Safe Drinking Water Act Violations 2004

New Jersey Department of Environmental Protection Water Supply Administration Bureau of Safe Drinking Water

Chris Christie, Governor Bob Martin, Commissioner

Table of Contents

	Page
Introduction	1
The Drinking Water Program: An Overview	1
Annual State PWS Reports	1
Public Water Systems	2
Maximum Contaminant Level	2
Treatment Techniques	3
Variances and Exemptions	3
Monitoring	4
Significant Consumer Notification	4
Violations	
Additional Monitoring in New Jersey	4
Summary of Violation Data	5
Microbiological	5 5
Organic Chemicals	6
Inorganic Chemicals (IOC)	8
Lead and Copper Rule	9
Radiological Rule	9
Consumer Notification Violations	9
Summary	9

Tables

		Page					
Table 1	Table 1 Public Water Systems In New Jersey						
Table 2	Volatile Organic and Synthetic Organic Compounds Regulated						
	Differently as Primary Contaminants by NJDEP and USEPA	3					
Table 3	·						
	Contaminants by NJDEP that are not Federally Regulated	3					
Table 4	Total Coliform Rule MCL Violations for all Public Water						
	Systems	5					
Table 5	Total Coliform Rule Monitoring/Reporting Violations for all						
	Public Water Systems	6					
Table 6	Volatile Organic Compound Monitoring/Reporting Violations	7					
Table 7	Nitrate MCL and Monitoring/Reporting Violations	8					
Table 8	Violations Table	11					
Table 9	Table 9 Additional Monitoring in New Jersey						
	Appendices						
		Page					
Appendix A	A Safe Drinking Water Act Requirements	33					
Appendix I	Community Water System 2004 MCL and Treatment						
	Technique Violations	34					
Appendix C	Community Water System 2004 Action Level Violations	36					
Appendix I	Noncommunity Water System 2004 MCL Violations	37					
Appendix E	E Noncommunity Water System 2004 Action Level						
	Violations	42					
Appendix F	•	43					
Appendix (· · · · · · · · · · · · · · · · · · ·	44					
Appendix I	H Instructions for Finding Status of Violations	45					

Introduction

The federal Safe Drinking Water Act in Section 1414(c)(3)(A) requires States to prepare an annual report on violations of the national primary drinking water regulations by public water systems. This report covers the period of January 1, 2004 to December 31, 2004.

This report includes violations of (a) maximum contaminant levels, (b) treatment technique requirements, (c) variances and exemptions, and (d) monitoring requirements determined to be significant by the Administrator of the U.S. Environmental Protection Agency (USEPA). The statutory language requiring an Annual Report by states and distribution of report summaries appears in Appendix A.

No new regulations were put into effect in 2004.

The Drinking Water Program: An Overview

Under the Safe Drinking Water Act of 1974, and subsequent 1986 and 1996 Amendments, USEPA sets national limits on contaminant levels in drinking water to ensure drinking water is safe for human consumption. These limits are known as Maximum Contaminant Levels (MCLs). USEPA establishes treatment techniques instead of an MCL to control unacceptable levels of some contaminants. USEPA also regulates how often public water systems (PWSs) monitor their water for contaminants and report the monitoring results to the States or USEPA. Generally, the larger the population served by a water system, the more frequently monitoring/reporting (M/R) must occur. Finally, the USEPA requires public notification, including a clear and understandable explanation of the nature of the violation, its potential adverse health effects, what the PWS is doing to correct the violation, and the possibility of alternative water supplies during the violation.

The Safe Drinking Water Act allows States and Territories to seek USEPA approval to regulate PWSs themselves, an authority called primacy. To receive primacy, States must meet certain requirements, including adoption of drinking water regulations at least as strict as Federal regulations and demonstration they can enforce requirements. Of the 57 States and Territories, all but Wyoming and the District of Columbia have primacy.

The Water Supply Operations Element, including the Bureau of Safe Drinking Water Implementation and Bureau of Safe Drinking Water Technical Assistance (formerly the Bureau of Safe Drinking Water and the Bureau of Loans and Data Management), within the New Jersey Department of Environmental Protection (NJDEP) has responsibility under the Federal Safe Drinking Water Act and the New Jersey Safe Drinking Water Act to assure safe drinking water for both citizens of New Jersey and visitors.

Annual State PWS Reports

The annual compliance summary report States are required to submit to USEPA provides annual numbers of violations for each of four categories (MCLs, treatment techniques, variances and exemptions, and significant monitoring violations), as well as names of the

systems with violations. USEPA stores these data in the Safe Drinking Water Information System (SDWIS), on which this report is based.

Public Water Systems

A Public Water System (PWS) provides water for human consumption to at least 15 service connections or serves an average of at least 25 people for at least 60 days each year. There are three types of PWSs: community (CWS--such as towns), nontransient noncommunity (NTNC--such as schools or factories with their own wells), or transient noncommunity systems (TNC--such as rest stops or parks with their own wells). When "PWS" is used in this report, it means systems of all types unless specified otherwise.

At the end of 2004, New Jersey listed 4,116 (estimated) public water systems in its inventory. These included an estimated 611 community water systems, 868 nontransient noncommunity water systems, and 2,637 transient noncommunity water systems. The number of systems constantly changes due to mergers, opening and closing of businesses, hookups of NTNC or TNC with community water systems, or changes in use that result in fewer than 25 people being served. Table 1 depicts changes in the number of public water systems since 1996; numbers for 2004 are estimated:

Table 1: Public Water Systems in New Jersey

Year	Community Water Systems	Nontransient Noncommunity Water Systems	Transient Noncommunity Water Systems	Total
2004	611	868	2,637	4116
2003	609	867	2,649	4125
2002	604	884	2,650	4138
2001	606	891	2,689	4186
2000	606	936	2,707	4249
1999	616	968	2,839	4423
1998	615	962	2,887	4464
1997	612	1034	3,066	4712
1996	612	1038	3,090	4740

Maximum Contaminant Level

USEPA sets national limits on contaminant levels, known as Maximum Contaminant Levels (MCLs), in drinking water to ensure it is safe for human consumption.

The New Jersey Safe Drinking Water Act outlines procedures for setting State drinking water standards, which must be equal to or stricter than federal standards. As a result, twelve volatile organic compounds and one synthetic organic compound have New Jersey MCLs stricter than federal MCLs (Table 2).

Table 2: Volatile Organic and Synthetic Organic Compounds Regulated Differently as Primary Contaminants by NJDEP and USEPA

Contaminant	New Jersey MCL (ug/l)	USEPA MCL (ug/l)
Benzene	1	5
Carbon Tetrachloride	2	5
Chlordane	0.5	2
1,2-Dichloroethane	2	5
1,2-Dichloroethylene	2	7
Methylene Chloride	3	5
Monochlorobenzene	50	100
Tetrachloroethylene	1	5
1,2,4-Trichlorobenzene	9	70
1,1,1-Trichloroethane	30	200
1,1,2-Trichloroethane	3	5
Trichloroethylene	1	5
Xylenes	1,000	10,000

In addition, five volatile organic compounds regulated as primary contaminants by New Jersey are not federally regulated (Table 3). The remaining USEPA-regulated compounds share the same MCL, federal or state.

Table 3: Volatile Organic Compounds Regulated as Primary Contaminants by NJDEP but not Federally Regulated

Contaminant	New Jersey MCL (ug/l)
1,3-Dichlorobenzene	600
1,1-Dichloroethylene	50
Methyl Tertiary Butyl Ether	70
Naphthalene	300
1,1,2,2-Tetrachloroethane	1

All regulated contaminants and their federal and state MCLs appear in Table 8.

Treatment Techniques

For some contaminants, USEPA establishes treatment techniques instead of an MCL to control unacceptable levels of certain contaminants. For example, treatment techniques have been established for viruses, bacteria, and turbidity.

Variances and Exemptions

Variances allow a public water system to deviate from the MCL under certain conditions when exceptionally poor source water conditions prevent compliance with that drinking water standard. Exemptions allow a public water system extra time to comply with a newly

adopted drinking water standard. When operating under variances or exemptions, water systems must still provide drinking water that protects public health. Since NJDEP never issues any variances or exemptions, the subchapter that described the process for granting variances and exemptions to water systems in New Jersey, N.J.A.C. 7:10-6, was repealed effective November 4, 2004.

