2012	5/2/2012	5/3/2012	3/5/2012	3/7/2012	3/8/2012	5/3/2012
Sample	Depth (ft bgs)												
Analyte	GWQS							L			ı		
Volatile Organic Compounds													
1,1,2,2-Tetrachloroethane	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	2	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
4-Methyl-2-Pentanone(MIBK)	NC	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	6000	10 U	10 U	10 U	10 U	10 U	10 U						
Benzene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon Disulfide	700	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Chloroform	70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Cyclohexane	NC	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Methyl tert-butyl ether	70	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
o-Xylene	NC	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Tert-Butyl Alcohol	100	25 U	25 U	25 U	25 U	25 U	25 U						
Tetrachloroethene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	600	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trans-1,2-Dichloroethene	100	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylene (Total)	1000	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

Notes:

All results are presented in ug/l (ppb)

GWQS = NJDEP Ground Water Quality Standards, November 2009

NC= No Criteria

J = Estimated Value

U = Non Detection

Bold = Concentration above the method detection limit

Contaminant of Concern (COC) above detection limit

Joan's Cleaners Tabernacle Township, New Jersey

Potable Well Receptor Table

INDEX	ADDRESS	LATITUDE	LONGITUDE	BLOCK	LOT	CITY AND STATE	ZIP CODE
1	901 Old Indian Mills Rd	39°51'13.812"	74°44'14.419"	203	7.02	Tabernacle, NJ	08088
2	903 Old Indian Mills Rd	39°51'12.165"	74°44'13.986"	203	27	Tabernacle, NJ	08088
3	905 Old Indian Mills Rd	39°51'10.807"	74°44'13.554"	203	26	Tabernacle, NJ	08088
4	907 Old Indian Mills Rd	39°51'9.6129"	74°44'13.549"	203	25	Tabernacle, NJ	08088
5	911 Old Indian Mills Rd	39°51'7.5607"	74°44'13.276"	203	23	Tabernacle, NJ	08088
6	913 Old Indian Mills Rd	39°51'6.3611"	74°44'12.523"	203	22	Tabernacle, NJ	08088
7	915 Old Indian Mills Rd	39°51'5.3731"	74°44'12.306"	203	7.01	Tabernacle, NJ	08088
8	1573 Rt 206	39°51'34.76"	74°44'2.4667"	317	12	Tabernacle, NJ	08088
9	1571 Rt 206	39°51'33.685"	74°44'2.4661"	317	13	Tabernacle, NJ	08088
10	1561 Rt 206	39°51'28.828"	74°44'2.9276"	317	16	Tabernacle, NJ	08088
11	1559 Rt 206	39°51'27.963"	74°44'2.4972"	317	17	Tabernacle, NJ	08088
12	798 Old Indian Mills Rd	39°51'24.915"	74°44'11.200"	319	1	Tabernacle, NJ	08088
13	802 Old Indian Mills Rd	39°51'23.160"	74°44'15.039"	319	2	Tabernacle, NJ	08088
14	804 Old Indian Mills Rd	39°51'22.172"	74°44'14.768"	319	3.01	Tabernacle, NJ	08088
15	806 Old Indian Mills Rd	39°51'21.184"	74°44'14.498"	319	3.02	Tabernacle, NJ	08088
16	808 Old Indian Mills Rd	39°51'20.279"	74°44'14.334"	319	4	Tabernacle, NJ	08088
17	810 Old Indian Mills Rd	39°51'19.414"	74°44'13.904"	319	5	Tabernacle, NJ	08088
18	812 Old Indian Mills Rd	39°51'18.427"	74°44'13.526"	319	6	Tabernacle, NJ	08088
19	814 Old Indian Mills Rd	39°51'17.439"	74°44'13.256"	319	7.03	Tabernacle, NJ	08088
20	816 Old Indian Mills Rd	39°51'16.533"	74°44'13.039"	319	7.02	Tabernacle, NJ	08088
21	818 Old Indian Mills Rd	39°51'15.504"	74°44'12.715"	319	7.01	Tabernacle, NJ	08088
22	822 Old Indian Mills Rd	39°51'13.823"	74°44'8.9153"	319	9	Tabernacle, NJ	08088
23	44 Hill Rd	39°51'25.355"	74°44'9.2218"	319	10	Tabernacle, NJ	08088
24	1555 Rt 206	39°51'25.463"	74°44'5.0835"	319	11	Tabernacle, NJ	08088
25	1543 Rt 206	39°51'20.565"	74°44'3.1907"	319	15	Tabernacle, NJ	08088
26	1541 Rt 206	39°51'18.888"	74°44'3.2601"	319	16	Tabernacle, NJ	08088
27	1537 Rt 206	39°51'17.442"	74°44'3.2552"	319	17	Tabernacle, NJ	08088
28	1531 Rt 206	39°51'13.567"	74°44'3.2420"	319	20	Tabernacle, NJ	08088
29	900 Old Indian Mills Rd	39°51'11.927"	74°44'9.3897"	320	1.01	Tabernacle, NJ	08088

Joan's Cleaners Tabernacle Township, New Jersey

Potable Well Receptor Table

INDEX	ADDRESS	LATITUDE	LONGITUDE	BLOCK	LOT	CITY AND STATE	ZIP CODE
30	904 Old Indian Mills Rd	39°51'9.8279"	74°44'9.0619"	320	1.02	Tabernacle, NJ	08088
31	906 Old Indian Mills Rd	39°51'8.2639"	74°44'8.7768"	320	2.02	Tabernacle, NJ	08088
32	1517 Rt 206	39°51'6.1318"	74°44'3.7058"	320	3	Tabernacle, NJ	08088
33	1511 Rt 206	39°51'3.0826"	74°44'4.3367"	320	4	Tabernacle, NJ	08088
34	1523 Rt 206	39°51'9.2001"	74°44'3.4148"	320	7	Tabernacle, NJ	08088
35	1521 Rt 206	39°51'8.1301"	74°44'3.4112"	320	2.03	Tabernacle, NJ	08088
36	1519 Rt 206	39°51'7.1943"	74°44'7.8774"	320	2.01	Tabernacle, NJ	08088
37	1513 Rt 206	39°51'4.1962"	74°44'3.8481"	320	9	Tabernacle, NJ	08088
38	920 Old Indian Mills Rd	39°51'2.2894"	74°44'9.6240"	204	1.01	Tabernacle, NJ	08088
39	1501 Rt 206	39°50'59.003"	74°44'5.1243"	204	2	Tabernacle, NJ	08088
40	1497 Rt 206	39°50'56.586"	74°44'5.7732"	204	3	Tabernacle, NJ	08088
41	82 Hawkin Rd	39°51'37.309"	74°43'52.908"	322	22	Tabernacle, NJ	08088
42	25 Richter Rd	39°51'36.181"	74°43'49.835"	322	23	Tabernacle, NJ	08088
43	1570 Rt 206	39°51'33.712"	74°44'0.2169"	323	4	Tabernacle, NJ	08088
44	1568 Rt 206	39°51'32.723"	74°44'0.1601"	323	5	Tabernacle, NJ	08088
45	1566 Rt 206	39°51'31.776"	74°44'0.2638"	323	6	Tabernacle, NJ	08088
46	83 Hawkin Rd	39°51'36.195"	74°43'53.813"	323	11	Tabernacle, NJ	08088
47	85 Hawkin Rd	39°51'35.458"	74°43'51.993"	323	12.01	Tabernacle, NJ	08088
48	31 Richter Rd	39°51'33.421"	74°43'50.387"	323	12.02	Tabernacle, NJ	08088
49	35 Richter Rd	39°51'31.960"	74°43'50.379"	323	14	Tabernacle, NJ	08088
50	37 Richter Rd	39°51'30.477"	74°43'50.908"	323	15.01	Tabernacle, NJ	08088
51	39 Richter Rd	39°51'29.566"	74°43'52.378"	323	15.02	Tabernacle, NJ	08088
52	21 Hill Rd	39°51'28.676"	74°43'54.379"	323	16.03	Tabernacle, NJ	08088
53	19 Hill Rd	39°51'28.621"	74°43'52.398"	323	16.02	Tabernacle, NJ	08088
54	17 Hill Road	39°51'27.760"	74°43'50.311"	323	16.01	Tabernacle, NJ	08088
55	49 Richter Rd	39°51'25.244"	74°43'50.975"	324	1.02	Tabernacle, NJ	08088
56	51 Richter Rd	39°51'24.173"	74°43'51.024"	324	1.03	Tabernacle, NJ	08088
57	1544 Rt 206	39°51'23.393"	74°44'0.2938"	324	4.01	Tabernacle, NJ	08088
58	1542 Rt 206	39°51'21.809"	74°44'0.4438"	324	4.02	Tabernacle, NJ	08088

