

Modeling | Mapping | Consequences

Laura Bittner

Chief, Hydrology, Hydraulics, and Coastal Section

Philadelphia District

February 16, 2017

Presented to the DRBC Regulated Flow Advisory Committee on Feb. 16, 2017. Contents should not be published or re-posted in whole or in part without the permission of DRBC.

CWMS Implementation for the Delaware River Basin

CWMS Program Status

Not Started

25% Complet

50% Complete

75% Complete

100% Complete

CWMS Watershed

CWMS Project Status

🕆 C 🚺 - Go

Not Needed

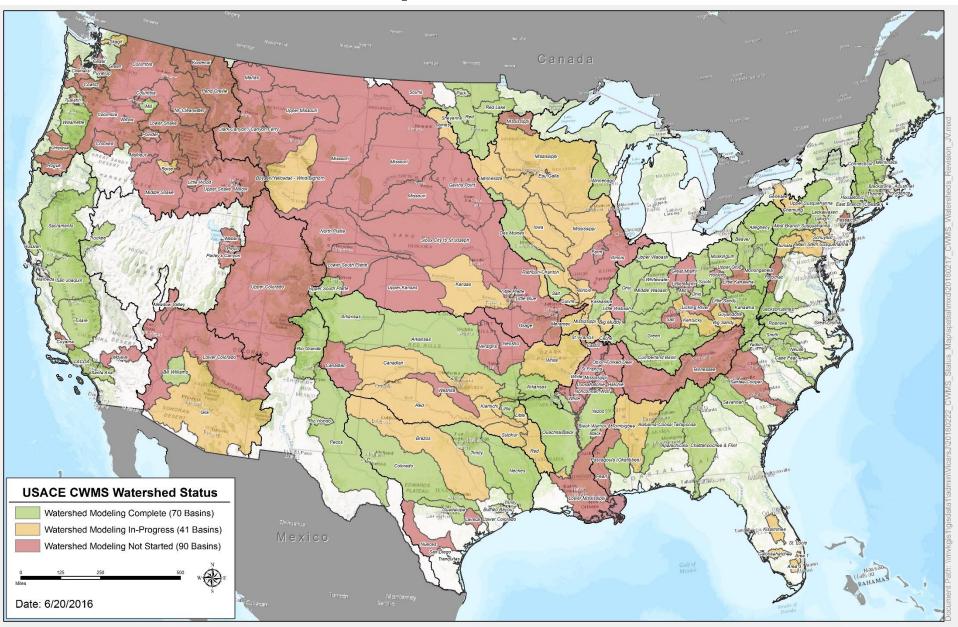
Not Starte

On Hold /Delaye

In Progre

Complet

Vision / Goals

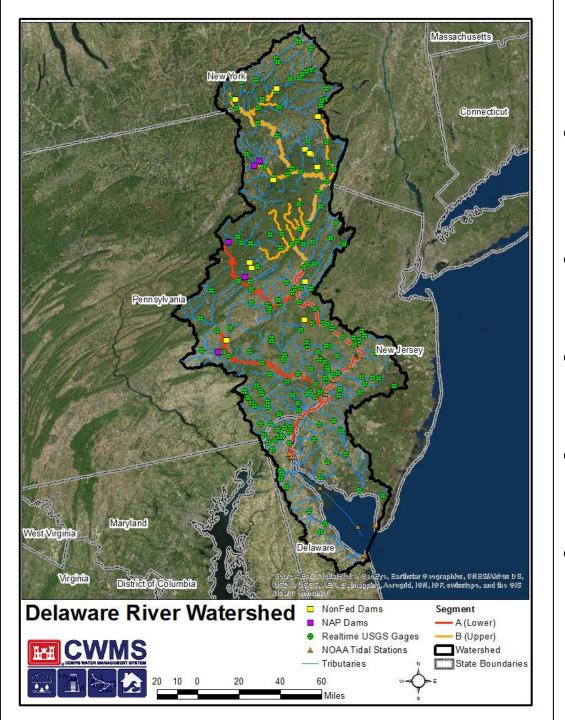

All USACE managed watersheds fully modeled within CWMS with models operated daily to provide decision support to Water Managers and results automatically consolidated to standardized briefing tools within CorpsMap for executive and public use.