Monitoring

A PWS is required to monitor and verify that the levels of contaminants present in the water do not exceed the MCLs. If a PWS fails to have its water tested as required, then a monitoring violation occurs. A monitoring violation also includes failure to report test results correctly to the primacy agency.

Major categories of contaminants monitored in public community drinking water supplies are microbiological, inorganic chemicals including lead and copper, volatile organic chemicals, pesticides, radionuclides, turbidity and disinfection by-products, including total trihalomethanes and total haloacetic acids.

Significant Consumer Notification Violations

The federal Safe Drinking Water Act requires all community water systems to produce and distribute a Consumer Confidence Report (CCR) to all customers of the system. This CCR contains summary information about the water system, including test results from the previous calendar year, "plain" language about drinking water in general, any MCL or Action Level violations, and sources of drinking water. Reports must be sent to customers by July 1 each year containing previous year test results; violations involve failure to submit an annual report to their customers by July 1.

Additional Monitoring in New Jersey

Radiological

Sampling of wells tapping southern New Jersey's Cohansey aquifer has shown elevated levels of naturally occurring radioactivity, with a significant portion of the gross alpha particle activity detected due to the presence of radium 224, a radionuclide with a half-life of 3.7 days. There is no federal or state standard for radium 224; only community water systems are currently required to sample for gross alpha particle activity.

As a result, NJDEP began requiring analysis of drinking water samples for gross alpha particle activity within 48 hours, instead of up to a year after collection as allowed by the Federal Rule. If samples are analyzed quickly, gross alpha particle activity is detected that would not normally be detected due to radium 224's short half-life. The New Jersey Drinking Water Quality Institute (DWQI), a 15-member advisory body to NJDEP on drinking water issues, determined in 2002 that analyzing samples within 48 hours for gross alpha particle activity protects public health and a MCL for radium 224 was not needed.

Volatile Organic Chemicals and Synthetic Organic Chemicals

Transient noncommunity water systems are not required by federal law to sample for volatile organic chemicals or synthetic organic chemicals. However, several such systems in New Jersey report to the State on these tests, because the State sampled these water supplies during investigation into nearby groundwater contamination or (less often) they initiated sampling on their own. In either case, if an MCL is exceeded, an MCL violation letter is issued and NJDEP works with the transient noncommunity water system to bring it into compliance as soon as possible.

Summary of Violation Data

Individual water system MCL and treatment technique violations for community and noncommunity water systems appear in Appendices B and D, respectively. Appendix C lists community water system action level violations of the Lead and Copper Rule; nontransient noncommunity Lead and Copper Rule violations appear in Appendix E. Appendices F-H cover Consumer Confidence Report violations (see end of this section), violations of additional monitoring requirements (see prior section), and instructions on how to obtain the current status of violations in Appendices B-G, respectively.

Following is a summary of 2004 violation data for each contaminant group, followed by consumer notification violations.

Microbiological

MCL Violations. As depicted in Table 4, the total number of Total Coliform Rule (TCR) MCL violations dropped in 2004 (123) compared to 2003 (193). Of those violations, six acute violations occurred in 2004 compared to 21 in 2003, and the number of monthly violations was 116 in 2004 compared to 172 in 2003.

Microbial quality as measured by the Total Coliform Rule continues to yield good results for the monitoring performed in 2004. The percentage of public water systems with a TCR MCL violation for public water systems dropped (2.7% in 2004, 3.6% in 2003). The number of systems with acute TCR MCL violations dropped from 2003 (21) to 2004 (6), and the number of systems with monthly TCR MCL violations (105) in 2004 was less than in 2003 (129). Because 20,000 or more total coliform tests are run each year, with between one and several hundred microbiological samples for each public water system, about 99% of these samples are better than the standard for total coliform.

Table 4 (next page) shows acute and monthly Total Coliform Rule MCL violations since 1996.

Monitoring/Reporting Violations. Table 5 (next page) depicts the total number of coliform rule monitoring/reporting violations (413) for all public water systems in 2004. The total number of monitoring/reporting violations in 2004 has decreased compared to 2003 (817). Out of 4,116 estimated PWS, 308 PWS (7%) missed sampling at least once during 2004.

Table 4: Total Coliform Rule MCL Violations for all Public Water Systems

Year	Total Coliform Rule MCL Violations								e MCL
	Acute	Monthly	Total	Acute	Monthly	Total	Percent		
2004	6	116	123	6	105	110	2.7		
2003	21	172	193	21	129	131	3.6		
2002	22	167	189	19	139	139	3.3		
2001	41	229	270	40	195	198	4.7		
2000	31	264	295	30	198	199	4.7		
1999	44	181	225	41	141	143	3.2		
1998	25	113	138	25	105	106	2.4		
1997	15	122	137	14	95	109	2.3		
1996	38	134	172	35	112	115	2.4		

Table 5: Total Coliform Rule Monitoring/Reporting Violations for all Public Water Systems

Year	Total Coliform Rule Monitoring/Reporting	Systems with Total Coliform Rule	Percentage of Systems that Missed Sampling
	Violations	Monitoring/Reporting	at Least Once During
		Violations	the Year
2004	413	308	7%
2003	817	600	14%
2002	645	464	11%
2001	692	477	11%
2000	1,070	667	16%
1999	1,468	859	19%
1998	1,736	972	22%
1997	2,195	1,216	26%
1996	2,805	1,384	29%

<u>Treatment Technique Violation</u>. Surface water systems or ground water under the direct influence of surface water systems serving 10,000 or more people must comply with the Interim Enhanced Surface Water Treatment Rule. For systems using conventional filtration or direct filtration, the turbidity level of representative samples of a system's filtered water must be less than or equal to 0.3 NTU (nephelometric turbidity units) in at least 95 percent of the measurements taken each month. The turbidity level of representative samples of a system's filtered water must at no time exceed 1 NTU. There was one treatment technique violation for 2004.

Organic Chemicals

Volatile Organic Compounds (VOC) Rule:

<u>MCL Violations</u>. Of the community water systems and nontransient noncommunity water systems that monitored for VOCs in 2004, 13 MCL violations were issued at 6 systems for volatile organic compounds (in 2003, 23 MCL violations at 20 systems).

Monitoring/Reporting Violations. As seen in Table 6, a total of 221 water systems had at least one VOC monitoring violation. The total number of monitoring/reporting violations for VOCs in Table 6 is 8,050, a decrease from 2003 (13,702). This is remarkable given that 1) each missed VOC sample gets counted as 26 separate monitoring/reporting (M/R) violations, representing each of the 26 New Jersey regulated VOC compounds, and 2) some water systems have many entry points (treatment plants) each of which is monitored and can be assessed a violation for insufficient quarterly follow-up samples as a result of a detection of a VOC in the water system in 2004. For purposes of this 2004 report, the number of violations also includes those systems that did not sample in the correct year of the three-year compliance period (2002-2004).

Table 6: Volatile Organic Compound Monitoring/Reporting Violations

Year	Volatile Organic Compound Monitoring/Reporting Violations	Systems with Volatile Organic Compound Monitoring/Report Violations
2004	8,050	221
2003	13,702	215
2002	8,242	131
2001	7,098	116
2000	10,972	159
1999	13,676	208
1998	12,740	181
1997	16,926	229
1996	15,756	176

Synthetic Organic Compounds (SOCs) Rule:

<u>MCL Violations</u>. This group of compounds, mostly pesticides, benefits from the extensive studies and the monitoring and waiver program that has been developed. Every three years, community and nontransient noncommunity water systems are required to either sample for certain SOCs or obtain a waiver from sampling. Most affected public water systems in New Jersey obtain waivers from sampling. As part of this waiver process, every three years the Bureau of Safe Drinking Water Technical Assistance collects samples from a select number of wells that serve community and nontransient noncommunity water systems and nearly all surface water bodies that supply water to community and nontransient noncommunity water systems. Surface water samples are taken under both storm conditions and base flow

conditions. Raw water samples (before any treatment) are taken from ground water systems when possible. If significant detections are found in the raw water samples, an additional raw water sample and a finished water (point of entry) sample are collected. Samples were taken in 2003.

<u>Monitoring/Reporting Violations</u>. As NJDEP conducts targeted statewide SOC monitoring, there were no requirements for routine monitoring and thus no M/R violations in 2004.

Total Trihalomethanes, Total Haloacetic Acids and Disinfectant Byproduct Precursors:

<u>MCL Violations</u>. There were seven MCL violations at three systems for total trihalomethanes in 2004 (versus none in 2003) and six MCL violations at two systems for total haloacetic acids (versus one in 2003).

