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BACKGROUND 

  

Oxygen is necessary for sustaining life for most aquatic biota with variation in tolerances of oxygen 

concentrations existing among species and life stages. Fluctuations in dissolved oxygen (DO) occur both 

spatially and temporally and may be a determining factor in the presence and distribution of fauna found 

throughout waterbodies. Assessment of DO sensitivity is important in determining effects on the aquatic fauna 

and ultimately for establishing appropriate water quality standards. For this reason, the identification of DO 

needs of sensitive species at different life stages within the Delaware Estuary is a key component of the 

Delaware River Basin Commission’s (DRBC) Aquatic Life Use and Estuary Eutrophication Modeling effort. 

Under Task Order 1, DRBC has directed the Academy of Natural Sciences of Drexel University (ANSDU), to 

develop a methodology for evaluating the DO requirements of sensitive species in the Delaware River Estuary.   

 

OBJECTIVE 

 

The objective of Task Order 1 was to propose a methodology for evaluating DO requirements of multiple 

sensitive Delaware Estuary species at multiple life stages. To achieve this objective we: 

1. Outlined a proposed methodology that  includes a key species list; 

2. Identified candidate key species, and their relevant life stages and spatial distribution, where 

possible; 

3. Proposed a methodology for determining if any species are currently absent due to DO limitations; 

4. Identified potential experts for the execution of our proposed methodology; 

5. Reviewed secondary pathways of oxygen sensitivity (e.g., geochemical). 

 

1. PROPOSED METHODOLOGY 

The proposed methodology uses literature assessments to identify key sensitive species in the Delaware River 

Estuary and their associated dissolved oxygen requirements in support of the development of new dissolved 

oxygen criteria for the estuary. Steps for the proposed methodology are outlined below. 

1. Identify common or characteristic aquatic species in the Delaware Estuary (Trenton to mouth). 

2. Determine list of candidate key species that are suspected to be sensitive to low dissolved oxygen.  

3. Determine where data gaps exist and identify sources and experts to fill in missing knowledge.  

4. Review secondary pathways of oxygen sensitivity.  

5. Compile literature data on dissolved oxygen requirements for candidate key sensitive species. 

6. Narrow candidate species list to key sensitive species.  

7. Determine the seasonal occurrence of key sensitive species’ life stages in the Delaware Estuary.  

8. Determine the spatial distribution of key sensitive species’ life stages in the Delaware Estuary.  

9. Compile dissolved oxygen concentration thresholds and/or associated endpoints for the key 

sensitive species and life stages.  

10. Do additional targeted literature searches and conduct internal and external review to identify 

additional sources of information on species sensitivity and spatial and temporal patterns if data 

gaps still exist.  

11. Develop a table (or tables) of dissolved oxygen requirements, such that the aggregate spatial and 

temporal dissolved oxygen need may be defined in support of development of new dissolved 

oxygen criteria for the Delaware Estuary.  
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2. IDENTIFY CANDIDATE KEY SPECIES SENSITIVE TO LOW DISSOLVED OXYGEN 

 

2.1. Methods for Identifying Candidate Key Species 

 

A literature review was conducted to obtain a comprehensive list of species within the Delaware Estuary (1, 

38, 45, 49, 54, 69, 87, 108, 139). For flora and fauna other than fishes, the most common species belonging to 

certain groups (e.g., chironomids, polychaetes, oligochaetes, copepods, etc.) were chosen as representatives to 

increase the probability of finding relevant DO literature. For fish fauna, each species was further broken down 

into life stage (i.e., egg, larva, juvenile, adult).  

 

Preliminary literature searches were conducted to identify sources of DO information and thresholds for these 

species, or similar species, using keywords: “DO”, “oxygen”, “threshold”, “criteria”, “anoxia”, “hypoxia”, 

“Delaware Estuary”, and/or the species/genus/family names. From the search results, a comprehensive 

database of sources (the references of this report) was created using Mendeley citation software.   