Presented to the DRBC Regulated Flow Advisory Committee on Feb. 16, 2017. Contents should not be published or re-posted in whole or in part without the permission of DRBC.

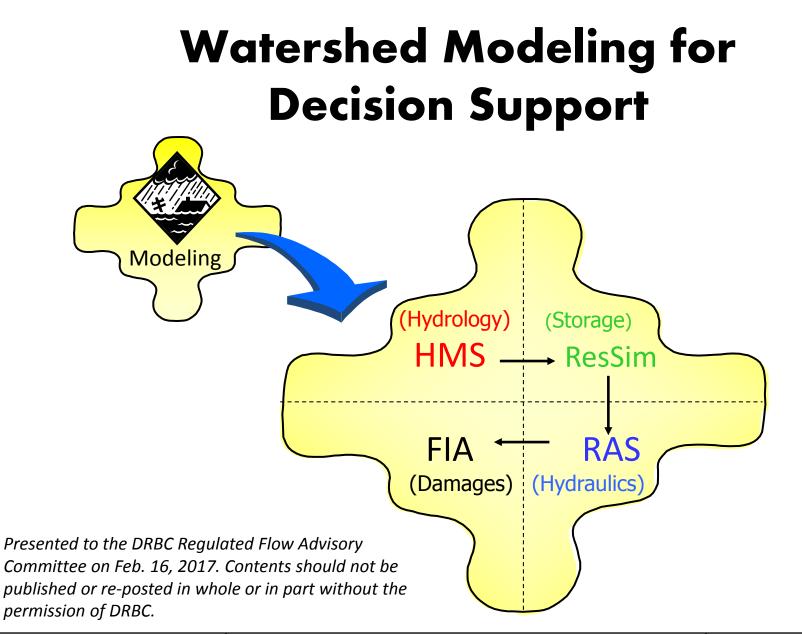
Figure 2

CWMS Implementation Status

Presented to the DRBC Regulated Flow Advisory Committee on Feb. 16, 2017. Contents should not be published or re-posted in whole or in part without the permission of DRBC.


DRB CWMS Objectives

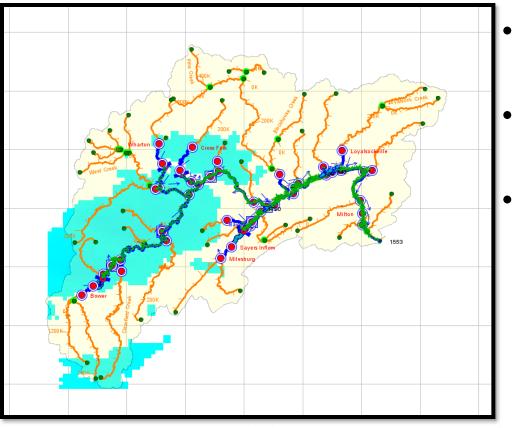
- Estimating stream flows in both controlled and uncontrolled subbasins within the Delaware River watershed during both high and low flow conditions.
- Determining the potential impacts of various release scenarios on reservoir elevation and storage, local flood protection projects and downstream flows, especially in major damage centers.
- Identifying additional opportunities for system-wide operation to take maximum advantage of the existing infrastructure for Delaware River flood risk management
- Identifying additional opportunities to take maximum advantage of existing infrastructure for Delaware River low flow augmentation.


CWMS Objectives

Presented to the DRBC Regulated Flow Advisory Committee on Feb. 16, 2017. Contents should not be published or re-posted in whole or in part without the permission of DRBC. Figure 4

- Real-time data streams integrated into the interface from 200+ USGS gages and 13 NOAA tidal stations.
- Considers the entire 13,539 sq mile watershed
- Calibrate to several high flow events and one low flow event
- Considers all 5 USACE dams and several non-federal dams
- Considers mainstem and major tributaries

Presented to the DRBC Regulated Flow Advisory Committee on Feb. 16, 2017. Contents should not be published or re-posted in whole or in part without the permission of DRBC.