Joan's Cleaners Tabernacle Township, New Jersey

Potable Well Receptor Table

INDEX	ADDRESS	LATITUDE	LONGITUDE	BLOCK	LOT	CITY AND STATE	ZIP CODE
59	1550 Rt 206	39°51'20.513"	74°44'0.4891"	324	2	Tabernacle, NJ	08088
60	1548 Rt 206	39°51'19.240"	74°44'0.4848"	324	3	Tabernacle, NJ	08088
61	1540 Rt 206	39°51'18.391"	74°44'0.5926"	324	5	Tabernacle, NJ	08088
62	1538 Rt 206	39°51'17.447"	74°44'0.5913"	324	6	Tabernacle, NJ	08088
63	1534 Rt 206	39°51'14.490"	74°44'0.7447"	324	8.01	Tabernacle, NJ	08088
64	53 Richter Rd	39°51'23.205"	74°43'50.941"	324	1.04	Tabernacle, NJ	08088
65	55 Richter Rd	39°51'22.196"	74°43'50.991"	324	9	Tabernacle, NJ	08088
66	57 Richter Rd	39°51'21.249"	74°43'50.961"	324	10	Tabernacle, NJ	08088
67	59 Richter Rd	39°51'20.281"	74°43'50.878"	324	11	Tabernacle, NJ	08088
68	61 Richter Rd	39°51'19.292"	74°43'50.981"	324	12	Tabernacle, NJ	08088
69	63 Richter Rd	39°51'18.345"	74°43'50.925"	324	13	Tabernacle, NJ	08088
70	65 Richter Rd	39°51'17.134"	74°43'50.650"	324	14	Tabernacle, NJ	08088
71	71 Richter Rd	39°51'14.199"	74°43'50.862"	324	16	Tabernacle, NJ	08088
72	25 Cramer Rd	39°51'13.360"	74°43'50.860"	324	17	Tabernacle, NJ	08088
73	1524 Rt 206	39°51'11.143"	74°44'0.7201"	325	2.01	Tabernacle, NJ	08088
74	1520 Rt 206	39°51'8.0319"	74°44'0.9870"	325	4	Tabernacle, NJ	08088
75	1516 Rt 206	39°51'5.5311"	74°44'1.5640"	325	6	Tabernacle, NJ	08088
76	1512 Rt 206	39°51'4.0763"	74°44'1.7751"	325	7	Tabernacle, NJ	08088
77	1510 Rt 206	39°51'3.1016"	74°44'1.7059"	325	8	Tabernacle, NJ	08088
78	26 Cramer Rd	39°51'11.914"	74°43'51.042"	325	9	Tabernacle, NJ	08088
79	79 Richter Rd	39°51'10.844"	74°43'51.114"	325	10	Tabernacle, NJ	08088
80	81 Richter Rd	39°51'9.8896"	74°43'51.186"	325	11	Tabernacle, NJ	08088
81	83 Richter Rd	39°51'8.9351"	74°43'51.257"	325	12	Tabernacle, NJ	08088
82	85 Richter Rd	39°51'7.8866"	74°43'51.207"	325	12.01	Tabernacle, NJ	08088
83	87 Richter Rd	39°51'6.8570"	74°43'51.150"	325	13	Tabernacle, NJ	08088
84	89 Richter Rd	39°51'5.8266"	74°43'51.521"	325	14	Tabernacle, NJ	08088
85	93 Richter Rd	39°51'4.2611"	74°43'51.676"	325	15.01	Tabernacle, NJ	08088
86	95 Richter Rd	39°51'2.9426"	74°43'51.939"	325	15.02	Tabernacle, NJ	08088
87	1508 Rt 206	39°51'2.0270"	74°44'1.8684"	903	16.02	Tabernacle, NJ	08088

Joan's Cleaners Tabernacle Township, New Jersey

Potable Well Receptor Table

INDEX	ADDRESS	LATITUDE	LONGITUDE	BLOCK	LOT	CITY AND STATE	ZIP CODE
88	1506 Rt 206	39°51'0.8833"	74°44'2.2252"	903	16.03	Tabernacle, NJ	08088
89	97 Richter Rd	39°51'1.8613"	74°43'51.969"	903	15.03	Tabernacle, NJ	08088
90	96 Richter Rd	39°51'1.7418"	74°43'49.924"	903	15.02	Tabernacle, NJ	08088
91	84 Hawkin Rd	39°51'35.357"	74°43'46.750"	326	13	Tabernacle, NJ	08088
92	86 Hawkin Rd	39°51'35.205"	74°43'45.667"	326	14	Tabernacle, NJ	08088
93	88 Hawkin Rd	39°51'35.293"	74°43'47.711"	326	15	Tabernacle, NJ	08088
94	90 Hawkin Rd	39°51'33.990"	74°43'43.789"	326	16	Tabernacle, NJ	08088
95	94 Hawkin Rd	39°51'33.790"	74°43'42.215"	326	17	Tabernacle, NJ	08088
96	96 Hawkin Rd	39°51'32.987"	74°43'40.286"	326	18	Tabernacle, NJ	08088
97	98 Hawkin Rd	39°51'31.359"	74°43'37.798"	326	19	Tabernacle, NJ	08088
98	34 Richter Rd	39°51'33.796"	74°43'47.877"	327	1.01	Tabernacle, NJ	08088
99	91 Richter Rd	39°51'33.058"	74°43'46.057"	327	1.02	Tabernacle, NJ	08088
100	93 Hawkin Rd	39°51'32.567"	74°43'44.559"	327	2	Tabernacle, NJ	08088
101	36 Richter Rd	39°51'30.603"	74°43'48.454"	327	5	Tabernacle, NJ	08088
102	38 Richter Rd	39°51'29.731"	74°43'48.615"	327	6.01	Tabernacle, NJ	08088
103	40 Richter Rd	39°51'29.058"	74°43'48.556"	327	6.02	Tabernacle, NJ	08088
104	42 Richter Rd	39°51'27.617"	74°43'48.498"	327	7.01	Tabernacle, NJ	08088
105	44 Richter Rd	39°51'26.608"	74°43'48.521"	327	7.02	Tabernacle, NJ	08088
106	97 Hawkin Rd	39°51'31.030"	74°43'40.867"	327	4	Tabernacle, NJ	08088
107	99 Hawkin Rd	39°51'30.061"	74°43'38.726"	327	9	Tabernacle, NJ	08088
108	48 Richter Rd	39°51'24.487"	74°43'48.434"	328	1	Tabernacle, NJ	08088
109	52 Richter Rd	39°51'23.107"	74°43'48.616"	328	2	Tabernacle, NJ	08088
110	54 Richter Rd	39°51'21.315"	74°43'48.583"	328	3	Tabernacle, NJ	08088
111	58 Richter Rd	39°51'20.285"	74°43'48.633"	328	4	Tabernacle, NJ	08088
112	60 Richter Rd	39°51'19.235"	74°43'48.683"	328	5	Tabernacle, NJ	08088
113	62 Richter Rd	39°51'18.082"	74°43'48.760"	328	6.01	Tabernacle, NJ	08088
114	64 Richter Rd	39°51'17.123"	74°43'48.846"	328	6.02	Tabernacle, NJ	08088
115	66 Richter Rd	39°51'16.123"	74°43'49.010"	328	7	Tabernacle, NJ	08088
116	68 Richter Rd	39°51'15.186"	74°43'48.915"	328	8	Tabernacle, NJ	08088