 

As this was the first step in an ongoing process of literature review, some additional sources were identified 

and collected, which will be analyzed in more detail in the next phase of this work. The goal of this step was 

to begin identifying literature sources and availability of information and data to aid in the next phase of a 

more in-depth, comprehensive review of all existing literature. Additionally, this step of the methodology was 

used as a way to preliminarily narrow the list of potential candidate species so that subsequent literature 

searches can be more directed and comprehensive. 

 

Literature collected in this step was then preliminarily examined to identify where gaps in information exist 

and to aid in the determination of species that are likely to be sensitive to low DO. Species were deemed 

“sensitive”, “tolerant”, or “likely to be” either of the two. The “likely to be” category was created for those 

species where data is not readily available, where data exists for other species in the same genus or family 

therefore likely to apply to that species, or where some information was found but more is needed. A species 

was classified as “Tolerant” if the literature stated that they were: oxygen regulators, tolerant of low DO (<3.5 

mg/l), able to become anaerobic, and/or had a relatively low chronic or acute oxygen requirement. A species 

was classified as “sensitive” if the literature stated that they were: sensitive to low DO, had high mortality or 

behavioral changes in lowered DO, and/or had relatively high chronic or acute DO requirements (typically 

>3.5 mg/l). The DO criterion for sensitivity may be lower than that commonly used, but it provides a 

conservative evaluation to generate a candidate list, which may be reduced in subsequent steps. 

 

Additionally, a draft of the methodology was circulated among various stakeholders for review.  Suggestions 

for additional literature sources and species sensitivity were received and incorporated into this step of the 

process. Specifically, comments were received in support of the inclusion of Atlantic Sturgeon in the list of 

key species and for the further investigation of freshwater mussels as sensitive taxa.  

 

 

2.2. Results for Identifying Candidate Key Species 

 

From the literature results, 36 species of fish and 16 invertebrate species were identified as sensitive or likely 

to be sensitive (Tables 1 and 2). These species will go on for recommendation for evaluation of specific oxygen 

requirements in Step 5 of the proposed methodology.  

 

The 36 sensitive fish species span 18 families, including species that inhabit fresh, marine, or mixed (i.e., 

oligohaline, mesohaline, polyhaline, or some combination) waters (Table 1). Seven of these species are 
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anadromous and one is catadromous, and therefore use different areas of the estuary at different life stages. 

Most of these species (29) are known to be sensitive through data encountered in the literature; the remaining 

seven species are suspected to be sensitive. These seven species were assigned this ranking either because the 

literature described them as generally sensitive to oxygen without providing numerical data or because a 

closely related species was found to be sensitive. Literature for all 36 sensitive fish species will be reviewed 

more closely for specific oxygen requirements in subsequent steps of the proposed methodology.  

 

Of the 16 invertebrate species, one is a clam, two are copepods, two are amphipods, two are mysid shrimp, 

two are shrimp, one is a lobster, four are crabs, one is a mussel, and one is a sand dollar (Table 2). Eight of 

these are known to be sensitive to low DO through a search of the literature and eight are likely to be sensitive. 

Of those that are “likely”, three (Acartia tonsa, Eurytemora affinis, and Echinarachnius parma) were classified 

as such because more information is needed to corroborate literature sources, and four (Neomysis 

Americana,Mysidopsis bigelowi, Palaemonetes paludosus, and Ovalipes ocellatus) were classified as such 

because literature was found pertaining to surrogate species either in the same genus or family. Elliptio 

complanata, was added to this list after suggestions from reviewers which identified potential chronic low 

dissolved oxygen sensitives.Other species of fresh water mussel may also be added upon review of information 

on sensitivity of this group.  All 16 taxa are recommended to be examined in further detail for specific oxygen 

requirements in the next step of the proposed methodology.  
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Table 1. List of fish species deemed sensitive to low dissolved oxygen based upon a primary literature search, 

their sensitivity by life stage, location within the estuary, and list of references. 

