Delaware River Basin Commission

Protecting Water Quality in the Delaware River for Drinking Water

John Yagecic, P.E. Manager, Water Quality Assessment

March 17, 2016 AWWA NJ Annual Conference

This Presentation: How DRBC Protects Water Quality for Drinking Water

- 15 million+ water users from Delaware River Basin
- 4.3 million drinking water users from main stem Delaware River

- Surface Water Quality Standards
- Monitoring and Assessment
- Special Protection Waters
- Automated Flow and Transport Model
- Coordination with other organizations
 - Early Warning System (PWD)

Our Regulations 18 CFR PART 410, Section 3.10.2

- * B. Uses to be Protected. The quality of Basin waters... shall be maintained in a safe and satisfactory condition for the following uses:
- 1. agricultural, industrial, and <u>public water supplies after</u> reasonable treatment, except where natural salinity precludes such uses;

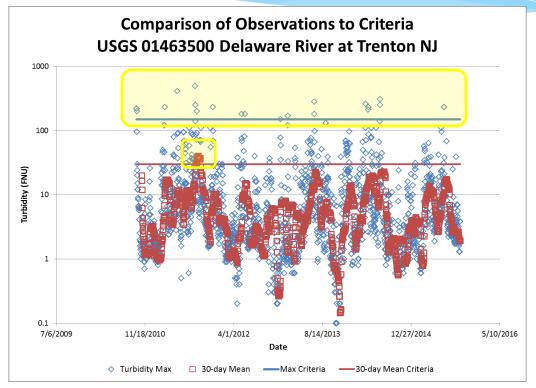
Surface Water Quality Standards for Drinking Water (DW)

- * Public water supply use Zones 1A through 1E, 2, & 3;
- * Monitoring & Assessment parameters:
 - * TDS;
 - * chlorides;
 - * Toxics (Zones 2&3);
 - * hardness;
 - * odor;
 - * phenol;
 - * sodium (Na); and
 - * Turbidity
- Absence of DW closures

Uses to be Protected in Delaware River

	Non-tidal Freshwater					Tidal Fresh		Tidal Brackish-Salt		
	1A	1B	1C	1D	1E	2	3	4	5	6
Aquatic Life	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Drinking Water	✓	✓	✓	✓	✓	✓	✓			
Primary Recreation	✓	✓	✓	✓	✓	✓		✓	✓	✓
Secondary Recreation							✓	✓		
Fish Consumption	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Shellfish Consumption										✓

Top of Basin Confluence of East and West Branch



How are we doing? (2014 Assessment)

- * Meeting Criteria (~ 100%):
 - * TDS, Hardness, Chlorides, Sodium, Toxics, Absence of DW closures

* Others:

- * Alkalinity >96% meeting criteria;
- * Turbidity Max > 94% meeting criteria;
- * Turbidity 30-day mean

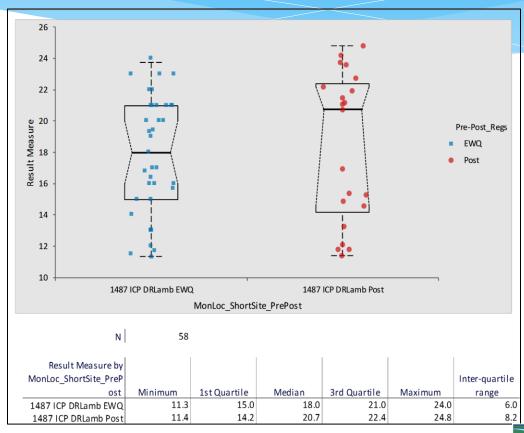
2016 Assessment Preview

DRBC Special Protection Waters Program anti-degradation

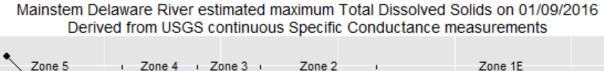
- * Keep the clean water clean;
- * 197 river miles upstream from Trenton
- * Define Existing Water Quality (sampling & analysis);
- * No measurable change (except toward natural conditions)
- * DRBC Water Quality Regulations Sec 3.10.3A.2.