Joan's Cleaners Tabernacle Township, New Jersey

Potable Well Receptor Table

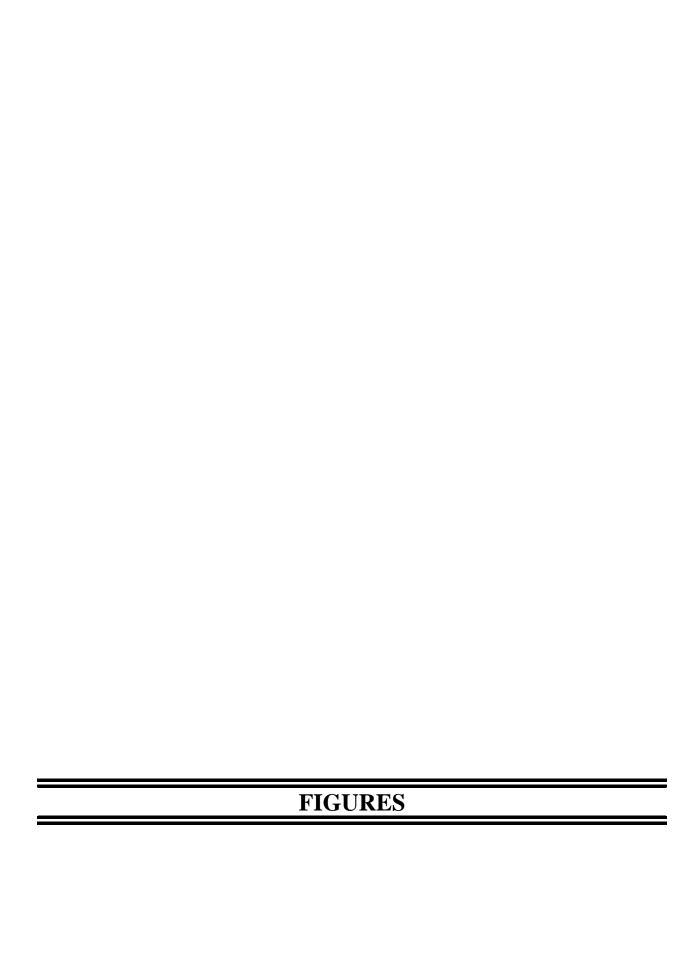
INDEX	ADDRESS	LATITUDE	LONGITUDE	BLOCK	LOT	CITY AND STATE	ZIP CODE
117	70 Richter Rd	39°51'14.289"	74°43'48.987"	328	9	Tabernacle, NJ	08088
118	17 Cramer Rd	39°51'13.335"	74°43'49.059"	328	10	Tabernacle, NJ	08088
119	14 Hill Rd	39°51'23.817"	74°43'43.301"	328	11.02	Tabernacle, NJ	08088
120	12 Hill Rd	39°51'22.314"	74°43'43.190"	328	11.01	Tabernacle, NJ	08088
121	10 Hill Rd	39°51'24.606"	74°43'40.151"	328	12	Tabernacle, NJ	08088
122	5 Wynn Rd	39°51'21.025"	74°43'38.884"	328	14.01	Tabernacle, NJ	08088
123	7 Wynn Rd	39°51'20.140"	74°43'38.988"	328	14.02	Tabernacle, NJ	08088
124	11 Wynn Rd	39°51'18.595"	74°43'39.009"	328	15	Tabernacle, NJ	08088
125	13 Wynn Rd	39°51'16.968"	74°43'39.057"	328	16	Tabernacle, NJ	08088
126	15 Wynn Rd	39°51'16.021"	74°43'39.108"	328	17	Tabernacle, NJ	08088
127	17 Wynn Rd	39°51'15.061"	74°43'39.229"	328	18	Tabernacle, NJ	08088
128	19 Wynn Rd	39°51'14.085"	74°43'39.128"	328	19	Tabernacle, NJ	08088
129	13 Cramer Rd	39°51'13.009"	74°43'39.151"	328	20	Tabernacle, NJ	08088
130	76 Richter Rd	39°51'11.844"	74°43'49.076"	329	1	Tabernacle, NJ	08088
131	78 Richard Rd	39°51'10.819"	74°43'49.125"	329	2	Tabernacle, NJ	08088
132	80 Richter Rd	39°51'9.8356"	74°43'49.234"	329	3	Tabernacle, NJ	08088
133	82 Richter Rd	39°51'8.7946"	74°43'49.193"	329	4	Tabernacle, NJ	08088
134	84 Richter Rd	39°51'7.7976"	74°43'49.343"	329	5	Tabernacle, NJ	08088
135	86 Richter Rd	39°51'6.7472"	74°43'49.380"	329	6	Tabernacle, NJ	08088
136	88 Richter Rd	39°51'5.8514"	74°43'49.377"	329	7	Tabernacle, NJ	08088
137	90 Richter Rd	39°51'4.2760"	74°43'49.372"	329	8	Tabernacle, NJ	08088
138	94 Richter Rd	39°51'2.7003"	74°43'49.487"	329	9	Tabernacle, NJ	08088
139	14 Cramer Rd	39°51'11.250"	74°43'39.199"	329	11	Tabernacle, NJ	08088
140	27 Wynn Rd	39°51'9.1285"	74°43'39.245"	329	12	Tabernacle, NJ	08088
141	29 Wynn Rd	39°51'6.5196"	74°43'39.440"	329	13	Tabernacle, NJ	08088
142	33 Wynn Rd	39°51'4.6658"	74°43'39.634"	329	14	Tabernacle, NJ	08088
143	35 Wynn Rd	39°51'3.6461"	74°43'39.751"	329	15.01	Tabernacle, NJ	08088
144	37 Wynn Rd	39°51'2.4102"	74°43'39.907"	329	15.02	Tabernacle, NJ	08088
145	75 Carranza Rd	39°51'37.718″	74°43'32.526"	904	1.07	Tabernacle, NJ	08088

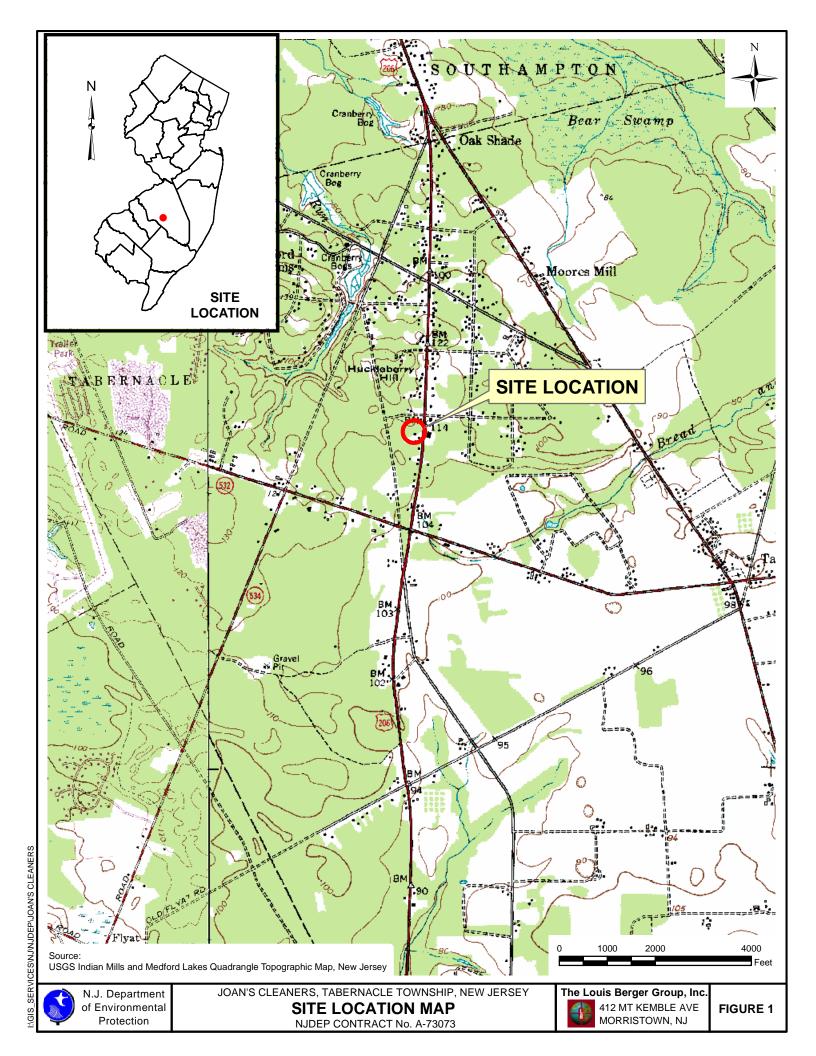
Joan's Cleaners Tabernacle Township, New Jersey