Monitoring/Reporting Violations. There were 337 monitoring/reporting (M/R) violations at 212 systems for trihalomethanes and 368 M/R violations at 227 systems for haloacetic acids in 2004, plus one Disinfection Byproduct Rule violation. This compares to no M/R violations for trihalomethanes, haloacetic acids, or removal of DBP precursors in 2003.

Inorganic Chemicals

<u>MCL Violations</u>. Excluding nitrate, in 2004 there were 32 MCL violations at eight systems for inorganic chemicals. This compares to no MCL violations for non-nitrate inorganics in 2003. Thallium had the most non-nitrate violations (5 violations at 5 systems), but no inorganic contaminant stood out.

In 2004, 63 nitrate MCL violations occurred at 39 water systems, compared to 42 in 30 systems in 2003 (Table 7, next page). Only four of these violations occurred in three community water systems, so as in 2003 the problem was with noncommunity water systems.

Asbestos monitoring was required for some community and noncommunity systems. Results were excellent with no MCL violations. Some systems had to apply for waivers and some were granted waivers until 2010 based on past results and waiver information.

Monitoring/Reporting Violations. Total nitrate monitoring/reporting violations decreased from 726 in 2003 to 334 in 2004 (Table 7). Systems with nitrate monitoring/reporting violations went from a total of 439 in 2003 to 275 in 2004.

Table 7: Nitrate MCL and Monitoring/Reporting Violations

Year	Nitrate MCL Violations	Systems with Nitrate MCL Violations	Percent	Nitrate Monitoring/ Reporting Violations	Systems with Nitrate Monitoring/ Reporting Violations	Percent
2004	63	39	0.9	334	275	6.7
2003	42	30	0.7	726	439	10.6
2002	33	21	0.5	438	323	7.8
2001	29	18	0.4	403	290	6.9
2000	24	19	0.4	538	403	9.5
1999	29	26	0.6	642	540	12.2
1998	17	17	0.4	696	596	13.4
1997	24	19	0.4	1,258	1,035	22.0
1996	41	28	0.6	1,594	1,269	26.8

Lead and Copper Rule:

<u>Action Level Violations</u>. In 2004, zero Action Level (AL) violations occurred for lead or copper. This compared to 2003 figures of 23 community water systems with 10 lead and 13 copper action level violations.

<u>Monitoring/Reporting Violations</u>. There were 320 M/R violations for 262 systems in 2004, compared to 10 violations for 5 systems in 2003.

Radiological Rule:

<u>MCL Violations</u>. During 2004, one community water system violated the gross alpha standard once. No violations occurred in 2003. There were no violations of the radium or uranium MCLs.

<u>Monitoring/Reporting Violations</u>. There was one monitoring and reporting violation for gross alpha in 2004.

Consumer Notification Violations:

Two community water systems received a consumer notification violation for failure to submit a 2004 Consumer Confidence Report (representing 2003 drinking water test results). This information appears in Table 8 and Appendix G.

Summary

The quality of New Jersey's public drinking water continues to be excellent. Overall, the Division of Water Supply, with support from NJDEP's Water Compliance and Enforcement

Element, and county health agencies, continues progress in addressing MCL, treatment technique, and monitoring violations. The Bureau of Safe Drinking Water Technical Assistance capacity development strategy is targeted to assist public water systems with a history of significant non-compliance to achieve compliance, and we expect continued improvements over the next several years.

.State:	New Jersey
Reporting Interval:	January 1, 2004-
	December 31, 2004

Table 8 Violations Table

(with SDWIS Codes)

SDWIS		1	MCL*		MCL Violations		Treatment Techniques		Significant	
Codes		((mg/l)						Monitoring/Reporting	
		Federal MCL	State MCL (if different)	Number of Violations	Number of Systems	Number of Violations	Number of Systems	Number of Violations	Number of	
					with Violations		with Violations		Systems with Violations	
	Organic Contaminants									
2981	1,1,1-Trichloroethane	0.2	0.03	0	0			382	215	
2977	1,1-Dichloroethylene	0.007	0.002	0	0			384	217	
2985	1,1,2-Trichloroethane	0.005	0.003	0	0			382	215	
2378	1,2,4-Trichlorobenzene	0.07	0.009	0	0			384	217	
2931	1,2-Dibromo-3- chloropropane (DBCP)	0.0002		0	0			0	0	
2980	1,2-Dichloroethane	0.005	0.002	0	0			383	215	
2983	1,2-Dichloropropane	0.005		0	0			382	215	
2063	2,3,7,8-TCDD (Dioxin)	3x10 ⁻⁸		Statewide waiver	Statewide waiver			Statewide waiver	Statewide waiver	
2110	2,4,5-TP	0.05		Statewide waiver	Statewide waiver			Statewide waiver	Statewide waiver	
2105	2,4-D	0.07		0	0			0	0	
2265	Acrylamide					0	0			

^{*} Values are in milligrams per liter (mg/l) unless otherwise specified

State:	New Jersey
Reporting Interval:	January 1, 2004-
	December 31, 2004

SDWIS		MCL*		MCL Violations		Treatment Techniques		Significant	
Codes			(mg/l)					Monitoring	g/Reporting
		Federal	State MCL	Number of	Number of	Number of	Number of	Number of	Number of
		MCL	(if different)	Violations	Systems	Violations	Systems	Violations	Systems
					with		with		with
					Violations		Violations		Violations
2051	Alachlor	0.002		0	0			0	0
2050	Atrazine	0.003		0	0			0	0
2990	Benzene	0.005	0.001	2	1			382	215
2306	Benzo[a]pyrene	0.002		Statewide	Statewide			Statewide	Statewide
				waiver	waiver			waiver	waiver
2046	Carbofuran	0.04		0	0			0	0
2982	Carbon tetrachloride	0.005	0.002	0	0			382	215
2959	Chlordane	0.002	0.0005	Statewide	Statewide			Statewide	Statewide
				waiver	waiver			waiver	waiver
2380	Cis-1,2-Dichloroethylene	0.07		0	0			382	215
2031	Dalapon	0.2		Statewide	Statewide			Statewide	Statewide
				waiver	waiver			waiver	waiver
2035	Di(2-ethylhexyl)adipate	0.4		Statewide	Statewide			Statewide	Statewide
				waiver	waiver			waiver	waiver
2039	Di(2-ethylhelxyl)phthalate	0.006		Statewide	Statewide			Statewide	Statewide
				waiver	waiver			waiver	waiver
2964	Methylene chloride	0.005	0.003	0	0			383	216
2041	Dinoseb	0.007		0	0			0	0

^{*}Values are in milligrams per liter (mg/l) unless otherwise specified.

State:	New Jersey
Reporting Interval:	January 1, 2004-
	December 31, 2004

SDWIS		N	MCL*		MCL Violations		Treatment Techniques		Significant	
Codes		(mg/l)					Monitoring	g/Reporting	
		Federal	State MCL	Number of	Number of	Number of	Number of	Number of	Number of	
		MCL	(if different)	Violations	Systems	Violations	Systems	Violations	Systems	
					with		with		with	
					Violations		Violations		Violations	
2032	Diquat	0.02		Statewide	Statewide			Statewide	Statewide	
				waiver	waiver			waiver	waiver	
2033	Endothall	0.1		Statewide	Statewide			Statewide	Statewide	
				waiver	waiver			waiver	waiver	
2005	Endrin	0.002		Statewide	Statewide			Statewide	Statewide	
				waiver	waiver			waiver	waiver	
2257	Epichlorohydrin					0	0			
2992	Ethylbenzene	0.7		0	0			384	216	
2946	Ethylene dibromide (EDB)	0.00005		0	0			0	0	
2034	Glyphosate	0.7		Statewide	Statewide			Statewide	Statewide	
				waiver	waiver			waiver	waiver	
2065	Heptachlor	0.00004		Statewide	Statewide			Statewide	Statewide	
				waiver	waiver			waiver	waiver	
2067	Heptachlor epoxide	0.0002		Statewide	Statewide			Statewide	Statewide	
				waiver	waiver			waiver	waiver	
2274	Hexachlorobenzene	0.001		Statewide	Statewide			Statewide	Statewide	
				waiver	waiver			waiver	waiver	

^{*} Values are in milligrams per liter (mg/l) unless otherwise specified.

