USING ASSESSMENT DATA TO DRIVE INSTRUCTION
WE ALL USE DATA

Do you use data to make informed decisions?

Turn and Talk:

What action steps would you take after hearing this information?

What other data would be helpful when making your decision as a consumer?
This session is part of the New Jersey Achievement Coach Program.

Achievement Coaches are educators selected by their districts as leaders who share their knowledge of teaching and learning with their peers.

The three sessions led by Achievement Coaches were developed by New Jersey's educators to address specific needs.
NORMS

Active Listening and Learning
- Listen hard, speak softly
- Take ownership over your learning
- Be solution-oriented
- Think about how this looks in your classroom or school

Parking Lot
- Please write any outstanding questions you have on the “Parking Lot” in the back of the room

Cell Phones
- Please keep phones on silent and take emergency calls/texts outside
MONITORING AND ADJUSTING

Using Assessment Data to Drive Instruction

Fostering Intellectual Engagement

Plan
Implement
Collect
Analyze

Effective Assessments
SESSION OBJECTIVES

Apply concepts from today’s presentation in planning concrete steps toward...

• understanding what data is useful in driving instruction to improve student achievement.
• identifying trends from data to make informed educational decisions.
• creating next steps and goals that are data-driven, actionable, and measurable.
• consistently reflecting and revising as part of the cycle of teaching and learning.
Please bring one piece of data from each column.

<table>
<thead>
<tr>
<th>Formative Data</th>
<th>SGO</th>
<th>PARCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Running records</td>
<td>● Pre-assessments</td>
<td>● Evidence statement</td>
</tr>
<tr>
<td>● Exit tickets</td>
<td>● Current grades</td>
<td>analysis report</td>
</tr>
<tr>
<td>● Fountas and Pinnell</td>
<td>● Test performance</td>
<td>● Evidence tables</td>
</tr>
<tr>
<td>● DRA2 levels</td>
<td></td>
<td>● Released items sets</td>
</tr>
<tr>
<td>● SRI or SMI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Quizzes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please bring a laptop.
AGENDA

• INTRODUCING CORE CONCEPTS

• USING DATA TO DRIVE INSTRUCTION - FORMATIVE, SGO, PARCC

• CLOSING THOUGHTS
A process by which teachers...

- **Plan** – Develop curriculum, instruction, and assessments

- **Implement** – Teach or take plan into action

- **Collect** – Gather indicators of student progress or other evidence of practice

- **Analyze** – Identify trends, patterns, and student misconceptions; decide what needs more reinforcement or re-teaching

- **Plan** – Reflect on and revise the plan based on analysis of the data
Educators use these cycles not only to plan daily lessons, but also to analyze data from, and plan for, longer units of instruction.

For more information on monitoring cycles, see SGO 2.1 Guidebook.
TYPES OF ASSESSMENT DATA

Diagnostic Assessment
Quizzes, formulated items used for baseline or pre-tests

Formative Assessment
Quizzes, checks for understanding, exit tickets

Interim Assessment
District-wide benchmarks, unit assessments

Summative Assessment
State tests, portfolios, SGOs, benchmarks, mid-terms, final assessments
CATEGORIES OF DATA

Using separate post-it notes, write down types of assessments you use.

Now separate into qualitative and quantitative

Qualitative
Data expressed in words.

Quantitative
Data expressed in numbers.
DATA OVERLOAD

Benchmarks
PARCC
Quizzes
Observations
DRA

Quantitative
Qualitative
Sources of Data
Organized Data
Protocols are procedures that help teams function better and meet their goals. The protocols that will be utilized in data analysis provide structure through which effective communication is promoted and team structure is built via content-focused collaboration.

- **Data Analysis: Turning Data into Actionable Information**
 Guides teachers in identifying trends in order to inform instruction and helps teachers create target goals, progress monitor toward goals, and reflect and revise goals.

- **Five Whys Tool for Root Cause Analysis Protocol**
 Helps educators and students identify triggers and root causes for possible misconceptions or identified areas of concern.

- **Data Driven Dialogue**
 Builds awareness and understanding of the participant’s viewpoints, beliefs, and assumptions about data while suspending judgments.
AGENDA

• INTRODUCING CORE CONCEPTS

• USING DATA TO DRIVE INSTRUCTION – FORMATIVE ASSESSMENT DATA

• CLOSING THOUGHTS
A process by which teachers...