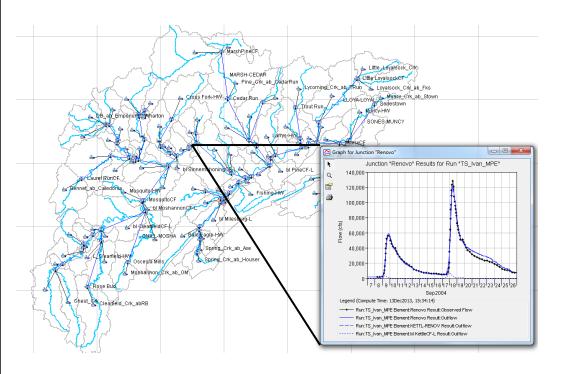


Watershed Modeling

Figure 6

MFP - Precipitation Analysis

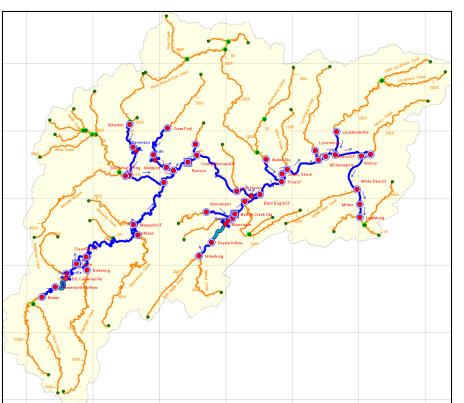
Meteorological Forecast Processor


Presented to the DRBC Regulated Flow Advisory Committee on Feb. 16, 2017. Contents should not be published or re-posted in whole or in part without the permission of DRBC.

- Precipitation processed on a grid basis.
- Observed data from NEXRAD or interpolated from gages.
- Future Precipitation Scenarios:
 - NWS Quantitative Precipitation Forecasts (QPF)
 - Multiples of the QPF
 - Manual-entry or standard scenarios (What if?)
 - Timing
 - Location (watershed "zones")

Figure 7

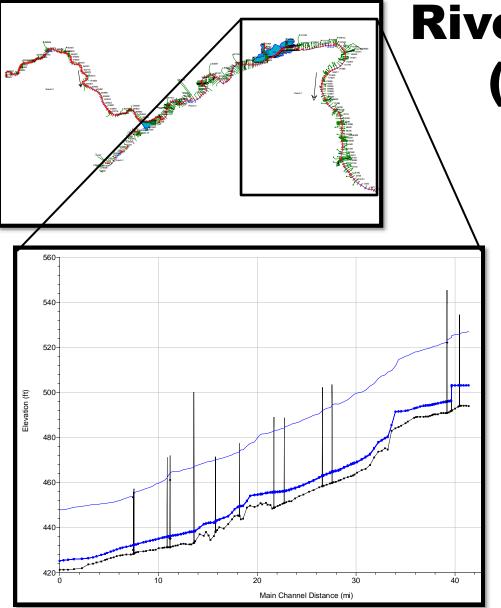
Hydrologic Modeling (HEC-HMS)



Presented to the DRBC Regulated Flow Advisory Committee on Feb. 16, 2017. Contents should not be published or re-posted in whole or in part without the permission of DRBC.

- Computes runoff from observed data and future precipitation scenarios
- Processes:
 - Deficit and Constant or Green Ampt
 - ModClark UH Transform
 - Grid Cell sizes are 2km x 2km
 - Recession Baseflow
 - Channel Routing
 - Muskingum-Cunge
 - Muskingum
 - Modified Puls
- Include entire 13,539 sq miles
- Calibrate/validate to several historic events