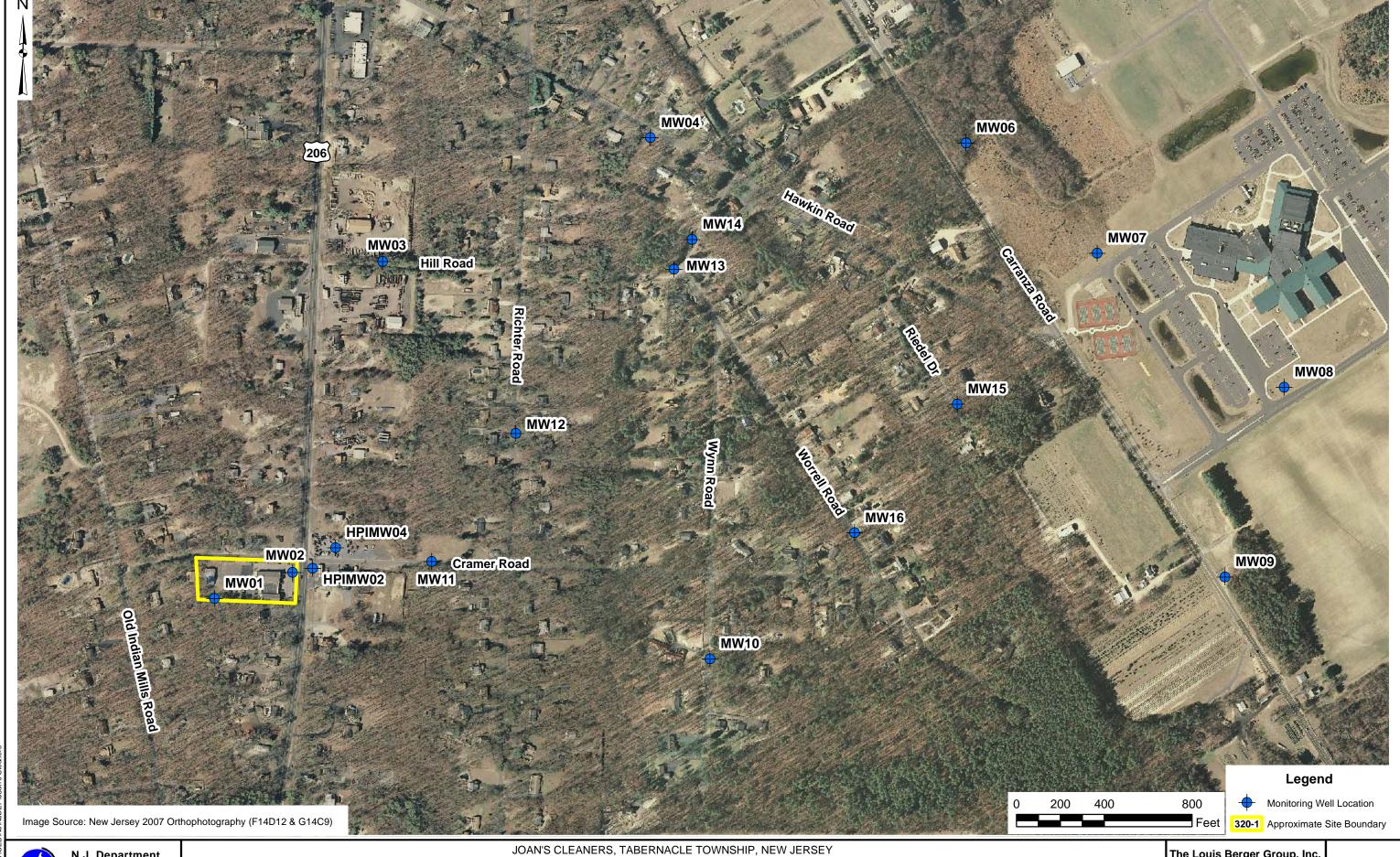
Potable Well Receptor Table

INDEX	ADDRESS	LATITUDE	LONGITUDE	BLOCK	LOT	CITY AND STATE	ZIP CODE
146	77 Carranza Rd	39°51'36.279"	74°43'31.158"	904	1.08	Tabernacle, NJ	08088
147	100 Hawkin Rd	39°51'32.661"	74°43'35.077"	904	1.09	Tabernacle, NJ	08088
148	89 Carranza Rd	39°51'26.877"	74°43'22.874"	904	2.01	Tabernacle, NJ	08088
149	114 Hawkin Rd	39°51'25.991"	74°43'21.902"	904	2.02	Tabernacle, NJ	08088
150	104 Hawkin Rd	39°51'32.300"	74°43'33.603"	904	3	Tabernacle, NJ	08088
151	106 Hawkin Rd	39°51'31.502"	74°43'31.089"	904	4	Tabernacle, NJ	08088
152	110 Hawkin Rd	39°51'27.144"	74°43'27.174"	904	5	Tabernacle, NJ	08088
153	101 Hawkin Rd	39°51'26.035"	74°43'35.908"	330	1.01	Tabernacle, NJ	08088
154	4 Worrell Rd	39°51'25.957"	74°43'33.663"	330	1.02	Tabernacle, NJ	08088
155	2 Worrell Rd	39°51'24.713"	74°43'37.934"	330	2	Tabernacle, NJ	08088
156	6 Worrell Rd	39°51'24.991"	74°43'32.965"	330	3	Tabernacle, NJ	08088
157	8 Worrell Rd	39°51'24.065"	74°43'32.534"	330	4	Tabernacle, NJ	08088
158	10 Worrell Rd	39°51'23.304"	74°43'31.864"	330	5	Tabernacle, NJ	08088
159	12 Worrell Rd	39°51'22.399"	74°43'31.220"	330	6	Tabernacle, NJ	08088
160	14 Worrell Rd	39°51'21.595"	74°43'30.556"	330	7	Tabernacle, NJ	08088
161	16 Worrell Rd	39°51'20.796"	74°43'29.772"	330	8	Tabernacle, NJ	08088
162	18 Worrell Rd	39°51'20.138"	74°43'29.155"	330	9.01	Tabernacle, NJ	08088
163	20 Worrell Rd	39°51'19.110"	74°43'28.297"	330	9.02	Tabernacle, NJ	08088
164	22 Worrell Rd	39°51'18.329"	74°43'27.600"	330	9.03	Tabernacle, NJ	08088
165	26 Worrell Rd	39°51'16.723"	74°43'26.292"	330	10.01	Tabernacle, NJ	08088
166	24 Worrell Rd	39°51'17.536"	74°43'26.952"	330	10.02	Tabernacle, NJ	08088
167	28 Worrell Rd	39°51'15.644"	74°43'25.156"	330	11	Tabernacle, NJ	08088
168	30 Worrell Rd	39°51'14.350"	74°43'23.961"	330	12.01	Tabernacle, NJ	08088
169	32 Worrell Rd	39°51'13.547"	74°43'23.171"	330	12.02	Tabernacle, NJ	08088
170	34 Worrell Rd	39°51'12.716"	74°43'22.473"	330	12.03	Tabernacle, NJ	08088
171	36 Worrell Rd	39°51'11.737"	74°43'21.829"	330	13	Tabernacle, NJ	08088
172	105 Hawkin Rd	39°51'26.453"	74°43'32.703"	903	1	Tabernacle, NJ	08088
173	109 Hawkin Rd	39°51'25.117"	74°43'31.442"	903	2	Tabernacle, NJ	08088
174	111 Hawkin Rd	39°51'24.131"	74°43'30.504"	903	3	Tabernacle, NJ	08088