 
 

 

 

 

Species Common Name General Egg Larvae Juvenile Adult References

Acipenser brevirostrum Shortnose Sturgeon - - - P, F - 16, 58, 102

Acipenser oxyrhynchus Atlantic Sturgeon - - - S, C - 80, 81, 101, 102

Anguilla rostrata American Eel P, C - - - - 82

Anchoa mitchilli Bay Anchovy S, C - - - - 78

Alosa aestivalis Blueback Herring P, C - - - - 38, 86

Alosa mediocris Hickory Shad - S, F - - - 52

Alosa pseduoharengus Alewife - S, F S, F S, C S, M 38, 86

Alosa sapidissima American Shad - S, F - S, C S, M 38, 117

Brevoortia tyrannus Atlantic Menhaden P, M - - - - 15, 38

Semotilus atromaculatus Creek Chub - S, F - - - 71

Ictalurus punctatus Channel Catfish S, F - - - - 72

Esox lucius Northern Pike - - - S, F - 56

Esox masquinongy Muskellunge - P, F P, F - - 24

Fundulus heteroclitus Mummichog - S, C - - - 29

Menidia beryllina Inland Silverside S, C - - - - 140

Pogonias cromis Black Drum - - - S, C - 38

Micropogonias undulatus Atlantic Croaker - - - P, M - 38

Cynoscion regalis Weakfish - - - S, C - 38, 74

Leiostomus xanthurus Spot - - - S, M S, M 38, 46, 51, 116

Bairdiella chrysoura Silver Perch S, C - - - - 46

Pomatomus saltatrix Bluefish - - - S, C - 84, 106

Morone americana White Perch - S, C S, C S, C S, C 38, 110

Morone saxatilis Striped Bass - S, F S, F S, C P, M 8, 38

Perca flavescens Yellow Perch - - - - S, F 64

Sander vitreus Walleye - S, F - S, F - 73

Stenotomus chrysops Scup - - - S, C - 113

Lagodon rhomboides Pinfish S, M - - - - 46

Lepomis auritus Redbreast Sunfish P, F - - - - 3

Lepomis cyanellus Green Sunfish P, F - - - - 119

Lepomis macrochirus Bluegill - - - - S, F 120

Micropterus dolomieu Smallmouth Bass S, F S, F - - - 39

Micropterus salmoides Largemouth Bass S, F - - - - 121

Pomoxis annularis White Crappie S, F - - - - 42

Pomoxis nigromaculatus Black Crappie S, F - - - - 41

Pseudopleuronectes americanus Winter Flounder - - - S, M - 118

Paralichthys dentatus Summer Flounder - - - S, M - 7, 34, 38, 118

Where: S = sensitive, P = likely to be sensitive, M = Marine, C = combination (oligohaline, polyhaline, mesohaline, or multiple), 

and F = freshwater.
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Table 2. List of invertebrate species deemed sensitive to low dissolved oxygen based upon a primary literature 

search, their location within the estuary, and list of references. 

 
 

  

Additionally, 19 fish species or families and 34 non-fish species were classified as tolerant, or likely to be 

tolerant, of low DO (Tables 3 and 4). These species will not be recommended for evaluation of oxygen 

requirements in the proposed methodology for the next Task Order.  

 

Of the non-sensitive fishes, 14 represent species of fish and the remaining five represent groups of fish (Table 

3). Fundulus spp. are generally considered tolerant, although there is information indicating sensitivity of eggs 

of Fundulus heteroclitus. Gambusia affinis is listed as tolerant. Literature pertaining to G. affinis may pertain 

to G. holbrooki as well, since the two were formerly treated as conspecific. G. holbrooki is native to the 

Delaware drainage and may occur in tributaries of Delaware Bay. G. affinis has been introduced into the 

Delaware drainage and is probably now more widespread within the estuary. Three groups denoted with ND 

(no data) represent groups of fish for which information sought, without finding specific lacked literature on 

oxygen sensitivity. This group includes small minnow species, which includes a number of species occurring 

in fresh water. Some of these are common in fresh water parts of the estuary and may stray into oligohaline 

water. Rhinichthys spp. are in Cyprinidae and are part of the group of small minnow species. Of the tolerant 

species/groups, five were considered tolerant and 11 were considered likely to be tolerant. Those regarded as 

likely to be tolerant lacked specific data on oxygen requirements, but are generally referred to as tolerant of 

low oxygen or hypoxic conditions. 