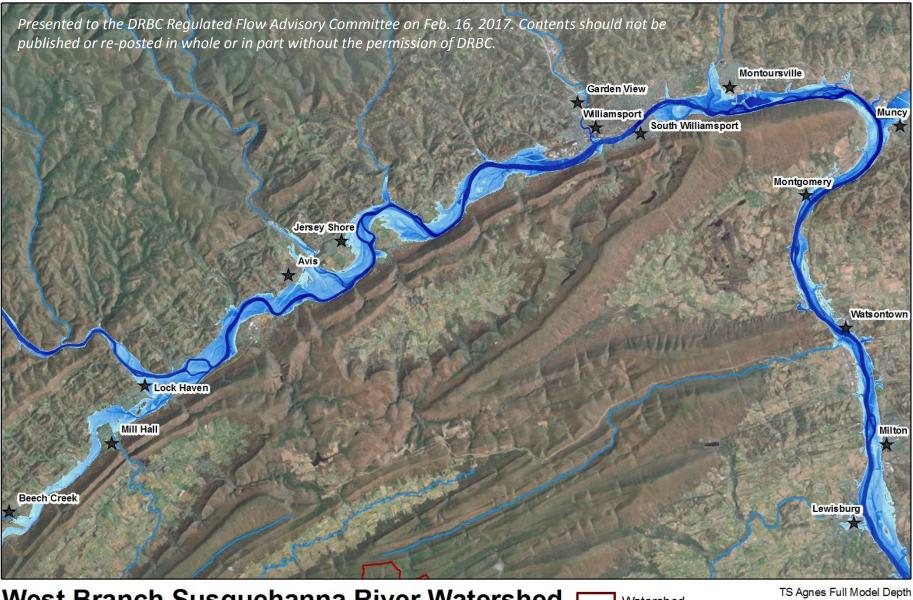
Figure 8


Presented to the DRBC Regulated Flow Advisory Committee on Feb. 16, 2017. Contents should not be published or re-posted in whole or in part without the permission of DRBC.

Reservoir Operations with HEC-ResSim

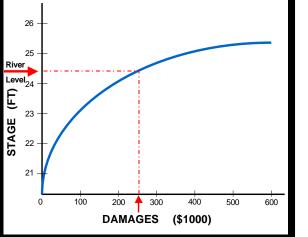
- Simulates operations through userdefined operating rules and scheduled releases
- Uses reservoir inflow and downstream local hydrographs computed by HEC-HMS
- Automatically generates downstream hydrographs for a "no reservoir" condition for project benefit analysis
- Includes 5 USACE dams plus Cannonsville, Pepacton, Neversink, Lake Wallenpaupack, Rio, Toronto, Swinging Bridge, Cliff Lake, Merrill Creek, Nockamixon, Penn Forest, Wild Creek, and Lake Ontelaunee.
- Calibrate/validate to historic events

Figure 9


River Hydraulics (HEC-RAS)

- Analyzes river hydraulics to compute water depth, velocity, & inundation boundaries
- Computes water surface profiles and stage hydrographs from ResSim and/or HMS hydrographs
- Steady-flow or unsteady-flow analysis
- Inundation boundaries and depth grids computed in RAS Mapper / GeoRAS
- Extends from Reedy Point, DE to Pepacton and Cannonsville Dams
- Major tribs include Schuylkill, Lehigh, and Lackawaxen Rivers
- 750 river miles to be modelled
- Calibrate/Validate historic events

Hydraulic Modeling – HEC-RAS


Presented to the DRBC Regulated Flow Advisory Committee on Feb. 16, 2017. Contents should not be published or re-posted in whole or in part without the permission of DRBC. Figure 10

Presented to the DRBC Regulated Flow Advisory Committee on Feb. 16, 2017. Contents should not be published or re-posted in whole or in part without the permission of DRBC.