Joan's Cleaners Tabernacle Township, New Jersey

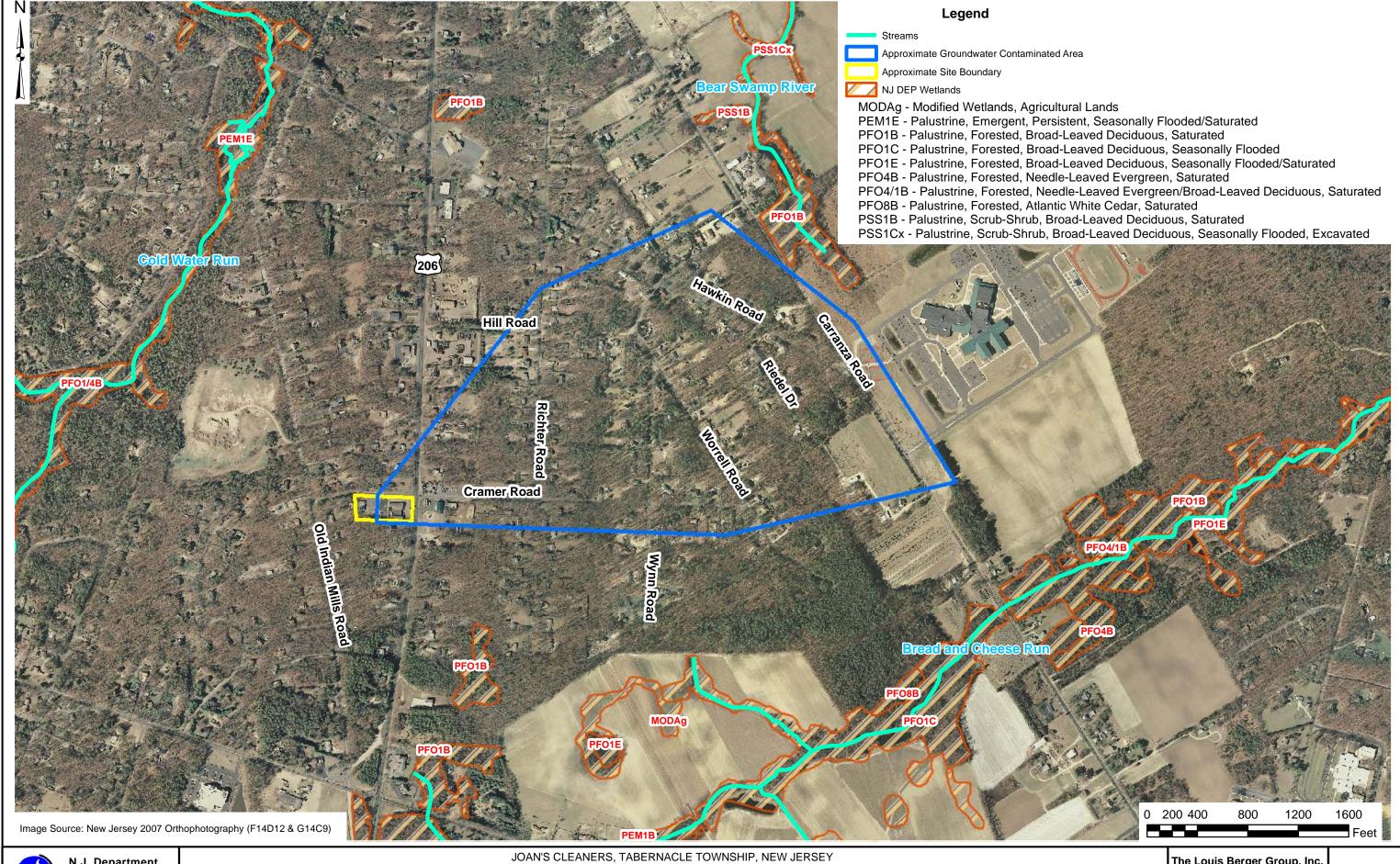

Potable Well Receptor Table

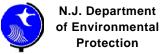

INDEX	ADDRESS	LATITUDE	LONGITUDE	BLOCK	LOT	CITY AND STATE	ZIP CODE
175	3 Riedel Dr	39°51'22.465"	74°43'29.002"	903	4	Tabernacle, NJ	08088
176	5 Riedel Dr	39°51'21.167"	74°43'28.030"	903	5	Tabernacle, NJ	08088
177	7 Riedel Dr	39°51'19.718"	74°43'26.983"	903	6	Tabernacle, NJ	08088
178	4 Riedel Dr	39°51'22.391"	74°43'24.674"	903	7.01	Tabernacle, NJ	08088
179	117 Hawkin Rd	39°51'25.063"	74°43'25.919"	903	7.02	Tabernacle, NJ	08088
180	6 Riedel Dr	39°51'20.673"	74°43'23.435"	903	8	Tabernacle, NJ	08088
181	119 Hawkin Rd	39°51'19.736"	74°43'17.246"	903	9.01	Tabernacle, NJ	08088
182	9 Riedel Rd	39°51'17.226"	74°43'21.726"	903	9.02	Tabernacle, NJ	08088
183	9 Worrell Rd	39°51'21.441"	74°43'36.988"	331	1.01	Tabernacle, NJ	08088
184	12 Wynn Rd	39°51'19.258"	74°43'37.008"	331	1.02	Tabernacle, NJ	08088
185	14 Wynn Rd	39°51'16.440"	74°43'37.108"	331	2.01	Tabernacle, NJ	08088
186	16 Wynn Rd	39°51'14.954"	74°43'37.047"	331	2.02	Tabernacle, NJ	08088
187	18 Wynn Rd	39°51'13.814"	74°43'37.180"	331	3.01	Tabernacle, NJ	08088
188	11 Cramer Rd	39°51'12.908"	74°43'33.966"	331	3.02	Tabernacle, NJ	08088
189	5 Cramer Rd	39°51'12.977"	74°43'30.358"	331	4	Tabernacle, NJ	08088
190	12 Cramer Rd	39°51'11.684"	74°43'36.531"	332	1.01	Tabernacle, NJ	08088
191	10 Cramer Rd	39°51'11.713"	74°43'33.989"	332	1.02	Tabernacle, NJ	08088
192	8 Cramer Rd	39°51'11.631"	74°43'31.722"	332	1.03	Tabernacle, NJ	08088
193	4 Cramer Rd	39°51'9.7682"	74°43'36.846"	332	1.04	Tabernacle, NJ	08088
194	26 Wynn Rd	39°51'9.3048"	74°43'36.884"	332	2	Tabernacle, NJ	08088
195	28 Wynn Rd	39°51'8.1308"	74°43'36.961"	332	3	Tabernacle, NJ	08088
196	30 Wynn Rd	39°51'5.6904"	74°43'36.953"	332	4	Tabernacle, NJ	08088
197	34 Wynn Rd	39°51'11.389"	74°43'29.036"	332	6	Tabernacle, NJ	08088
198	31 Worrell Rd	39°51'9.3544"	74°43'27.186"	332	7.01	Tabernacle, NJ	08088
199	33 Worrell Rd	39°51'8.3614"	74°43'29.125"	332	7.02	Tabernacle, NJ	08088
200	80 Carranza Rd	39°51'35.673"	74°43'27.271"	401	8.02	Tabernacle, NJ	08088