State:	New Jersey
Reporting Interval:	January 1, 2004-
	December 31, 2004

SDWIS]	MCL*		iolations	Treatment '	Techniques	Significant	
Codes			(mg/l)					Monitoring	/Reporting
		Federal	State MCL	Number of	Number of	Number of	Number of	Number of	Number
		MCL	(if different)	Violations	Systems	Violations	Systems	Violations	of
					with		with		Systems
					Violations		Violations		with
									Violations
2042	Hexachlorocyclopentadiene	0.05		Statewide	Statewide			Statewide	Statewide
				waiver	waiver			waiver	waiver
2010	Lindane	0.0002		Statewide	Statewide			Statewide	Statewide
				waiver	waiver			waiver	waiver
2015	Methoxychlor	0.04		Statewide	Statewide			Statewide	Statewide
				waiver	waiver			waiver	waiver
2989	Monochlorobenzene	0.1	0.05	0	0			382	215
2968	1,2-Dichlorobenzene	0.6		0	0			383	216
2969	1,4-Dichlorobenzene	0.075		0	0			383	216
2383	Total polychlorinated	0.0005		Statewide	Statewide			Statewide	Statewide
	biphenyls			waiver	waiver			waiver	waiver
2326	Pentachlorophenol	0.001		0	0			0	0
2987	Tetrachloroethylene	0.005	0.001	1	1			384	217
2984	Trichloroethylene	0.005	0.001	4	3			383	216
2996	Styrene	0.1		0	0			383	216
2991	Toluene	1		0	0			382	215
2979	Trans-1,2-Dichloroethylene	0.1		0	0			383	216
2955	Xylenes (total)	10	1	0	0			382	215

^{*} Values are in milligrams per liter (mg/l) unless otherwise specified.

State:	New Jersey
Reporting Interval:	January 1, 2004-
	December 31, 2004

SDWIS]	MCL*	MCL Vi	iolations	Treatment	Techniques	Signif	icant
Codes			(mg/l)				_	Monitoring	/Reporting
		Federal	State MCL	Number of	Number				
		MCL	(if different)	Violations	Systems	Violations	Systems	Violations	of
					with		with		Systems
					Violations		Violations		with
									Violations
2020	Toxaphene	0.003		Statewide	Statewide			Statewide	Statewide
				waiver	waiver			waiver	waiver
2036	Oxamyl	0.2		Statewide	Statewide			Statewide	Statewide
				waiver	waiver			waiver	waiver
2040	Picloram	0.5		Statewide	Statewide			Statewide	Statewide
				waiver	waiver			waiver	waiver
2037	Simazine	0.004		Statewide	Statewide			Statewide	Statewide
				waiver	water			waiver	waiver
2976	Vinyl chloride	0.002		2	1			384	216
2967	1,3-Dichlorobenzene		0.6	0	0			380	218
2978	1,1-Dichloroethane		0.05	0	0			378	217
2251	Methyl tertiary-butyl ether		0.07	4	2			380	218
2248	Naphthalene		0.3	0	0			379	218
2988	1,1,2,2-Tetrachloroethane		0.001	0	0			379	217
	Subtotal Organics			13	6			8050	221
		1							

^{*} Values are in milligrams per liter (mg/l) unless otherwise specified.

State:	New Jersey
Reporting Interval:	January 1, 2004-
	December 31, 2004

SDWIS		MCL*		MCL Violations		Treatment '	Techniques	Significant	
Codes		(r	ng/l)					Monitoring	/Reporting
		Federal	State MCL	Number of	Number of	Number of	Number of	Number of	Number
		MCL	(if different)	Violations	Systems	Violations	Systems	Violations	of
					with		with		Systems
					Violations		Violations		with
									Violations
	Inorganic Contaminants								
1074	Antimony	0.006		4	4			130	109
1005	Arsenic	0.05		2	2			129	108
1094	Asbestos	7 million fibers/l $> 10 \mu$ m/l		0	0			0	0
1010	Barium	2		2	2			133	112
1075	Beryllium	0.004		4	4			131	109
1015	Cadmium	0.005		3	3			130	109
1020	Chromium	0.1		2	2			132	111
1024	Cyanide (as free cyanide)	0.2		2	2			132	111
1025	Fluoride	4.0		2	2			114	96
1035	Mercury	0.002		4	4			131	110
1036	Nickel							130	109
1040	Nitrate	10 (as Nitrogen)		63	39			334	275
1041	Nitrite	1 (as Nitrogen)		0	0			0	0

^{*} Values are in milligrams per liter (mg/l) unless otherwise specified.

State:	New Jersey
Reporting Interval:	January 1, 2004-
	December 31, 2004

	MCL*		MCL Violations		Treatment Techniques		Significant		
	(1	(mg/l)						Monitoring/Reporting	
	Federal	State MCL	Number of	Number of	Number of	Number of	Number of	Number of	
	MCL	(if different)	Violations	Systems	Violations	Systems	Violations	Systems	
				with		with		with	
				Violations		Violations		Violations	
Selenium	0.05		2	2			133	112	
Thallium	0.002		5	5			130	109	
Total nitrate and nitrite	10 (as		See	See			See	See	
	Nitrogen)		SDWIS	SDWIS			SDWIS	SDWIS	
			code 1040	code 1040			code 1040	code 1040	
Radionuclide MCLs									
Gross alpha	15 pCi/l		1	1			1	1	
Radium-226 and -228	5 pCi/l		0	0			0	0	
Gross beta	4 mrem/yr		0	0			0	0	
Uranium		0.03	0	0			0	0	
			96	44			1889	382	
radionuclides									
	Thallium Total nitrate and nitrite Radionuclide MCLs Gross alpha Radium-226 and -228 Gross beta	Selenium O.05 Thallium O.002 Total nitrate and nitrite Radionuclide MCLs Gross alpha Radium-226 and -228 Gross beta Uranium Subtotal inorganics plus	Comparison Com	Comp/l Federal State MCL Number of Violations	Code 1040 Subtotal inorganics plus State MCL (if different) State MCL (if different) Number of Violations Systems with Violations Systems with Violations Selenium O.005 2 2 2	Federal MCL	Subtotal inorganics plus State MCL Federal MCL State MCL (if different) Systems with Violations State MCL (if different) Systems with Violations Systems	Code 1040 Code	

^{*} Values are in milligrams per liter (mg/l) unless otherwise specified.

State:	New Jersey
Reporting Interval:	January 1, 2004-
	December 31, 2004

SDWIS Codes		N	MCL	MCL Vi	iolations	Treatment '	Techniques	Signif	
Codes		Federal MCL	State MCL (if different)	Number of Violations	Number of Systems with Violations	Number of Violations	Number of Systems with Violations	Monitoring Number of Violations	Number of Systems with Violations
	Total Coliform Rule								
21	Acute MCL Violation	Presence		6	6				
22	Non-acute (monthly) MCL violation	Presence		116	105				
23, 25	Major routine and follow up monitoring							413	308
28	Sanitary survey*							0	0
	Subtotal Total Coliform Rule			123	110			413	308

^{*}Number of major monitoring violations for sanitary survey under the Total Coliform Rule.

State:	New Jersey
Reporting Interval:	January 1, 2004-
	December 31, 2004

SDWIS Codes		N	MCL		MCL Violations		Treatment Techniques		icant /Reporting
		Federal MCL	State MCL (if different)	Number of Violations	Number of Systems with Violations	Number of Violations	Number of Systems with Violations	Number of Violations	Number of Systems with Violations
	Surface Water Treatment Rule								VIOLUTORIS
	Filtered systems								
36	Monitoring, routine/repeat							0	0
41	Treatment techniques					1	1		
	Unfiltered systems								
31	Monitoring, routine/repeat							0	0
42	Failure to filter					0	0		
	Subtotal Surface Water Treatment Rule					1	1	0	0

State:	New Jersey
Reporting Interval:	January 1, 2004 -
	December 31, 2004

SDWIS		N	MCL		MCL Violations		Techniques	Signit	
Codes								Monitoring	/Reporting
		Federal	State MCL	Number of	Number of	Number of	Number of	Number of	Number
		MCL	(if different)	Violations	Systems	Violations	Systems	Violations	of
					with		with		Systems
					Violations		Violations		with
									Violations
	Interim Enhanced Surface								
	Water Treatment Rule								
	Filtered systems								
38	Monitoring, routine/repeat							0	0
37	Treatment techniques					0	0		
43	Treatment techniques					0	0		
44	Treatment techniques					0	0		
47	Treatment Techniques					0	0		
	Subtotal Interim Enhanced Surface Water Treatment Rule					0	0	0	0