 

The 34 non-fish taxa classified as tolerant ranged from plants to chironomids (Table 4). Of these, 11 were 

deemed tolerant because literature was found directly stating the tolerance of that species or genus to low DO. 

23 species were deemed likely to be tolerant due to evidence in the literature of other species in that family 

having tolerance of low DO, evidence citing the ability to become anaerobic, or because there was a substantial 

lack of research on that species in regards to oxygen.  

 

 

 

 

Taxon Species Common Name Sensitivity Location References

Mussel Elliptio complanata Eastern Elliptio P F 1, 20, 27, 129, 131

Clam Mercenaria mercenaria Hard Clam/Quahog S M 7, 22, 35, 38, 45, 50, 66, 67, 114, 129, 130, 131, 143

Copepod Acartia tonsa - P C 7, 22, 26, 38, 91, 95, 104, 109, 114, 129

Copepod Eurytemora affinis - P C 7, 22, 26, 38, 129

Amphipod Gammarus daiberi Scud S C 2, 26, 53, 68, 108, 129, 130, 139

Amphipod Corophium spp. - S C 7, 26, 50, 68, 130, 139

Mysid Shrimp Neomysis americana Opossum Shrimp P C 7, 22, 26, 38, 55, 69, 104, 108, 129, 130

Mysid Shrimp Mysidopsis bigelowi - P C 7, 22, 38, 104, 129, 130

Shrimp Palaemonetes paludosus Grass Shrimp P C 7, 22, 38, 75, 114, 115, 130, 131

Shrimp Crangon septemspinosa Sand Shrimp S C 7, 22, 26, 35, 38, 50, 61, 108, 114, 129, 130, 131

Lobster Homerus americanus American lobster S M 22, 45, 50, 75, 129, 130, 131

Crab Cancer irroratus Atlantic Rock Crab S M 7, 22, 36, 75, 129, 131, 134

Crab Callinectes sapidus Blue Crab S M 22, 26, 28, 30, 36, 45, 50, 90, 114, 130, 131, 115

Crab Ovalipes ocellatus Lady Crab P M 36, 38, 108

Crab Dyspanopeus sayi Mud Crab S M 22, 38, 114, 130, 131

Sand Dollar Echinarachnius parma Sand Dollar P M 35, 38

Where: S = sensitive, P = likely to be sensitive, M = Marine, C = combination (oligohaline, polyhaline, mesohaline, or multiple), and F = freshwater.
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Table 3. List of fish species or families deemed tolerant of low dissolved oxygen based upon a 

primary literature search, their location within the estuary, and list of references. 

 
 

 

 

 

 

 

 

 

 

Species Common Name Sensitivity Location References

Catostomus commersoni White Sucker P F 126

Cyprinus carpio Common Carp T F 5

Cyprinidae Small minnow species ND F 124

Rhinichthys spp. Dace ND F 40

Ameiurus spp. Bullheads ND F 37, 79

Gobiesox strumosus Skilletfish P M 100

Fundulus spp. Killifish P C 79

Lucania parva Rainwater Killifish P C 46

Cyprinodon variegatus Sheepshead Minnow T C 10, 46

Gambusia affinis Mosquitofish T C 46, 59

Menidia menidia Atlantic Silverside P C 44

Gasterosteus aculeatus Threespine Stickleback T C 129

Apeltes quadracus Fourspine Stickleback P C 77

Syngnathus fuscus Northern Pipefish P C 77

Prionotus carolinus Northern Sea Robin P C 46

Gobiosoma bosc Naked Goby P C 100

Chasmodes bosquianus Striped Blenny P M 100

Tautoga onitis Tautog T M 112

Trinectes maculatus Hogchoker P M 38

Where T = tolerant, P = likely to be tolerant, ND = no data was found, M = marine, C = 

combination (oligohaline, polyhaline, mesohaline, or multiple), and F = freshwater. 
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Table 4. List of non-fish species deemed tolerant of low oxygen based upon a primary literature search, their 

location within the estuary, and list of references.  