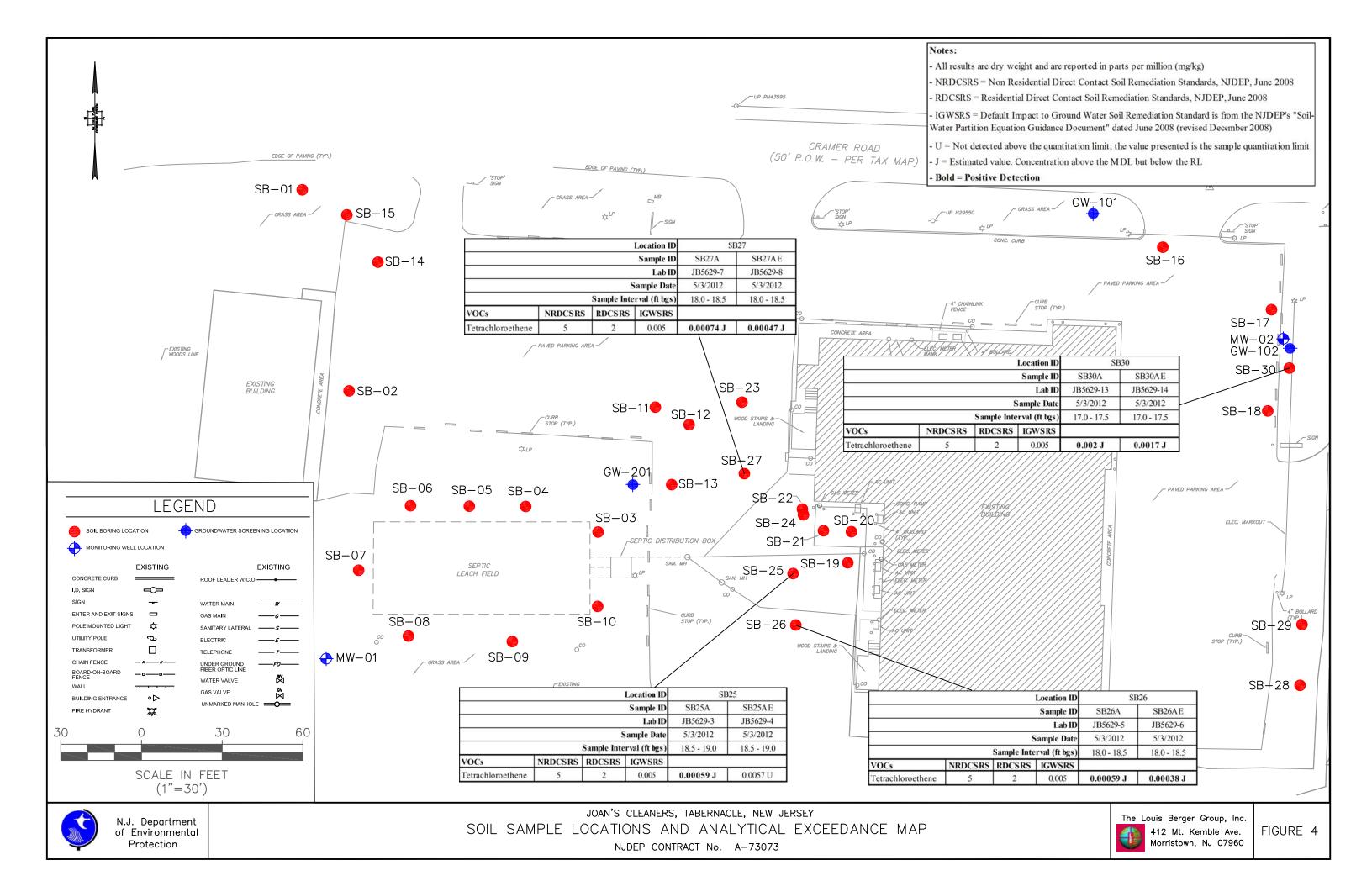

Joan's Cleaners Tabernacle Township, New Jersey

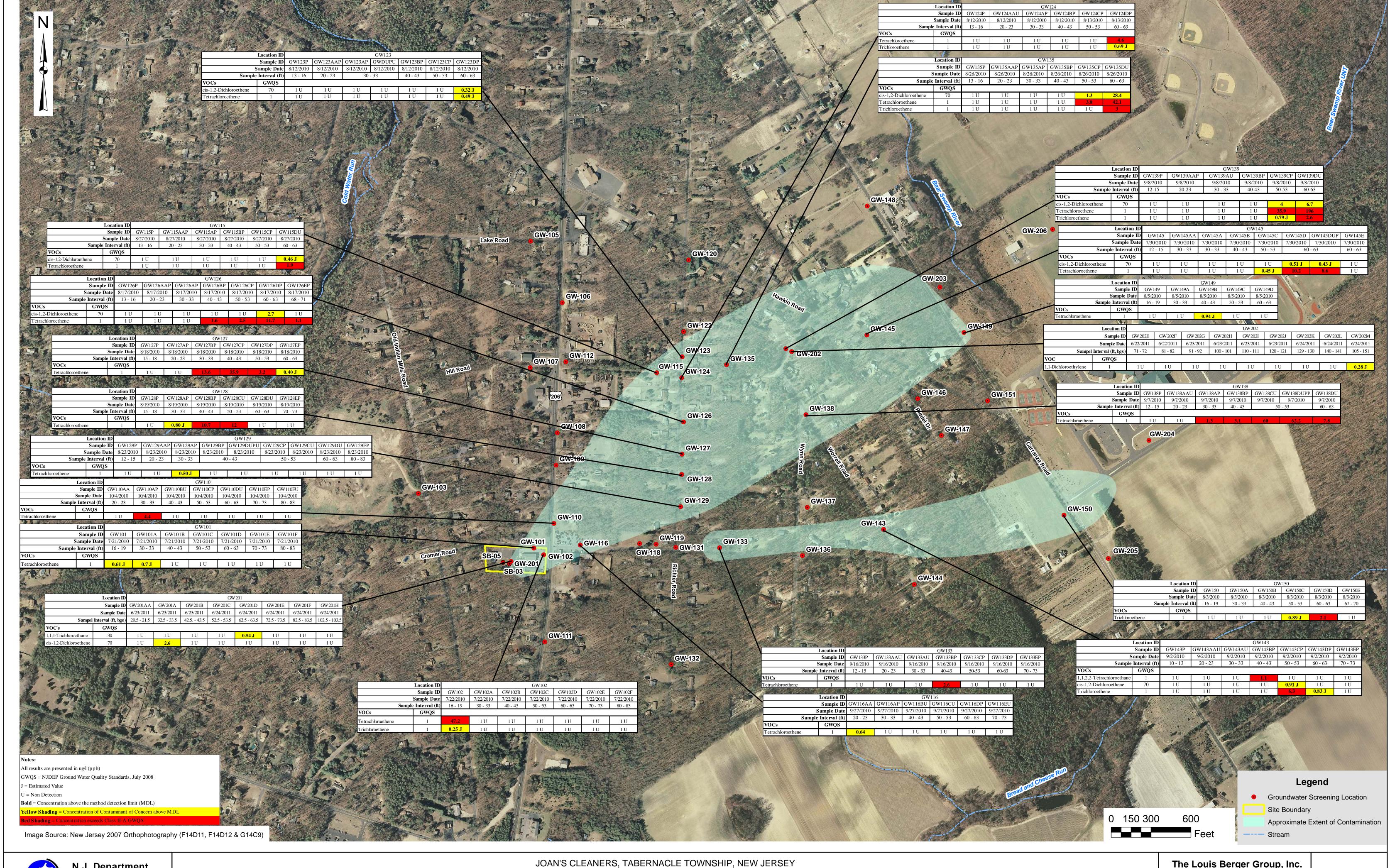
Potable Well Receptor Table

INDEX	ADDRESS	LATITUDE	LONGITUDE	BLOCK	LOT	CITY AND STATE	ZIP CODE
201	Oak Shade Rd	39°51'16.815"	74°44'15.979"	203	1	Tabernacle, NJ	08088
202	909 Old Indian Mills Rd	39°51'8.5835"	74°44'13.386"	203	24	Tabernacle, NJ	08088
203	1565 Rt 206	39°51'31.959"	74°44'2.2969"	317	14	Tabernacle, NJ	08088
204	1563 Rt 206	39°51'29.775"	74°44'2.7705"	317	15	Tabernacle, NJ	08088
205	1557 Rt 206	39°51'26.810"	74°44'2.4398"	317	18	Tabernacle, NJ	08088
206	1553 Rt 206	39°51'25.532"	74°44'3.2371"	319	12	Tabernacle, NJ	08088
207	1545 Rt 206	39°51'21.414"	74°44'2.8491"	319	14	Tabernacle, NJ	08088
208	1535 Rt 206	39°51'16.471"	74°44'2.8858"	319	18	Tabernacle, NJ	08088
209	820 Old Indian Mills Rd	39°51'15.175"	74°44'8.8379"	319	8	Tabernacle, NJ	08088
210	1533 Rt 206	39°51'14.984"	74°44'3.1718"	319	19	Tabernacle, NJ	08088
211	1529 Rt 206	39°51'11.570"	74°44'2.9761"	320	5	Tabernacle, NJ	08088
212	1525 Rt 206	39°51'10.183"	74°44'3.3807"	320	6	Tabernacle, NJ	08088
213	1507 Rt 206	39°51'1.7643"	74°44'4.4925"	204	1.02	Tabernacle, NJ	08088
214	1576 Rt 206	39°51'36.718"	74°44'0.2270"	323	2	Tabernacle, NJ	08088
215	81 Hawkin Rd	39°51'37.344"	74°43'56.114"	323	1	Tabernacle, NJ	08088
216	1572 Rt 206	39°51'34.700"	74°44'0.2202"	323	3	Tabernacle, NJ	08088
217	N/A	39°51'30.747"	74°44'0.1534"	323	7	Tabernacle, NJ	08088
218	1562 Rt 206	39°51'29.183"	74°43'59.720"	323	8	Tabernacle, NJ	08088
219	1558 Rt 206	39°51'27.74"	74°44'0.5173"	323	9	Tabernacle, NJ	08088
220	N/A	39°51'26.792"	74°44'0.4607"	323	10	Tabernacle, NJ	08088
221	1554 Rt 206	39°51'25.019"	74°44'0.4061"	324	1.01	Tabernacle, NJ	08088
222	1536 Rt 206	39°51'16.414"	74°44'0.6928"	324	7	Tabernacle, NJ	08088
223	1530 Rt 206	39°51'13.407"	74°44'0.7895"	324	8.02	Tabernacle, NJ	08088
224	1528 Rt 206	39°51'12.108"	74°44'1.3214"	325	1.01	Tabernacle, NJ	08088
225	32 Cramer Rd	39°51'12.276"	74°43'59.718"	325	1.02	Tabernacle, NJ	08088
226	30 Cramer Rd	39°51'12.241"	74°43'56.619"	325	1.03	Tabernacle, NJ	08088
227	N/A	39°51'10.923"	74°43'56.828"	325	2.02	Tabernacle, NJ	08088
228	1522 Rt 206	39°51'8.9789"	74°44'1.1505"	325	3	Tabernacle, NJ	08088
229	1500 Rt 206	39°50'57.080"	74°44'3.7352"	903	16.01	Tabernacle, NJ	08088
230	13 Hill Rd	39°51'27.240"	74°43'42.955"	327	8	Tabernacle, NJ	08088
231	78 Carranza Rd	39°51'39.312"	74°43'30.169"	401	11	Tabernacle, NJ	08088
232	79 Carranza Rd	39°51'34.943"	74°43'30.112"	904	1.10	Tabernacle, NJ	08088
233	86 Carranza Rd	39°51'35.571"	74°43'15.767"	401	12.05	Tabernacle, NJ	08088
234	Carranza Rd	39°51'23.508"	74°42'58.626"	401	12.01	Tabernacle, NJ	08088