State:	New Jersey
Reporting Interval:	January 1, 2004 -
	December 31, 2004

SDWIS Codes		*MCL/ MRDL (µg/l)		MCL/.MRD	MCL/.MRDL Violations		Treatment Technique Violations		ficant g/Reporting
		Federal MCL/ MRDL	State MCL/ MRDL (if different)	Number of Violations	Number of Systems with Violations	Number of Violations	Number of Systems with Violations	Number of Violations	Number of Systems with Violations
	Stage 1 Disinfectants and Disinfection Byproducts Rule								
27	Monitoring and Reporting (368 HAA5 and 337 TTHM for 227 and 212 systems; 1 DBR violation)							706	232
02	Average MCL (TTHMS)	80		7	3				
02	Average MCL (HAA5)	60		6	2				
02	Average MCL Bromate	10		0	0				
02	Average MCL Chlorite	1000		0	0				
11	MRDL Chlorine	4.0 ppm as chlorine		0	0				
11	MRDL Chloramine	4.0 ppm as chlorine		0	0				
11	MRDL Chlorine Dioxide	800		0	0				
13	MRDL Acute			0	0				
12, 37, 46	Treatment Techniques					0	0		
	Subtotal of Stage 1 Disinfectants and Disinfection Byproducts Rule.			13	5	0	0	706	232

* Values are in micrograms per liter ($\mu g/l$) unless otherwise specified.

State:	New Jersey
Reporting Interval:	January 1, 2004-
	December 31, 2004

SDWIS Codes				Action Leve	el Violations	Treatment Techniques		Signit Monitoring	
Codes		Federal	(µg/l) State Action	Number of	Number of	Number of	Number of	Number of	Number
		Action	Level (if	Violations	Systems	Violations	Systems	Violations	of
		Level	different)		with		with		Systems
					Violations		Violations		with
									Violations
PB	Lead		15	0	0				
CU	Copper		1,300	0	0				
	Lead and Copper Rule							0	0
51	Initial lead and copper tap M/R							45	30
52	Follow up or routine lead and copper tap M/R							275	232
58,62	Treatment installation					0	0		
65	Public Education					1	1		
	Subtotal Lead and Copper Rule			0	0	1	1	320	262

State:	New Jersey
Reporting Interval:	January 1, 2004-
	December 31, 2004

SDWIS		MCL		MCL Violations		Treatment Techniques		Significant	
Codes								Monitoring/Reporting	
		Federal MCL	State MCL (if different)	Number of Violations	Number of Systems with Violations	Number of Violations	Number of Systems with Violations	Number of Violations	Number of Systems with Violations
	Consumer Confidence Reporting								
71	Significant Consumer Notification Violations							2	2

State:	New Jersey
Reporting Interval:	January 1, 2004-
	December 31, 2004

Table 9 -Additional Monitoring in New Jersey Violations Table

(with SDWIS Codes)

SDWIS		MCL*		MCL Violations		Treatment Techniques		Significant	
Codes		(mg/l)						Monitoring/Reporting	
		Federal	State MCL	Number of	Number of	Number of	Number of	Number of	Number
		MCL	(if different)	Violations	Systems	Violations	Systems	Violations	of
					with		with		Systems
					Violations		Violations		with
									Violations
	Organic Contaminants for								
	transient noncommunity								
	water systems								
2977	1,1 Dichloroethylene	0.007	0.002	0	0				
2984	Trichloroethylene	0.005	0.001	0	0				
2987	Tetrachloroethylene	0.005	0.001	0	0				

^{*}Values are in milligrams per liter (mg/l) unless otherwise specified

Definitions for Violations Tables 8 and 9

The following definitions apply to the Summary of Violations table.

Consumer Confidence Reports: SDWIS Violation Code 71 indicates that a Community Water System failed to submit a CCR as required by the Federal Safe Drinking Water Act.

Filtered Systems: Water systems that have installed filtration treatment [40 CFR 141, Subpart H].

Inorganic Contaminants: Non-carbon-based compounds such as metals, nitrates, and asbestos. These contaminants are naturally occurring in some water, but can get into water through farming, chemical manufacturing, and other human activities. USEPA has established MCLs for 15 inorganic contaminants [40 CFR 141.62].

Interim Enhanced Surface Water Treatment Rule (IESWTR): IESWTR establishes criteria under which water systems supplied by surface water sources, or ground water sources under the direct influence of surface water, must filter and disinfect their water [40 CFR 141, Subpart P]. Violations of the IESWTR are to be reported for the following two categories:

Treatment techniques (for filtered systems): Treatment technique violation codes shows a system's failure to properly treat its water. SDWIS Violation Codes 37 is for a change in disinfection without state approval. SDWIS Violation Code 43 is for failure to achieve turbidity <1.0 NTU in all samples. SDWIS Violation Code 44 is for failure to achieve turbidity < 0.3 NTU in 95% of samples and SDWIS Violation Code 47 is for construction of uncovered finished water storage cell.

Monitoring Reporting (for filtered systems): A major Interim Enhanced Surface Water Treatment Rule (IESWTR) monitoring/reporting (M/R) violation occurs under the following seven conditions:

SDWIS Violation code 29 occurs under the following conditions:

- Failure to report filter profile after turbidity > 0.5 in two consecutive measurements 15 min. apart after first 4 hrs after filter taken offline.
- Failure to report filter profile after turbidity >1.0 in 2 consecutive measurements, 15 minutes apart.
- Failure to report self-assessment of filter within 14 days of turbidity exceedance (>1.0 in 2 consecutive Measurements 15 minute apart, 3 consecutive months.)
- Failure to conduct CPE within 30 days after turbidity exceedance (>2.0 in 2 consecutive measure. 15 min apart, 2 consecutive months.)

SDWIS Violation Code 38 occurs under the following conditions:

- Collecting < 90% of filter effluent samples for turbidity and reporting within 10 days after each month.
- Failure to report that the public water system has conducted all filter monitoring to state within 10 days after end of each month.
- Failure to report that the system exceeded turbidity standard in representative samples by end of next business day.

A minor violation under the IESWTR of SDWIS code 38 occurs for any other failure to monitor and report.

Record Keeping Violation: SDWIS Violation Code 09 is for any record keeping violation which occurs when there is a failure to maintain filter monitoring records for 3 years (filter results every 15 minutes).

Lead and Copper Rule: This rule established national limits on lead and copper in drinking water [40 CFR 141.80-91]. Lead and copper corrosion pose various health risks when ingested at any level, and can enter drinking water from household pipes and plumbing fixtures. States report violations of the Lead and Copper Rule in the following six categories:

Initial lead and copper tap M/R: SDWIS Violation Code 51 indicates that a system did not meet initial lead and copper testing requirements, or failed to report the results of those tests to the State.

Follow-up or routine lead and copper tap M/R: SDWIS Violation Code 52 indicates that a system did not meet follow-up or routine lead and copper tap testing requirements, or failed to report the results.

Treatment installation: SDWIS Violation Codes 58 AND 62 indicate a failure to install optimal corrosion control treatment system (58) or source water treatment system (62) which would reduce lead and copper levels in water at the tap. [One number is to be reported for the sum of violations in these two categories].

Public education: SDWIS Violation Code 65 shows that a system did not provide required public education about reducing or avoiding lead intake from water.

Maximum Contaminant Level (MCL): The highest amount of a contaminant that USEPA allows in drinking water. MCLs ensure that drinking water does not pose either a short-term or long-term health risk. MCLs are defined in milligrams per liter (parts per million) unless otherwise specified.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Monitoring: USEPA specifies which water testing methods the water systems must use, and sets schedules for the frequency of testing. A water system that does not follow USEPA's schedule or methodology is in violation [40 CFR 141].

States must report monitoring violations that are significant as determined by the USEPA Administrator and in consultation with the States. For purposes of this report, significant monitoring violations are major violations and they occur when no samples are taken or no results are reported during a compliance period. A major monitoring violation for the surface water treatment rule occurs when at least 90% of the required samples are not taken or results are not reported during the compliance period.

Organic Contaminants: Carbon-based compounds, such as industrial solvents and pesticides. These contaminants generally get into water through runoff from cropland or discharge from factories. USEPA has set legal limits on 54 organic contaminants that are to be reported [40 CFR 141.61].

