Non-tidal Chloride Monitoring 2021-2023

Joint STAC-MACC Meeting

Elaine Panuccio Water Resource Scientist 6/9/2021

Presented to an advisory committee of the DRBC on June 9, 2021. Contents should not be published or re-posted in whole or in part without permission of DRBC.

Why? Freshwater Chloride Trends

Date

Chloride Time Series, Delaware River at Trenton

≥USG

Integrated Water Availability Assessments Program

A Historical Look at Changing Water Quality in the Delaware River Basin

Lower Delaware Special Protection Waters Measurable Change

"DRBC's SPW Program is designed to prevent degradation in streams and rivers where existing water quality is better than established water quality standards; the program states that there shall be <u>no measurable change in</u> <u>existing water quality</u>."

UNITED STATES OF AMERICA

Deployment of Continuous Conductivity Loggers

- In May 2021, DRBC deployed 7 continuous conductivity loggers in rivers and streams that lack continuous conductivity loggers:
 - Brodhead at 611 in Delaware Water Gap
 - Paulins Kill at Route 46 bridge in Columbia, NJ
 - Martins Creek
 - Pequest River at Belvidere, NJ
 - Lehigh River at Easton
 - Pohatcong Creek near USGS discharge gage
 - Tohickon Creek at Point Pleasant Park
- During spring through early autumn → logger maintenance twice per month or more to clean biofilm off sensors, ensure loggers are working, offload data, etc.
- Later autumn through winter → once per month logger maintenance (we will need wet suits!)

Water Quality Monitoring

- In addition to logger maintenance, 27 sites were selected for concomitant surface water quality monitoring of chloride, turbidity, and TDS (in-situ conductivity at all sites)
 - Sites were selected based on:
 - Sites identified in the SPW Lower Delaware Measurable Change Assessment that have both increased chloride and specific conductance from baseline conditions established (2000-2004);
 - Identify temporal and spatial data gaps in Middle Delaware SPW tributaries
- 2-year continuous logger deployment and (once monthly) monitoring period → 24 total events
- So far...
 - DRBC deployed 7 continuous loggers and collected samples from 27 sites in May and are scheduled to go out June 16th for the next round of monitoring
- * ArcGIS Map -- Non-tidal Chloride Monitoring

Monitoring Goals

- Create a more robust and current dataset for chloride, TDS, and specific conductance in Lower and Middle SPW tributaries;
 - Utilize this data for further classification and regression analyses (assess land-use and changes, point-discharge influences, effects of precipitation, etc.);
 - Assess 2021-2023 dataset against SPW baseline dataset established for 2000-2004 (plus any additional paired chloride & specific conductance and/or TDS observations available on WQP between 2018-2023)
- Utilize discrete specific conductance, chloride, and TDS observations for development of regression models on a site-specific basis;
- Identify results for further research and investigation (potential causes in varying concentrations among tributaries, future track-down studies, work with municipalities, etc.)