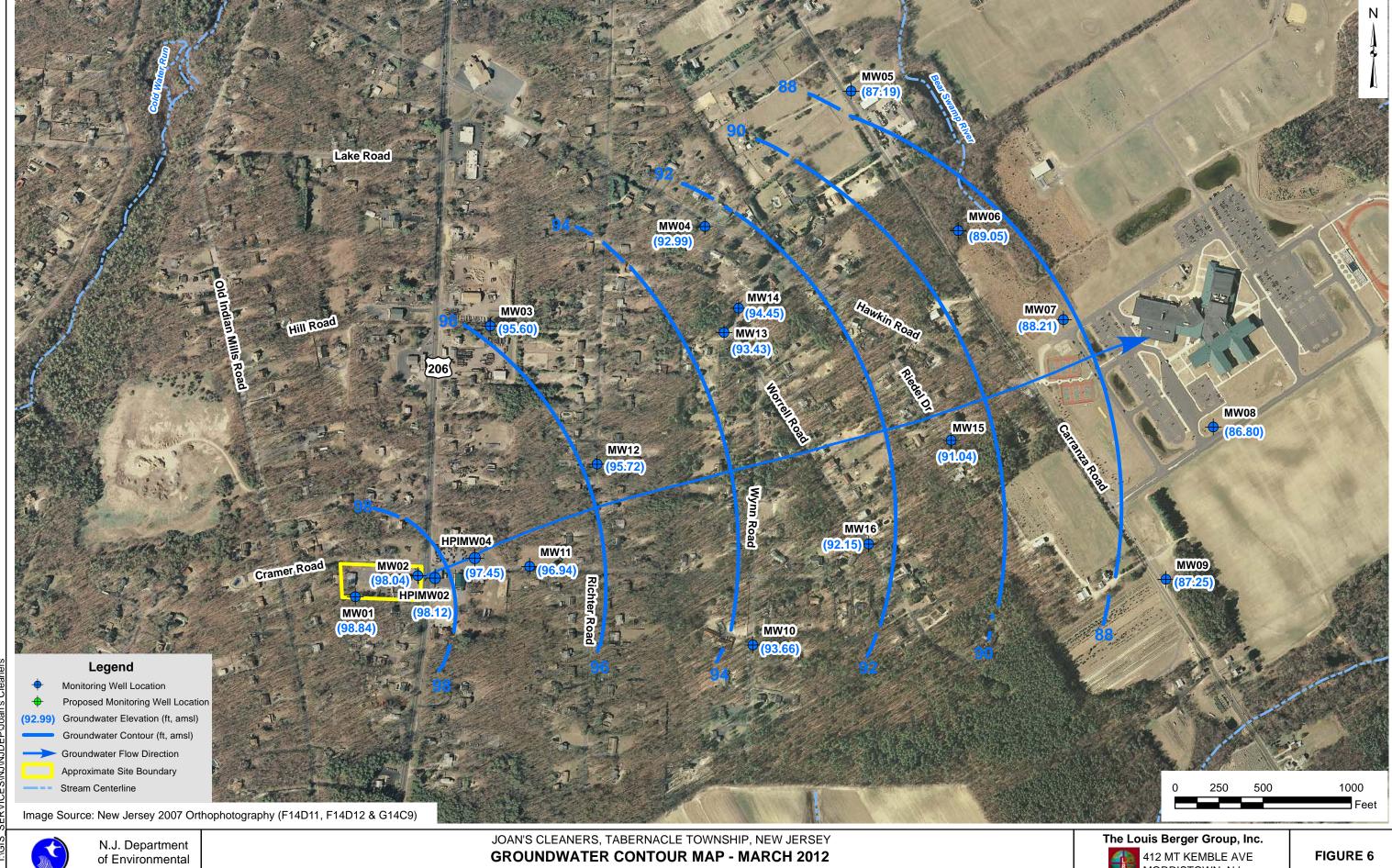


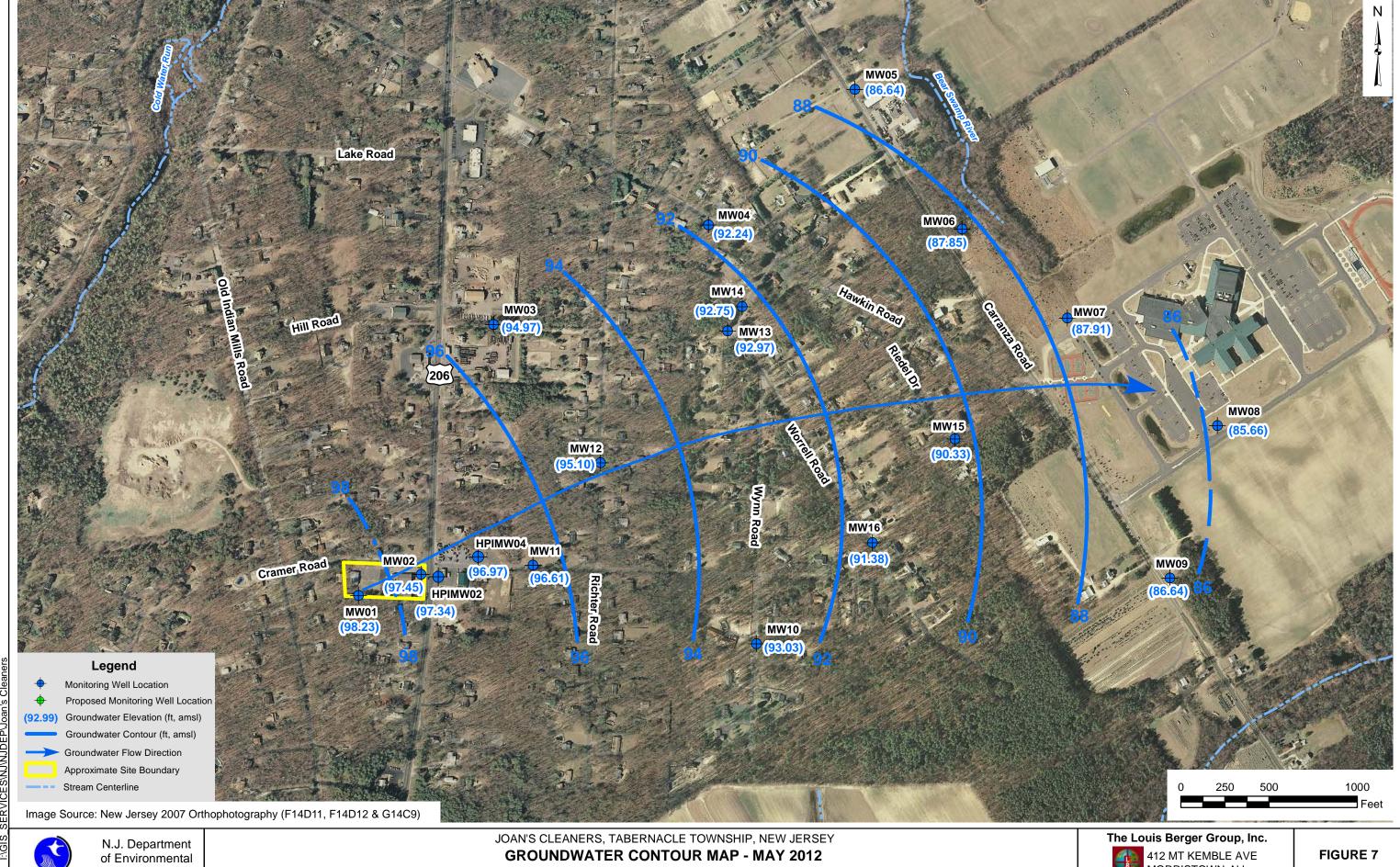

N.J. Department of Environmental Protection


SITE PLAN

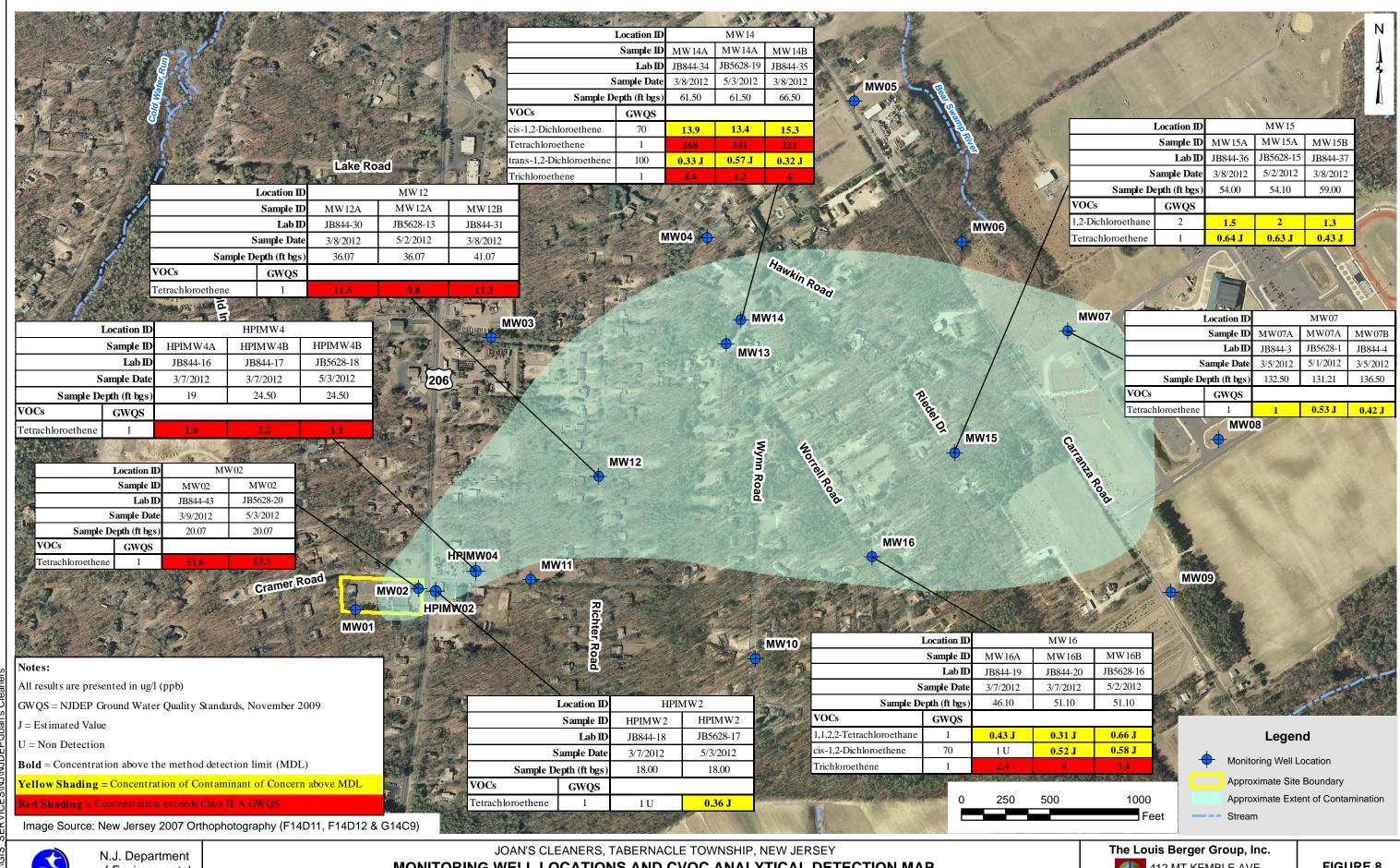

NJDEP CONTRACT No.A-60243

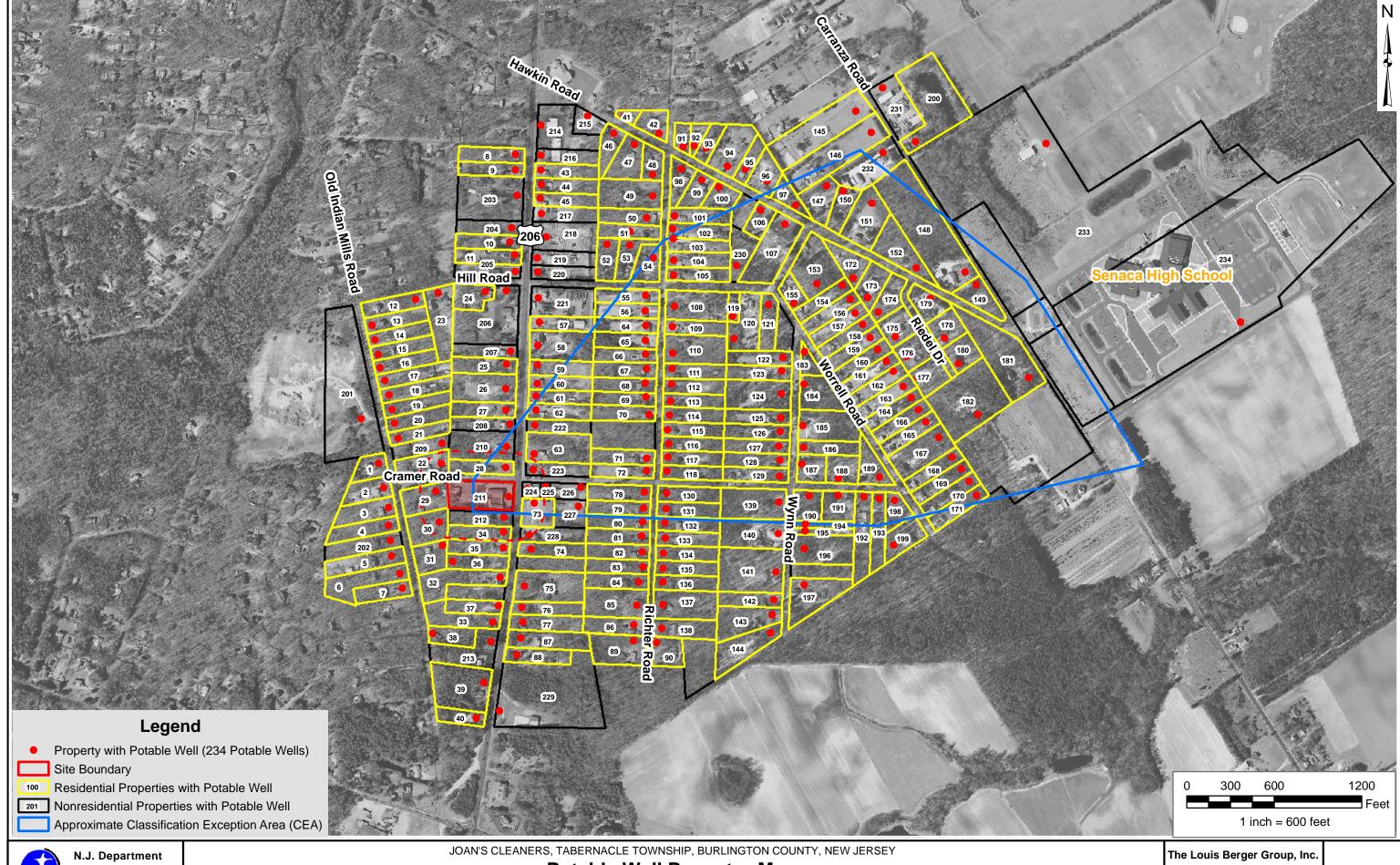
The Louis Berger Group, Inc.
412 MT KEMBLE AVE
MORRISTOWN, NJ