Radionuclides: Radioactive particles, which can occur naturally in water or result from human activity. USEPA has set legal limits on four types of radionuclides: radium-226, radium-228, gross alpha, and beta particle/photon radioactivity [40 CFR 141]. Violations for these contaminants are to be reported using the following three categories:

Gross alpha: SDWIS Contaminant Code 4000 for alpha radiation above MCL of 15 picocuries/liter. Gross alpha includes radium-226 but excludes radon and uranium.

*Combined radium-226 and radium-228***:** SDWIS Contaminant Code 4010 for combined radiation from these two isotopes above MCL of 5 pCi/L.

Gross beta: SDWIS Contaminant Code 4101 for beta particle and photon radioactivity from man-made radionuclides above 4 millirem/year.

Reporting Interval: The reporting interval for violations to be included in the first PWS Annual Compliance Report, which is to be submitted to USEPA by January 1, 1998, is from July 1, 1996 through June 30, 1997. This interval will change for future annual reports. See guidance language for these intervals.

SDWIS Code: Specific numeric codes from the Safe Drinking Water Information System (SDWIS) have been assigned to each violation type included in this report. The violations to be reported include exceeding contaminant MCLs, failure to comply with treatment requirements, and failure to meet monitoring/reporting (M/R) requirements. Four-digit SDWIS Contaminant Codes have also be en included in the chart for specific MCL contaminants.

Surface Water Treatment Rule (SWTR): The Surface Water Treatment Rule establishes criteria under which water systems supplied by surface water sources, or ground water sources under the direct influence of surface water, must filter and disinfect their water [40 CFR 141, Subpart H].

Violations of the "Surface Water Treatment Rule" are to be reported for the following four categories:

Monitoring, routine/repeat (for filtered systems): SDWIS Violation Code 36 indicates a system's failure to carry out required tests, or to report the results of those tests.

Treatment techniques (for filtered systems): SDWIS Violation Code 41 shows a system's failure to properly treat its water.

Monitoring, routine/repeat (for unfiltered systems): SDWIS Violation Code 31 indicates a system's failure to carry out required water tests, or to report the results of those tests.

Failure to filter (for unfiltered systems): SDWIS Violation Code 42 shows a system's failure to properly treat its water. Data for this violation code will be supplied to the States by USEPA.

Stage 1 Disinfectants and Disinfection Byproducts Rule (Stage 1 DBPR): This rule applies to all community water systems (CWS) and nontransient noncommunity water system (NTNCWS) that add a chemical disinfectant in any part of the drinking water treatment process and transient noncommunity (TNC) water system using chlorine dioxide The Stage 1 DBPR includes maximum residual disinfectant levels (MRDLs) and maximum residual residual disinfectant level goals (MRDLGs) which are similar to MCLs and MCLGs but for disinfectants. [40CFR 141, Subpart L]. Violations of the Stage 1 DBPR are to be reported for the following three categories.

Treatment Techniques: SDWIS Violation Code 12 is for failure to have a qualified operator. SDWIS Code 37 is for failure to get state approval for a change in treatment. SDWIS Code 46 is for failure to meet disinfectant byproduct precursor removal (TOC).

Maximum Contaminant Level (MCL) and Maximum Residual Disinfectant Levels (MRDL):

SDWIS Violation Code 02 is an MCL Violation that occurs when:

- Average of any three-sample set exceeds the MCL of 1.0 mg/L for chlorite.
- Running annual averages computed quarterly of monthly samples exceeds the MCL of 0.010 mg/L for bromate.
- Running annual averages computed quarterly of quarterly averages of available samples exceeds 0.060 mg/L for HAA5.
- Running annual averages computed quarterly of quarterly averages of available samples exceeds 0.080 mg/L for TTHM.

SDWIS Violation Code 11 is an MRDL Violation that occurs when:

- Any two consecutive daily samples exceed 0.8 mg/L and all distribution samples are less than 0.8 mg/L for chlorine dioxide (non-acute violation).
- Annual average computed quarterly, of monthly averages exceeds 4.0 mg/L for chloramines (exception if microbial contamination problems).

• There is an exceedance of MRDL of 4.0 mg/L for chlorine (exception of microbial contamination problems in distribution system).

SDWIS Violation Code 13 is an MRDL violation that occurs when:

• Any of three required distribution samples taken on day after a daily entry point sample MRDL exceeds 0.8 mg/L for chlorine dioxide (acute violation).

Monitoring Reporting (M/R): SDWIS Violation Code 27 address insufficient sample collection for samples required under the Stage 1 DBPR.

Total Coliform Rule (**TCR**): **The** Total Coliform Rule establishes regulations for microbiological contaminants in drinking water. These contaminants can cause short-term health problems. If no samples are collected during the one-month compliance period, a significant monitoring violation occurs. States are to report four categories of violations:

Acute MCL violation: SDWIS Violation Code 21 indicates that the system found fecal coliform or E. coli, potentially harmful bacteria, in its water, thereby violating the rule.

Non-acute MCL violation: SDWIS Violation Code 22 indicates that the system found total coliform in samples of its water at a frequency or at a level that violates the rule. For systems collecting fewer than 40 samples per month, more than one positive sample for total coliform is a violation. For systems collecting 40 or more samples per month, more than 5% of the samples positive for total coliform is a violation.

Major routine and follow-up monitoring: SDWIS Violation Codes 23 AND 25 show that a system did not perform any monitoring.

[One number is to be reported for the sum of violations in these two categories.]

Sanitary Survey: SDWIS Violation Code 28 indicates a major monitoring violation if a system fails to collect 5 routine monthly samples if sanitary survey is not performed.

Treatment Techniques: A water disinfection process that USEPA requires instead of an MCL for contaminants that laboratories cannot adequately measure. Failure to meet other operational and system requirements under the Surface Water Treatment and the Lead and Copper Rules have also been included in this category of violation for purposes of this report.

Unfiltered Systems: Water systems that do not need to filter their water before disinfecting it because the source is very clean [40 CFR, Subpart H].

Violation: A failure to meet any state or federal drinking water regulation.

Appendix A

The Safe Drinking Water Act Amendments of 1996 includes the following as a specific requirement:

(A) ANNUAL REPORT BY STATE

Section 1414(c)(3)(A)(i)

IN GENERAL - Not later than January 1, 1998, and annually thereafter, each State that has primary enforcement responsibility under section 1413 shall prepare, make readily available to the public, and submit to the Administrator an annual report on violations of national primary drinking water regulations by public water systems in the State, including violations with respect to (I) maximum contaminant levels, (II) treatment requirements, and (III) variances and exemptions, and (IV) monitoring requirements determined to be significant by the Administrator (of USEPA) after consultation with the States.

Section 1414(c)(3)(A)(ii)

DISTRIBUTION - The State shall publish and distribute summaries of the report and indicate where the full report is available for review.

Appendix B: Community Water System 2004 MCL and Treatment Technique Violations in New Jersey (See Appendix H for instructions on finding current status of these violations)

System ID	System Name	Contaminant	Violation Date
NJ0242001	Oakland Water Department	Coliform, Total	6/30/2004
NJ0248001	Ramsey Water Department	Tetrachloroethylene	3/31/2004
NJ0305001	Burlington City Water Department	Total Trihalomethanes	9/30/2004
		Total Trihalomethanes	12/31/2004
		Total Trihalomethanes	6/30/2004
NJ0325001	U S Army Fort Dix	Coliform, Total	6/30/2004
NJ0326014	Family Park	Coliform, Total	6/30/2004
		Coliform, Total	7/31/2004
NJ0612001	Bayshore Mobile Home Park	Nitrate	3/31/2004
NJ0614003	Vineland Water & Sewer Utility	Nitrate	12/31/2004
NJ0702001	Bloomfield Water Department	Coliform, Total	6/30/2004
NJ0710001	Livingston Township Division Of Water	Coliform, Total	11/30/2004
NJ0714001	Newark Water Department	Total Haloacetic Acids	9/30/2004
		Total Haloacetic Acids	3/31/2004
		Total Haloacetic Acids	6/30/2004
		Total Haloacetic Acids	12/31/2004
NJ0715001	North Caldwell Water Department	Coliform, Total	4/30/2004
NJ1021363	Hunterdon Care Center	Coliform, Total	7/31/2004
NJ1103001	Aqua NJ - Hamilton Square	Coliform, Total	3/31/2004
NJ1111001	Trenton Water Works	Total Haloacetic Acids	3/31/2004
		Total Haloacetic Acids	6/30/2004
NJ1223001	South River Water Department	Thallium	12/31/2004
		Antimony	12/31/2004
NJ1309001	Us Naval Weapons Station	Total Trihalomethanes	9/30/2004
		Total Trihalomethanes	12/31/2004
		Total Trihalomethanes	6/30/2004
NJ1322001	Keyport Water Department	Coliform, Total	7/31/2004
NJ1328002	Marlboro MUA	Coliform, Total	7/31/2004
NJ1330002	Aberdeen - Cliffwood/Cliffwood Beach	Coliform, Total	6/30/2004
NJ1340001	Red Bank Water Department	Coliform, Total	5/31/2004
NJ1404001	Chatham Water Department	Coliform, Total	6/30/2004
NJ1409001	Dover Water Commission	Coliform, Total	6/30/2004
NJ1410001	East Hanover Township Water Department	Thallium	12/31/2004
		Mercury	12/31/2004
		Beryllium	12/31/2004
NJ1426002	Mount Arlington DPW Kadel System	Coliform, Total	8/31/2004
NJ1427006	Mount Olive Township Water Dept Sand	Coliform, Total	7/31/2004
NJ1507005	United Water Toms River	Gross Alpha, Incl Radium	12/31/2004