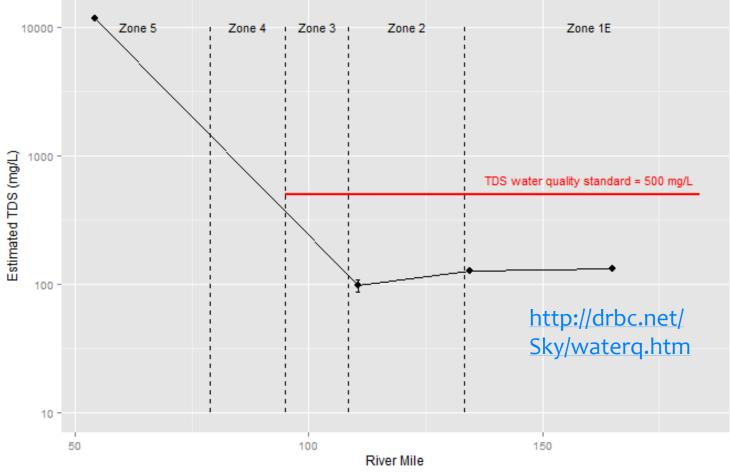
TABLE 2I. Definition of Existing Water Quality: Easton ICP

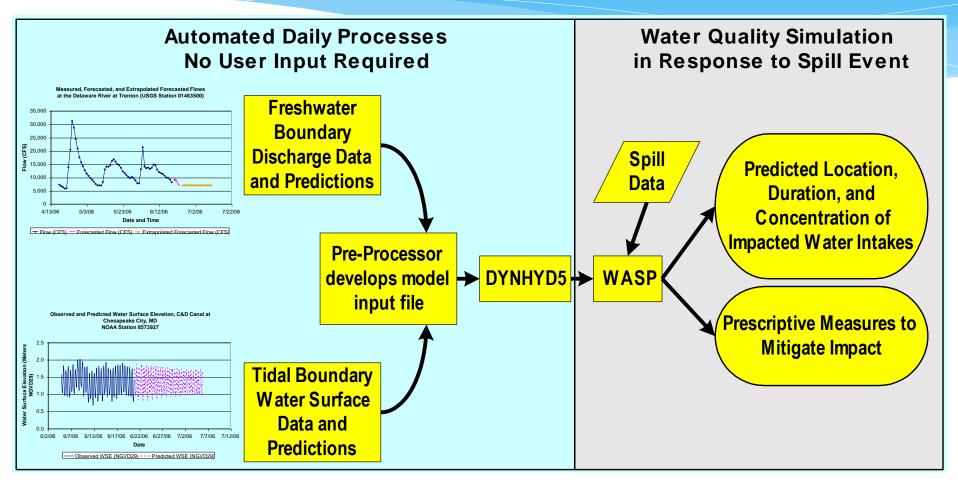
Delaware River at Northampton Street Bridge, Easton-Phillipsburg, PA/NJ, River Mile 183.82


Parameter (Y)	Definition of Existing Water Quality							
r drameter (1)	Median	Lower 95%CI	Upper 95%CI	Flow Relationships Site specific regression equation.				
Ammonia NH3-N (mg/l) *	<.05	<.05	< 0.05					
Chloride (mg/l)	16	14	17	Y = -0.00022184 Q + 16.751				
Chlorophyll a (mg/m³)	1.45	1.07	2.14					
Dissolved Oxygen (mg/i) mid- day*	8.10	7.90	8.58					
Dissolved Oxygen Saturation (%)	95%	92%	96%					
E. coli (colonies/100 ml)	31	24	64	Y = antilog (0.00004425 Q + 1.273)				
Enterococcus (colonies/100 ml)	145	80	250					
Fecal coliform (colonies/100 ml) *	100	64	130					
Nitrate NO3-N (mg/l) *	0.85	0.70	0.90					
Orthophosphate (mg/l)	0.02	0.01	0.02					
рН	7.55	7.41	7.70					
Specific Conductance (umhos/cm)	142	127	155	Y = -0.0024666 Q + 158.76				
Total Dissolved Solids (mg/l)	110	103	120					
Total Kjeldahl Nitrogen (mg/l)	0.35	0.26	0.46					
Total Nitrogen (mg/l) *	1.19	1.01	1.35					
Total Phosphorus (mg/l) *	0.05	0.04	0.06					
Total Suspended Solids (mg/l) *	4.0	3.0	5.0	Y = 0.00177536 Q - 4.8027				
Turbidity (NTU)	2.6	1.8	4.0	Y = antilog (0.00003836 Q + 0.1845)				
Alkalinity (mg/l)	34	30	39	Y = -0.00073929 Q + 39.867				
Hardness (mg/l)	48	45	52					