N.J. Department of Environmental Protection


FIGURE 5


Protection

Protection

of Environmental Protection

of Environmental Protection

Potable Well Receptor Map

NJDEP CONTRACT No. A-73073

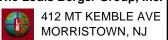
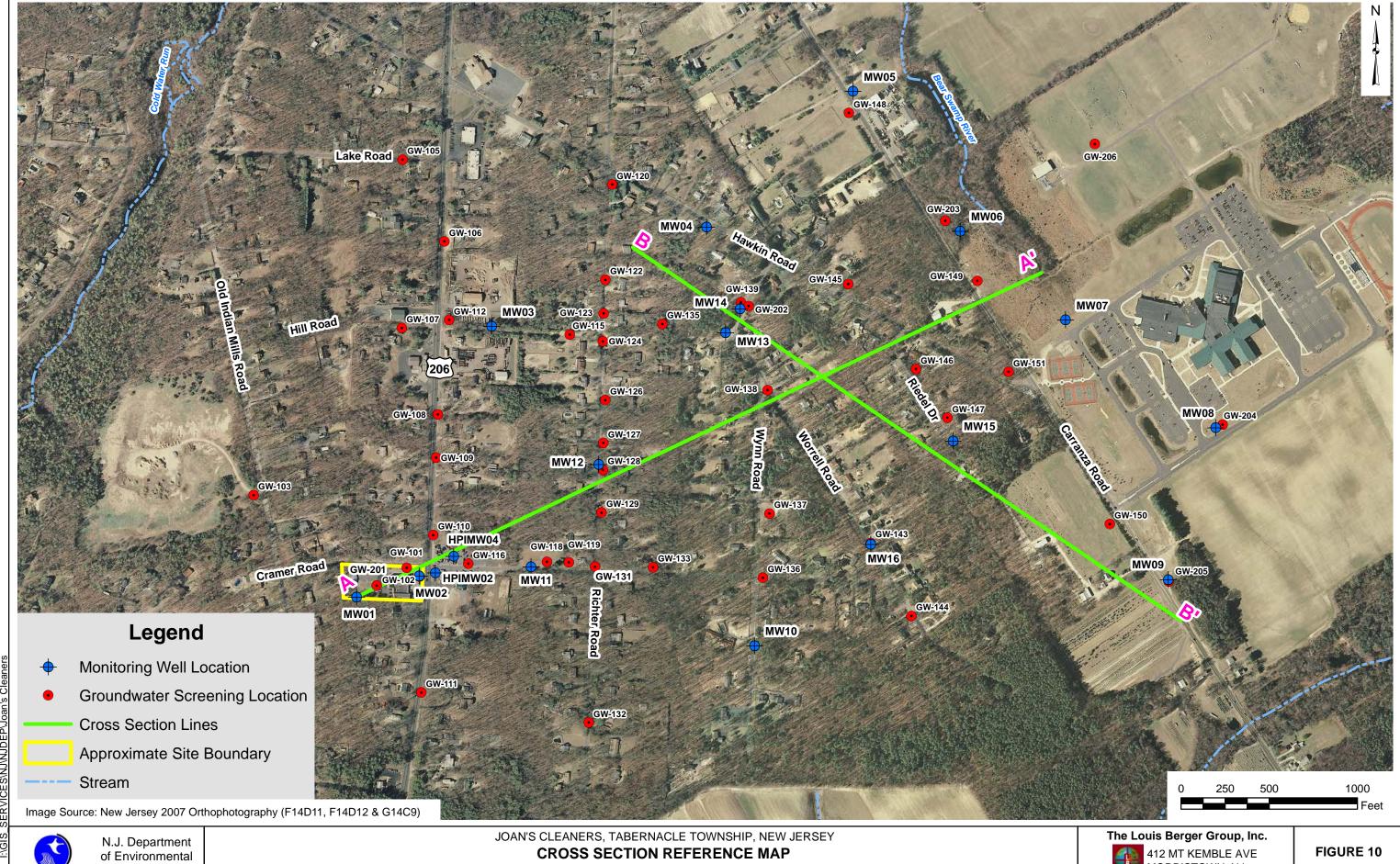
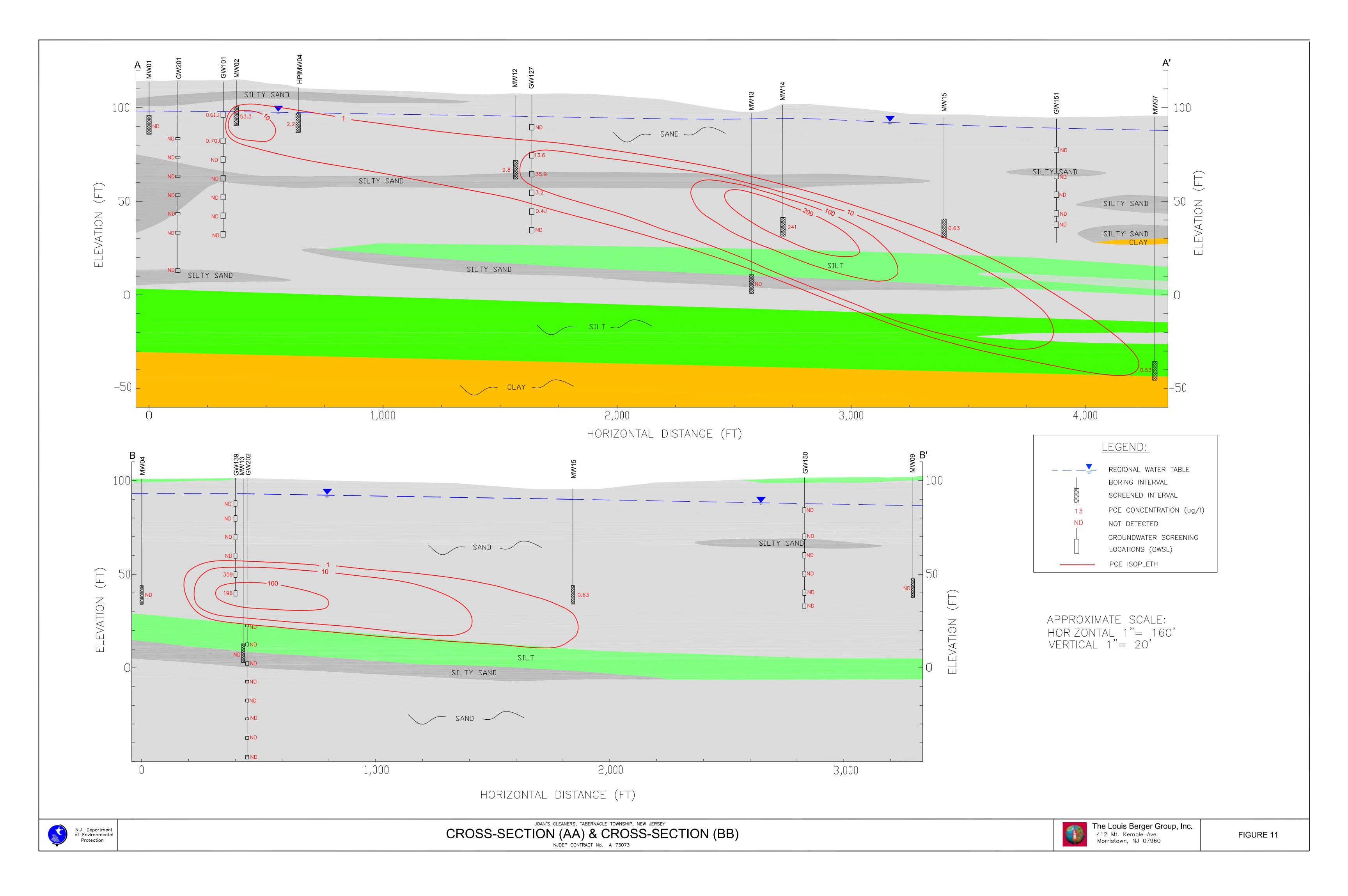




FIGURE 9

Protection

Submitted By:

412 Mount Kemble Avenue Morristown, New Jersey 07960