Economic / Impact Analysis (HEC-FIA)

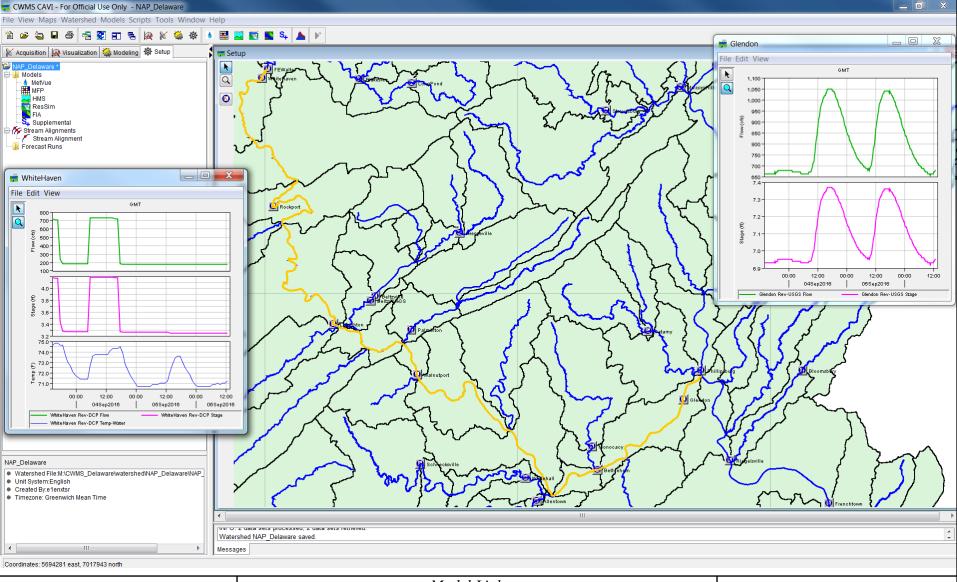
- Computes agricultural and urban damages and project benefits by "impact area"
- Computes damages and benefits between different scenarios, and with and without project conditions
- "Action tables" provide a list and time of actions to take during an event, based on forecasted stages
- Updates to stage damage relations for Delaware River Basin damage centers

Economic Modeling – HEC-FIA

Figure 12

Impact Action Table

Impact Area	Stage (ft)	Impact	Action	Time	
				Initial Forecast	Modified Releases
Cottage Area	556.0	Flood Warning Stage	Initiate reconnaissance and alert appropriate p		22Mar2002 0600
	558.0	Flood Stage	Full alert, warn of potential evacuation.	22Mar2002 0700	22Mar2002 0700
	560.0	Damage to infrastructure, landscape, etc.	Close life lines & roads to everyone but local tr	22Mar2002 0900	22Mar2002 0900
		Egress begins to be a problem.	Evacuate residences & perform surveillance.	22Mar2002 1000	22Mar2002 1000
				Max Flood Stage - 25Mar2002, 07:00 562.63 ft	Max Flood Stage - 25Mar2002, 07:00 562.63 ft
Lock Haven		Zero stage reading		19Mar2002 1000	19Mar2002 1300
	540.1	Flap gates of interior drains under water	Check drains to ensure operation	21Mar2002 2300	21Mar2002 2300
		Elevation of Grant Street Dam		22Mar2002 0100	22Mar2002 0100
	545.0	Handrails at Summer Beach nearing inun	Remove handrails & close Grant Street Dam p	22Mar2002 0200	22Mar2002 0200
	549.0	Grant Street Dam platform elevation		22Mar2002 0400	22Mar2002 0400
	553.0	Flood Warning Stage	Begin levee patrol	22Mar2002 0600	22Mar2002 0500
		Flood Stage	River overtops bank	22Mar2002 0900	22Mar2002 0700
		Bath house floor elevation	Close bath house	22Mar2002 0900	22Mar2002 0700
	557.2		Prepare to close Closure Structure No. 3	22Mar2002 1000	22Mar2002 0700
	559.1		Close Closure Structure No. 3	22Mar2002 0800	22Mar2002 0800
	559.2		Prepare to close Closure Structure No. 2, notif		22Mar2002 0800
	561.0		Close Closure Structure No. 2	22Mar2002 1000	22Mar2002 1000
				Max Flood Stage - 25Mar2002, 07:00 562.07 ft	Max Flood Stage - 25Mar2002, 07:00 562.07 ft
	500.0	Otres and a d	A laws	4014	40140000-4000
Sayers Lake Area		Streambed	None	19Mar2002 1300	19Mar2002 1300
		Gate Sill	None	19Mar2002 1300	19Mar2002 1300
		Late Winter Conservation Pool Mid winter Conservation Pool	None None	19Mar2002 1300 22Mar2002 1000	19Mar2002 1300 22Mar2002 1000
		Summer Recreation Pool	None	22Mar2002 1000 22Mar2002 1600	22Mar2002 1000 22Mar2002 1600
		Marina and Launch Ramps	Lift gangplanks connecting marina and launch	22Mar2002 1600	22Mar2002 1800
		Marina and Launch Ramps	None	22Mar2002 1800	22Mar2002 1800
		Entrance to Parking @ Winter Lot	Close road to winter parking lot	23Mar2002 0200	23Mar2002 0300
			Begin monitoring Howard interior drainage area		23Mar2002 0500
			Close road to pump station at Green Bridge	23Mar2002 0400	23Mar2002 1400
		Low Pt. Sycamore Loop Road	Close Sycamore Loop Road	23Mar2002 1000	23Mar2002 1500
		Low Pt. Winter Boat Storage Area	Move boats from winter storage area	23Mar2002 1400	2011/12/02 10:00
		Floor of Restroom-W Hunter Run Launch		23Mar2002 1700	
		Low Pt. Road at Hunter Run Launch	Close road below Hunter Run parking lot	23Mar2002 2200	
		Parking Lot Entrance @ Bald Eagle Laun		24Mar2002 0000	
		Entrance to Main Marina	Close main marina	24Mar2002 0300	
				Max Flood Stage -	Max Flood Stage - 25Mar2002, 07:00 636.41 ft