System ID	System Name	Contaminant	Violation Date
NJ1511009	Pleasant Gardens Apartments	Coliform, Total	7/31/2004
NJ1533002	Pinewood Estates-Brighton	Coliform, Total	7/31/2004
NJ1904008	Willor Manor Water Company	Coliform, Total	11/30/2004
NJ1911004	Sparta Township Water Summit	Beryllium	12/31/2004
NJ1922010	The Village Of Lake Glenwood	Coliform, Total	9/30/2004
NJ1924003	Regency At Sussex Associates	Coliform, Total	10/31/2004
NJ2123003	Country View Village, LLC	Nitrate	9/30/2004
		Nitrate	12/31/2004

Appendix C: Community Water System 2004 Action Level Violations in New Jersey

(See Appendix H for instructions on finding current status of these violations)

None in 2004

Appendix D: Noncommunity Water System 2004 MCL Violations in New Jersey (See Appendix H for instructions on finding current status of these violations)

System ID	System Name	Contaminant	Violation Date
NJ0102302	Ballys Park Place Casino	Coliform, Total	8/31/2004
NJ0108416	Atlantic County Firing Range	Coliform, Total	9/30/2004
NJ0113330	Life Mission Training Center	Coliform, Total	10/31/2004
		Coliform, Total	9/30/2004
NJ0113357	Kessler Professional Complex	Mercury	12/31/2004
NJ0263323	YWCA/Rodico Child Care Center	Trichloroethylene	12/31/2004
NJ0320324	Lenape Regional High School Main	Coliform, Total	9/30/2004
NJ0320325	Lenape Regional High School-North	Cadmium	12/31/2004
NJ0332311	Mullica Wilderness Camps	Coliform, Acute	9/30/2004
		Coliform, Total	9/30/2004
NJ0332331	Lenape Regional High School	Nitrate	9/30/2004
		Nitrate	12/31/2004
		Nitrate	12/31/2004
		Nitrate	6/30/2004
NJ0335320	Russo's Fruit & Vegetable Market	Nitrate	12/31/2004
		Nitrate	9/30/2004
		Nitrate	6/30/2004
NJ0434312	Carriage House Restaurant	Coliform, Total	9/30/2004
NJ0436314	Ray & Alice's Sicklerville	Nitrate	3/31/2004
		Nitrate	6/30/2004
		Nitrate	12/31/2004
		Nitrate	3/31/2004
NJ0436390	Winslow United Methodist	Nitrate	12/31/2004
		Nitrate	3/31/2004
NJ0504335	Avalon Campground Well #1	Nitrate	9/30/2004
NJ0605314	Laning Brothers Farm - Camp 3b	Nitrate	12/31/2004
NJ0607302	Hopewell Elementary School	Nitrate	6/30/2004
		Nitrate	3/31/2004
		Nitrate	9/30/2004
NJ0607304	Camp Sheppards Mill	Nitrate	6/30/2004
		Nitrate	6/30/2004
		Nitrate	6/30/2004
NJ0612303	Stow Creek Deli	Nitrate	9/30/2004
NJ0613320	Franco's Place	Nitrate	6/30/2004
		Nitrate	3/31/2004
NJ0702300	State Street Grill	Trichloroethylene	12/31/2004
NJ0805315	Liberty Bell Motel & Tavern	Nitrate	3/31/2004
NJ0805324	Nick's Pizzeria And Steak	Coliform, Total	12/31/2004

System ID	System Name	Contaminant	Violation Date
NJ0805388	Township of Franklin	Methyl Tertiary Butyl Ether	12/31/2004
NJ0805443	Wright's Liquor Store	Nitrate	6/30/2004
		Nitrate	3/31/2004
NJ0811334	Calvary Chapel	Nitrate	12/31/2004
NJ1002318	Asbury Graphite Mills	Coliform, Total	9/30/2004
NJ1006363	Little Log Cabin Christian Children's Center	Methyl Tertiary Butyl Ether	3/31/2004
		Methyl Tertiary Butyl Ether	9/30/2004
		Methyl Tertiary Butyl Ether	6/30/2004
NJ1006365	Clinton Honda	Nitrate	9/30/2004
NJ1007304	Mariarosa	Coliform, Total	7/31/2004
NJ1021326	Deli Works	Coliform, Total	9/30/2004
NJ1021396	Flemington Chrysler/Mazda	Benzene	6/30/2004
		Trichloroethylene	6/30/2004
		Vinyl Chloride	6/30/2004
		Vinyl Chloride	3/31/2004
		Benzene	3/31/2004
		Trichloroethylene	3/31/2004
NJ1022369	What's Cooking	Coliform, Total	7/31/2004
NJ1025320	Louise's Diner	Nitrate	9/30/2004
		Nitrate	12/31/2004
		Nitrate	6/30/2004
NJ1101321	IBEW #827	Coliform, Total	9/30/2004
NJ1106395	Princeton Community Church	Coliform, Total	3/31/2004
NJ1202320	Cranbury Swim Club	Nitrate	6/30/2004
		Nitrate	9/30/2004
NJ1213339	Crest Engineering Associates	Coliform, Total	9/30/2004
NJ1213340	Holland Greenhouse	Coliform, Total	12/31/2004
NJ1213349	Foley Inc	Coliform, Acute	12/31/2004
NJ1225300	Springwood Swim Club	Nitrate	12/31/2004
NJ1309306	Colts Neck Reformed Church	Coliform, Acute	9/30/2004
NJ1309337	Colts Neck High School	Coliform, Total	9/30/2004
NJ1309338	Colts Neck Library	Coliform, Total	3/31/2004
NJ1309413	The Atlantic Building	Coliform, Total	9/30/2004
NJ1319470	Echo Lake Recreation Center	Coliform, Total	12/31/2004
NJ1331305	Squire Plaza (Mall)	Coliform, Total	6/30/2004
		Coliform, Total	12/31/2004
NJ1332334	Millstone Township Fire Company	Coliform, Total	9/30/2004
NJ1332339	Lunchento's Restaurant	Coliform, Total	10/31/2004
		Coliform, Total	9/30/2004
NJ1336309	World Volkswagen	Coliform, Total	9/30/2004
		Coliform, Total	9/30/2004
		Coliform, Total	10/31/2004
NJ1406319	Larison's Turkey Farm	Nitrate	12/31/2004