 
 

 

3. SPECIES ABSENT DUE TO DISSOLVED OXYGEN LIMITATIONS 

If species are currently not found in the estuary because of existing DO conditions, their inclusion would be 

critical in establishing criteria. This assessment needs to be considered tentative, since it represents 

interpretation of causes of events that do not occur. Criteria for consideration as candidate species are: 

a. Species occurring in parts of the Delaware drainage which do not occur in the estuary; or 

b. Species formerly occurring in the estuary, but not currently known; or 

c. Species occurring in nearby estuaries; and 

d. Likelihood that DO is or was a primary factor in the current absence of this species.  

For task I, we assessed species formerly occurring in the estuary or occurring in the drainage but not in the 

estuary. Investigation of species present in nearby estuaries would need to be done in subsequent steps. 

No candidate species were defined by criteria a or b, and d. Species meeting criteria a or b include: 

Taxon Species Common Name Sensitivity Location References

Plant Zostera marina Seawrack T M 88

Coral Astrangia poculata Northern Coral P M 38

Snail Ilyanassa obsoleta Eastern Mudsnail P C 38, 131

Whelk Busycotypus canaliculatum Channeled Whelk P M 67, 129, 131

Whelk Busycotypus carica Knobbed Whelk P M 67, 131

Mussel Mytilus edulis Blue Mussel T C 35, 38, 50, 61, 67, 69, 96, 108, 129, 131

Oytser Cassostrea virginica American oyster T M 14, 22, 50, 67, 87, 103, 107, 114, 115, 129, 130, 131

Clam Nucula proxima Nut Clam P M 38, 66, 69

Clam Gemma gemma Amethyst Gem Clam P M 38, 66, 69

Clam Spisula solidissima Atlantic Surfclam T M 22, 35, 38, 50, 66, 67, 129, 130, 131

Clam Tellina agilis Northern Dwarf Tellin P M 38, 50, 66, 69, 129

Clam Ensis directus Atlantic Jackknife Clam P M 38, 50, 66, 69, 108

Clam Mya arenaria Soft Shell Clam T C 22, 38, 50, 61, 67, 114, 129, 131

Clam Mulina lateralis Dwarf Surf Clam P M 38, 69, 129

Polychaete Glycera dibranchiata Bloodworms P M 38, 50, 66, 69

Polychaete Heteromastus filiformis - T C 35, 38, 61, 66, 69, 96

Polychaete Sabellaria spp. - T M 38, 98

Polychaete Hydroides spp. - P M 38

Oligochaete Limnodrilus spp. - P M 27, 65, 66, 129

Horsehoe Crab Limulus polyphemus Horseshoe Crab T M 1, 17, 38, 45, 50, 87, 108, 129

Water Flea Daphnia spp. Water Flea P C 22, 129

Copepod Halicyclops fosteri - P M 26

Copepod Acartia hudsonica - P M 26

Copepod Pseudodiaptomus pelagicus - P M 26

Barnacles Balanus spp. - T M 26, 38, 50, 98, 129

Crayfish Orconectes limosus Spinycheek Crayfish P F 27, 50, 70, 129, 141

Crayfish Cambarus bartonii Appalachian Brook Crayfish P F 50, 70, 141

Hermit Crab Pagurus spp. Hermit Crab P M 38, 50, 69, 129

Sea Squirt Molgula spp. - T M 38, 99

Chironomid Prodadius culiciformis - P F 27, 50, 57, 66

Chironomid Polypedilum spp. - P F 50, 57, 65, 66

Chironomid Cryptochironomus spp. - P F 27, 50, 57, 66

Chironomid Cladotanytarso spp. - P F 50, 57, 66

Where: T = tolerant, P = likely to be tolerant, M = marine,C = combination (oligohaline, polyhaline, mesohaline, or multiple), and F = freshwater. 
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Longnose Gar Lepisosteus osseus. This species appears to have been extirpated from the Delaware drainage. 