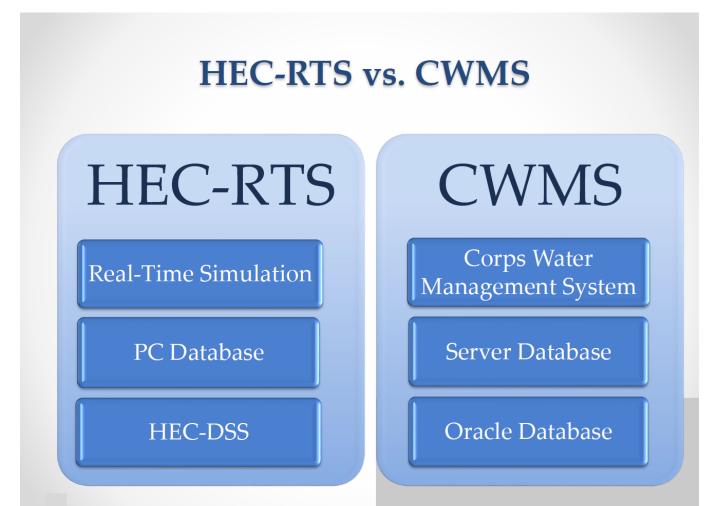


HEC-FIA Output

Figure 13

Presented to the DRBC Regulated Flow Advisory Committee on Feb. 16, 2017. Contents should not be published or re-posted in whole or in part without the permission of DRBC.

CAVI – Control and Visualization Interface



Model Linkage

Presented to the DRBC Regulated Flow Advisory Committee on Feb. 16, 2017. Contents should not be published or re-posted in whole or in part without the permission of DRBC.

Figure 14

RTS – Real Time Simulation Publicly Available

HEC-RTS Real Time Simulation

Presented to the DRBC Regulated Flow Advisory Committee on Feb. 16, 2017. Contents should not be published or re-posted in whole or in part without the permission of DRBC. Figure 15

Path Forward

- Currently at the 50% milestone for the CWMS implementation for the Delaware River Basin
- CWMS scheduled to be complete by Summer 2017
- The RTS version of CWMS would follow

Presented to the DRBC Regulated Flow Advisory Committee on Feb. 16, 2017. Contents should not be published or re-posted in whole or in part without the permission of DRBC.

Delaware Implementation Schedule

Figure 16