- **Plan** – Develop curriculum, instruction, and assessments
- **Implement** – Teach or take plan into action
- **Collect** – Gather indicators of student progress or other evidence of practice
- **Analyze** – Identify trends, patterns, and student misconceptions; decide what needs more reinforcement or re-teaching
- **Plan** – Reflect on and revise the plan based on analysis of the data
Formative assessments monitor student learning and adjust ongoing instruction.

- Quizzes and exit tickets
- Checks for understanding (including digital platforms)
- Running records
- Reflective journals
- Behavior/classroom management systems

Teachers can utilize the data to adjust instruction and accelerate learning. Collaboratively analyzing formative assessment data addresses the question, “How can we collectively ensure that all of our students can meet the objectives?” The formative data should be used to drive instruction, not to evaluate educators.

Students can use this information to help self-regulate their learning.
“What gets measured gets done.”
1. Get It!
 ○ Select the data to analyze for future action. (e.g., exit tickets, benchmark tests, quizzes, etc.)

2. Read It!
 ○ Answer the following questions as it applies to your data.
 • What pops out at you?
 • Why is this data important?
 • If this data remains constant, what might be the possible consequences for our students?
 • What are your hunches about what might need to happen next to impact this data?

Turning Data into Actionable Information Protocol
3. Talk It!

- Select a discussion leader who will facilitate an active dialogue.
 - What are the data facts that popped out during Read It! phase?
 - Why is this data important?
 - What are some possible actions that can be taken to address the data implications?

- Fill out the following columns:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Use It!
 - What is your target or goal?
 - What data will you use to monitor and review your progress in meeting your goal?
 - Apply to the presented chart:

<table>
<thead>
<tr>
<th>Current Status:</th>
<th>School Objective/SMART Goal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action Steps or Strategies</td>
<td>Responsibility</td>
</tr>
<tr>
<td></td>
<td>Person(s) Responsible for Implementation</td>
</tr>
<tr>
<td>Timeline (Benchmark Monitoring Dates)</td>
<td>Required Resources</td>
</tr>
</tbody>
</table>

5. Review It!
 - Monitor your timeline.
 - Then, review how the current data compares to what you expected. You may need to reassess your goal or action plan.
NEXT STEPS

Inner/Outer Circle or Moving Down the Line Activity

- How can you use the results from this formative data protocol to drive your instruction?
- Identify which team members you can utilize this protocol with in your school building.
- How are you going to use this protocol when you return to your classroom to examine student achievement?
AGENDA

- INTRODUCING CORE CONCEPTS
- USING DATA TO DRIVE INSTRUCTION – SGO ASSESSMENT DATA
- CLOSING THOUGHTS
MONITORING CYCLES

A process by which teachers...

- **Plan** – Develop curriculum, instruction, and assessments
- **Implement** – Teach or take plan into action
- **Collect** – Gather indicators of student progress or other evidence of practice
- **Analyze** – Identify trends, patterns, and student misconceptions; decide what needs more reinforcement or re-teaching
- **Plan** – Reflect on and revise the plan based on analysis of the data
SGO ASSESSMENT DATA

For Educators
SGOs provide a method by which teachers can improve their practice through high quality goal setting while clearly demonstrating their effectiveness through the learning exhibited by the students for whom they are responsible.

For Evaluators
SGOs provide an authentic measure of teacher effectiveness that is aligned to the learning exhibited by students through an educator’s daily practice of teaching.

For Students
When well-designed, SGOs promote reflective and collaborative teaching practices, alignment among standards, instruction and assessment, and improve student learning.
Now that we have collected data from a standards-aligned assessment, what is next?

Dive into your data to identify starting points, or a root cause.
A Root Cause is “the most basic reason the problem occurs.”
(Definition from “Total Quality Schools,” by Joseph C. Fields)

Keep asking “Why?” until you get to an actionable level.

Problem Statement: Significant amount of students were not proficient schoolwide on a standards-aligned assessment.

Problem Statement: I missed 1st period PLC.

Inconsistent standards based instruction
- Not all teachers using CCSS
- Got up late
- Little Professional Development for CCSS
- Only a select group of teachers trained on CCSS
5 Whys for Root Cause Analysis

Purpose: To help the educators get to the root cause of a problem. Protocol found in the Collaborative Teams Toolkit.