It formerly occurred in at least freshwater portions of the estuary. However, since the gar is an air-breather, 

DO limitation is presumably not the cause of its extirpation. 

Rainbow Smelt Osmerus mordax. This anadromous species occurred in the Delaware estuary, although we 

have no evidence of a smelt fishery in the drainage analogous to that occurring in other parts of its range. It 

was probably extirpated from the drainage in the 19th Century. Rainbow Smelt has been reported relatively 

recently, but there is no evidence of an established population in the estuary. Reduced DO has not been 

suggested as a cause of its extirpation from the drainage. 

Bridle Shiner Notropis bifrenatus. There are a few records of this species in the estuary, including oligohaline 

areas. These occurrences have been attributed to fish straying from populations in the Delaware River. This 

species was once common in fresh water parts of the drainage, but is currently restricted to a few sites, none 

near the estuary. Its decrease has been attributed to loss of aquatic vegetation, decrease in water clarity and 

possibly by introduction of predators. Therefore, DO sensitivity is not considered likely as a base cause of loss 

of this species from the estuary. 

Other fresh water fishes. A number of species occur in fresh waters of the drainage. There may be historical 

records of some of these in the estuary, especially in the upper estuary. Many of these occurrences probably 

represent strays from established populations and are reasons for inclusion in the candidate sensitive species 

list. As with the Bridle Shiner, some of these species have decreased in abundance, further reducing the change 

for current occurrence in the estuary. 

When determining the distribution of sensitive species in the estuary, limitation by current DO conditions 

will need to be considered. A similar analysis of possible changes in distribution resulting from changes in 

DO would need to be done, although that might require a detailed analysis of current spatial patterns of DO. 

 

 

4. POTENTIAL EXPERTS FOR THE EXECUTION OF PROPOSED METHODOLOGY 

 

During this phase of the proposed methodology, experts for collaboration were not sought but were identified 

for potential future collaboration as authors of published research. In the next steps of the proposed 

methodology, these experts may be contacted if a significant lack of information is found after the literature is 

extensively reviewed. One gap in the data is likely to be related to the spatial and temporal distributional 

patterns of species in the Delaware Estuary, which may require input from other researchers in the estuary for 

information. A second likely gap is contradictory information on sensitivity, e.g., for unionid mussels. A third 

likely gap is extrapolating information on some life stages to other life stages which have not been studied. 

 

 

5. SECONDARY PATHWAYS OF OXYGEN SENSITIVITY 

 

A number of geochemical processes occur under low oxygen concentrations that can indirectly and directly 

affect the health of aquatic estuarine species.  The effect of these secondary pathways on oxygen concentrations 

in benthic sediments and overlying water should be considered when determining the oxygen requirements of 

both fresh and marine estuarine species, particularly benthic species.   

 

Oxygen deficiency may affect nutrient concentrations in the water column by altering the cycling of 

phosphorus, nitrogen and carbon. Phosphorus fluxes from benthic sediments to the overlaying water can 

increase under hypoxic conditions in both fresh (149) and coastal marine systems (147, 151). The efficiency 

of nitrogen removal and organic carbon remineralization via denitrification and anaerobic ammonium 
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oxidation may decline under hypoxic conditions (146, and references therein). These changes in nutrient  

 

dynamics can accelerate primary productivity, furthering eutrophication and associated declines in oxygen 

concentrations. Somewhat conversely, it has been proposed that under low oxygen concentrations, CO2 

concentrations my inhibit respiration by aerobic marine organisms (144), effectively raising the oxygen 

concentration threshold for hypoxia.   