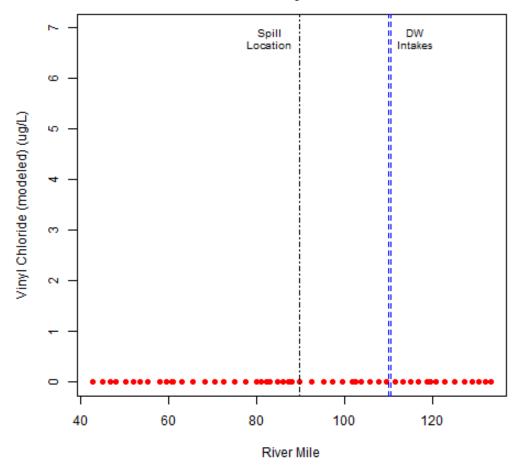
Definitions of Existing Water Quality are contained in DRBC Water Quality Regulations


About to complete an Assessment of No Measurable Change to Existing Water Quality for Lower Delaware


- * Extensive monitoring 2009-2011;
- * Compared 2009-2011 results to EWQ period (2000-2004);
- * No measurable change 17 out of 20 parameters;
- * Indication of measurable change for chlorides, specific conductance, E. coli.


Near Real-Time TDS Results derived from Specific Conductance via regression models

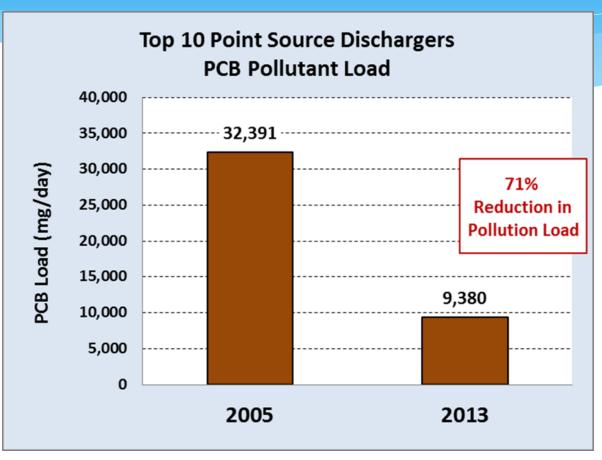
Automated Flow and Transport Model



Automated Flow & Transport Model Quick case study

- * Late November 2012 train derailment over tidal Mantua Creek;
- * Vinyl chloride spill;
- * Hydrodynamic model ran the night before;
- * DRBC ran water quality model and communicated results with water purveyors on tidal Delaware same day;
- * Confirmed below detection with monitoring up-estuary.

Simulated Vinyl Chloride Concentration Delaware Estuary 11/30/12 00:00



Polychlorinated Biphenyls (PCBs)

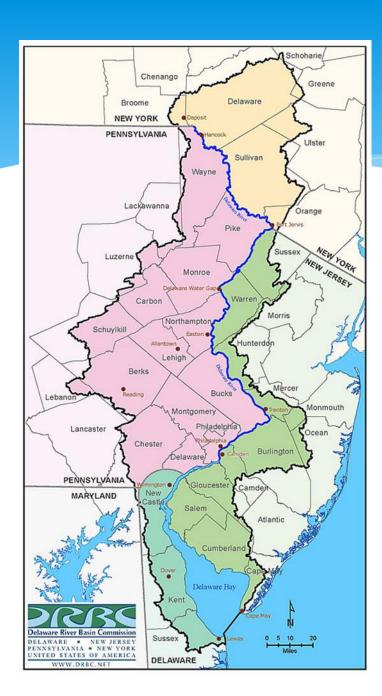
- Problem: Early 2000's ambient concentrations exceeding criteria by 2 to 3 orders of magnitude; Fish consumption advisories;
- * Action: DRBC developed TMDLs adopted by EPA in 2003 and 2006;
- * Implementation: Pollutant minimization plans facilities identify and implement means of achieving maximum practicable reductions

* Status:

- 10 largest point sources reduced by over 70%
- Nationally recognized program

Emerging Threats and Concerns

- * Increases in salinity, chlorides, conductivity (national problem);
- * Pharmaceuticals, personal care products, perfluorinated compounds;
- * Gas development Loss of headwater forests?


- * Monitoring to better understand the magnitude & frequency of problem (salts & emerging contaminants) and define baseline (gas);
- * Coordination with other agencies.

Support Other Organizations find a way to help and do it

- * Provided water intake locations and emergency contact information to US Coast Guard;
- * Administer \$ for Philadelphia Water Department's Early Warning System;
- * Performed assessment of all organizations' data after PPL fly ash spill into the Delaware;
- * Assisted PWD with 2014 dye study;

Thank You!

Delaware River Basin Commission

John.Yagecic@drbc.state.gov