System ID	System Name	Contaminant	Violation Date
NJ1408002	St Francis Residential Community	Coliform, Total	9/30/2004
NJ1408303	Bon Appetite	Coliform, Total	7/31/2004
NJ1414327	Jefferson Dairy	Coliform, Total	9/30/2004
NJ1414349	Tiny's	Nitrate	3/31/2004
NJ1414355	Thirsty Moose	Coliform, Total	9/30/2004
NJ1414360	Hurdtown Methodist Church	Coliform, Total	2/29/2004
		Coliform, Total	10/31/2004
		Coliform, Total	9/30/2004
NJ1415305	Our Lady of The Magnificent	Coliform, Total	12/31/2004
NJ1420306	Canfield Avenue Spring	Coliform, Total	9/30/2004
NJ1421329	Montville Reformed Church	Coliform, Total	6/30/2004
NJ1421341	Kevah Konner Inc Bus Company	Thallium	12/31/2004
		Antimony	12/31/2004
NJ1427315	Temple Hatikvah	Coliform, Acute	9/30/2004
NJ1427362	Mt Olive High School	Coliform, Total	7/31/2004
NJ1432338	Center For Medicine @ Randolph	Nitrate	6/30/2004
		Coliform, Total	9/30/2004
NJ1433303	Getty Petroleum Marketing Inc	Coliform, Total	12/31/2004
NJ1435310	Telemark Tavern	Nitrate	3/31/2004
NJ1435323	St Simmons Church	Coliform, Total	9/30/2004
NJ1435325	Sun Rise Nursery School	Nitrate	3/31/2004
NJ1435329	First Baptist Church Of Dover	Coliform, Total	9/30/2004
NJ1435348	Camp Lewis-Northern NJ Council BSA	Coliform, Total	6/30/2004
NJ1436337	Landing Mobil	Coliform, Total	9/30/2004
NJ1438331	Schooleys' Mountain Fire Protection	Coliform, Total	6/30/2004
NJ1505342	Downes Marina	Coliform, Acute	9/30/2004
NJ1507308	Ocean County P.I.C., Inc.	Coliform, Total	12/31/2004
NJ1511377	NJ Forest	Coliform, Total	12/31/2004
NJ1511395	7-11 Food Store	Coliform, Total	9/30/2004
NJ1511415	Jackson Premium Outlets	Nitrate	12/31/2004
NJ1511416	Jackson Township-Municipal Justice	Coliform, Total	9/30/2004
NJ1514314	Ocean Lanes	Coliform, Total	6/30/2004
NJ1611310	Dargenio Business Plaza	Coliform, Total	12/31/2004
		Coliform, Total	11/30/2004
NJ1611316	Ringwood Medical/Dental Center	Coliform, Total	6/30/2004
NJ1611324	Community Association of the Highlands Inc	Coliform, Total	9/30/2004
NJ1615335	Omni Day School	Coliform, Total	11/30/2004
NJ1615377	Mason's Mountainside Inn	Coliform, Total	9/30/2004
NJ1615386	Strengthen Our Sisters	Coliform, Total	9/30/2004
NJ1615390	Old School Pub	Coliform, Total	9/30/2004
NJ1615425	Apple Montessori School	Coliform, Total	6/30/2004
NJ1701306	Alloway Village Inn	Coliform, Total	3/31/2004
		Coliform, Total	2/29/2004

System ID	System Name	Contaminant	Violation Date
NJ1701317	Tall Pines Camp Grounds	Nitrate	3/31/2004
	·	Nitrate	3/31/2004
NJ1708300	E I Dupont Chamber Works	Total Trihalomethanes	12/31/2004
NJ1710329	Mission Teens Inc	Nitrate	9/30/2004
		Nitrate	3/31/2004
NJ1713300	Roman Pantry	Coliform, Total	9/30/2004
NJ1714309	The Store	Nitrate	9/30/2004
		Nitrate	3/31/2004
NJ1714313	Avis Volkswagen	Nitrate	6/30/2004
NJ1802300	Fellowship Deaconry Inc	Coliform, Total	9/30/2004
NJ1803304	Somerset Hills Country Club	Coliform, Total	6/30/2004
	·	Coliform, Total	9/30/2004
NJ1805346	Colonial Motors	Coliform, Total	12/31/2004
NJ1805351	Bank Of America	Coliform, Total	6/30/2004
NJ1806343	SCPA Ballfield #1	Coliform, Total	6/30/2004
NJ1808349	Obrien's Tavern	Coliform, Total	9/30/2004
NJ1810330	A Child's Place Education Center	Coliform, Total	6/30/2004
NJ1902316	Andover Mini Mall	Coliform, Total	3/31/2004
		Coliform, Total	9/30/2004
NJ1904335	Tikii LLC	Coliform, Total	9/30/2004
NJ1905330	Ross Corner Properties	Coliform, Total	12/31/2004
NJ1906304	Franklin Armory	Coliform, Total	3/31/2004
NJ1906313	Transbanc International Invest	Coliform, Total	6/30/2004
NJ1907305	Our Place	Coliform, Total	6/30/2004
NJ1907309	Tea-Hive	Nitrate	3/31/2004
		Nitrate	3/31/2004
		Coliform, Total	12/31/2004
NJ1907310	Windy Brow Farms	Nitrate	12/31/2004
NJ1908322	NVE, Inc.	Nitrate	9/30/2004
NJ1911309	St. John Vianney Roman Catholic Church	Coliform, Total	6/30/2004
NJ1911338	Savannah's	Coliform, Total	9/30/2004
NJ1911346	Black Bear Golf Club	Coliform, Total	8/31/2004
NJ1912345	E And T Food Market	Nitrate	12/31/2004
NJ1913301	Lafayette Firehouse	Coliform, Total	12/31/2004
NJ1920313	Mountain Shadows Lake I	Coliform, Total	9/30/2004
NJ1922332	Pochuck Valley Farms	Coliform, Total	12/31/2004
NJ1922350	Mountain Creek Resort	Coliform, Total	9/30/2004
NJ1924300	Glen Brook Inn	Coliform, Total	9/30/2004
NJ1924332	Church Of The Good Shepherd	Coliform, Total	12/31/2004
NJ1924334	Uncle John's Tavern	Nitrate	3/31/2004
		Nitrate	3/31/2004
NJ2104302	North Warren Regional High School	Total Trihalomethanes	12/31/2004
NJ2105306	Candy's Country Cafe	Nitrate	3/31/2004

System ID	System Name	Contaminant	Violation Date
NJ2105308	Sebastiano's	Nitrate	9/30/2004
		Nitrate	3/31/2004
		Coliform, Total	12/31/2004
NJ2105311	Asbury Volunteer Fire Company No. 1	Nitrate	6/30/2004
NJ2105326	Asbury Graphite Mills Inc	Coliform, Total	9/30/2004
NJ2114317	The Powder Horn Inn	Coliform, Acute	9/30/2004
NJ2115302	Center Point Ventures Corp	Coliform, Total	12/31/2004
NJ2116305	Mansfield Township Elementary	Coliform, Total	12/31/2004
NJ2116307	Anderson Hotel	Coliform, Total	12/31/2004
NJ2123300	Belvidere Shopping Plaza	Coliform, Total	6/30/2004

Appendix E: Noncommunity Water System 2004 Action Level Violations in New Jersey

(See Appendix H for instructions on finding current status of these violations)

None in 2004

Appendix F **2004 Significant Consumer Confidence Notification** Violations in New Jersey (See Appendix H for instructions on finding current status of these violations)

System ID	System Name	Violation Date
NJ0108008	Ocean Heights Trailer Co	6/30/2004
NJ0612001	Bayshore Mobile Home Park	12/31/2004

Appendix G MCL Violations Related to Additional Monitoring in New Jersey

New Jersey Department of Environmental Protection

(See Appendix H for instructions on finding current status of these violations)

Transient Noncommunity Water Systems with Volatile Organic MCL Violations

None in 2004

Appendix H Instructions for Finding Status of Violations

This report provides information on violations of safe drinking water regulations, but not on the current status of those violations (for example, has the problem been corrected?). Below are instructions on how to find out what has happened on a given violation listed in Appendices B-G.

- 1. Find the system ID number in the first column of the appendix for the violation of interest to you, and write it down (don't need to write down "NJ" part).
- 2. Go to the New Jersey Department of Environmental Protection website (http://www.state.nj.us/dep/).
- 3. Click on the button labeled "Data Miner," toward the bottom of the left-hand column of the website's home page, under the category "Information Tools."
- 4. Click on the button labeled "Launch Data Miner" on the right hand side of the page.
- 5. Click on the blue link "Reports by Category" within the red words toward the top of the page.
- 6. Click on "Compliance and Enforcement," halfway down the left-hand column on this page.
- 7. Click on "Access Activity Details," the first bullet below the Compliance and Enforcement title.
- 8. Click on "Access the Enforcement Violations Reports," 3d bullet
- 9. Click on "Violations by Program Interest and Date," 6th bullet
- 10. Write the 7-digit system ID number in the first window.
- 11. Use the pull-down menu for the second window to select "Water Supply" (second category from bottom).
- 12. Write the appropriate dates in the third (the beginning date should usually be 01/01/XXXX for the year in which the violation occurred) and fourth windows (the ending date should usually be 12/31/XXXX for the year of the violation). A few violations might require a longer period.
- 13. Click "OK" button.
- 14. Click "Revise Search" button if results do not produce information you seek.