 

When benthic sediments and overlying water becomes anoxic, benthic metabolism shifts to anaerobic 

pathways (ex. sulfate reduction), increasing the concentrations of reduced metabolites (ex. sulfide) in the 

sediment and overlying water (152, and references therein).  Sulfide, in particular, has been shown to be toxic 

to aerobic organisms (150) and to decrease the survival times of marine benthic communities under hypoxia 

by, on average, 30% (153).  This effect is greater on eggs and juveniles. Sulfate-reducing bacteria have also 

been shown to be the principal methylators of Hg2+ in anoxic sediments (145), although iron-reducing bacteria 

and methanogens may also play a role (148).  Methylmercury is the most toxicologically important species in 

regards to aquatic species and human health risks and is the predominant form of mercury that biomagnifies 

in the aquatic food chain (148, and references therein).  

 

 

NEXT STEPS 

 

Under Task Order 1, steps 1-4 of the proposed methodology have been completed. From the results of the 

primary literature search, 50 species have been deemed candidate key sensitive species and are being 

recommended for inclusion in the next step (Step 5) of the proposed methodology.   

 

Narrowing this candidate list in Step 6 may be accomplished by choosing species with the highest DO 

requirements in different places and times to determine the most stringent requirements. Protection of these 

key species would likely protect other species with higher tolerances. Alternately, the list may be narrowed by 

changing the criteria for inclusion, by deleting species where definitive information is lacking, or based on 

other species characteristics (e.g., uncommon or limited occurrence in the estuary or non-native status). 

 

Steps 7 and 8 will then be executed by additional literature searches and potential collaboration with experts 

to determine the spatial and temporal species patterns within the Delaware Estuary. Additionally, information 

for each of the key species on appropriate exposure and averaging periods for DO will be identified to the 

greatest extent possible based on current literature and data to complete Step 9 of the proposed methodology. 

 

At this point, any persistent data gaps will be identified (Step 10). We anticipate likely areas of data gaps are: 

1) Resolution of contradictory information on DO sensitivity; 

2) Extrapolation of rigorous studies to other life stages or to different environmental conditions (e.g., 

salinity); 

3) Providing more quantitative information on some taxa for which existing information is not 

adequate to determine sensitivity; 

4) Providing more detailed information on spatial and temporal occurrence of different species and 

life stages; such information may be especially important where recent changes in environmental 

conditions have led to changes in spatial distribution or temporal occurrence which are not well 

documented in the published literature; 

5) Determination of important data needs which are likely to require additional study. 
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Methods for investigating these issues include: a) targeted literature searches, e.g., on specific taxa without 

limitation to those explicitly discussing DO sensitivity; b) discussion of unpublished, relevant information, 

e.g., on spatial and temporal distribution, with personnel from academic, governmental, non-governmental 

and private entities; c) discussion of specific issues with outside experts; d) and feedback from review of 

draft versions of the final report. 

 

The primary literature, information, and data sought throughout the proposed methodology will be from 

appropriate scientific or published sources and special effort will be made to identify and obtain the most recent 

studies and reports. Unpublished data will be used where available, relevant and of high technical quality. All 

sources consulted will be appropriately documented and listed.  

 

The primary deliverable of this evaluation of DO needs would be the set of tables (Step 11) and a report listing 

the DO requirements for each key species, such that the aggregate spatial and temporal DO need may be 

defined in support of development of new DO criteria for the Delaware Estuary. This may include 

consideration, description, and recommendations regarding appropriate exposure and averaging periods (e.g., 

instantaneous minimum, daily averages, seasonal averages, etc.), or that step might be considered as part of 

setting criteria rather than reviewing literature. The report may also include discussion of specific cases where 

existing information is either inadequate or sufficiently contradictory that precise quantitative DO requirements 

cannot be made. These cases would be especially important where estimates of DO requirements of a taxon 

exceed those of other taxa occurring at the same time and place, since these would have significant impact on 

water quality standards for DO. 
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