<table>
<thead>
<tr>
<th>Steps</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Identify area of focus for student growth</td>
<td>After reviewing data, teacher describes the potential area of focus in the class. Questions to consider: Why did you choose this question? Why is it so important to you? How does it relate to your class? Group asks questions to clarify the context. Purpose: To help the educators get to the root cause of a problem. Protocol found in the Collaborative Teams Toolkit.</td>
</tr>
<tr>
<td>2. Brainstorming</td>
<td>The team facilitator asks why the problem happened and records the team response. To determine if the response is the root cause of the problem, the facilitator asks the team, "If we corrected this response, would it be likely the problem would continue?" If the answer provided is a contributing factor to the problem, the team keeps asking "Why?" until there is agreement from the team that the root cause has been identified. It often takes three to five "Whys," but it can take more than five. If the team agrees that the problem has been identified, the team moves on.</td>
</tr>
<tr>
<td>3. Why Questioning</td>
<td>If the answer provided is a contributing factor to the problem, the team keeps asking "Why?" until there is agreement from the team that the root cause has been identified. It often takes three to five "Whys," but it can take more than five. If the team agrees that the problem has been identified, the team moves on.</td>
</tr>
</tbody>
</table>

Let's dig down to the roots!
PROTOCOL ACTIVITY

Step 1: Review Data

Identify area of focus for student growth

Look at your data. What trends do you see?

Step 2: Brainstorming

Problem statement

One sentence description of event or problem

<table>
<thead>
<tr>
<th>Why?</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Why?</td>
<td></td>
</tr>
<tr>
<td>Why?</td>
<td></td>
</tr>
<tr>
<td>Why?</td>
<td></td>
</tr>
<tr>
<td>Why?</td>
<td></td>
</tr>
</tbody>
</table>

Step 3: WHY Questioning: May take up to 5 Whys until the root cause is identified.

<table>
<thead>
<tr>
<th>Root Cause(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
</tr>
<tr>
<td>2.</td>
</tr>
<tr>
<td>3.</td>
</tr>
</tbody>
</table>

To validate root causes, ask the following: If you removed this root cause, would this event or problem have been prevented?
Set learning targets.
Consider creating SMART GOALS.

SGO PROCESS

Step 1: Choose or develop a standards-aligned assessment
- Performance-based assessment
- Collaborated

Step 2: Use multiple measures to determine starting points
- Used writing samples, markers of future success and grades
- Collaborated

Step 3: Set learning targets
- Set differentiated learning targets
- Collaborated

Step 4: Track progress and refine instruction
- Used monitoring cycle data to inform instruction
- Collaborated

Step 5: Review results and score the SGO
WHAT IS A SMART GOAL?

SMART GOAL SETTING

- SPECIFIC
- MEASURABLE
- Attainable
- RELEVANT
- TIME-BOUND

SMART VS NOT SMART

- **My Goal:** I will lose weight.
- **My Goal:** I will run everyday for 1 mile.
- **My Goal:** Between March 15 and Memorial Day, I will lose 10 pounds and be able to run one mile non-stop.
- **My Goal:** I will lose 10 lbs.
SET A SMART GOAL

SMART Goal Sentence Frame

At least []% of my [] students will score at or above []% on the [] by [].

Activity: Create a Smart GOAL with your group using the sentence frame provided.
SMART GOALS → SMART SGOs

<table>
<thead>
<tr>
<th>Typical Usage of SMART</th>
<th>SGOs Must Be</th>
<th>SGOs Require a Teacher to</th>
</tr>
</thead>
<tbody>
<tr>
<td>S Specific</td>
<td>Specific</td>
<td>Describe how many students learn “what” or grow by “how much”</td>
</tr>
<tr>
<td>M Measurable</td>
<td>Measurable</td>
<td>Compare starting points to ending points using assessments of some type</td>
</tr>
<tr>
<td>A Achievable</td>
<td>Ambitious but Achievable</td>
<td>Determine a reasonable amount of growth according to knowledge of students</td>
</tr>
<tr>
<td>R Relevant</td>
<td>Relevant</td>
<td>Align SGOs to standards</td>
</tr>
<tr>
<td>T Time-related</td>
<td>Time-related</td>
<td>Set an appropriate instructional period</td>
</tr>
</tbody>
</table>
HOW SMART IS YOUR SGO?

Step 1: Standards Aligned

Step 2: Determining Starting Point

Step 3: Setting Learning Targets

SGO Example: Mathematics, Grade 6

Overview
This 6th grade mathematics teacher created his SGO to focus on the grade-level algebra content standards. In order to prepare his students for continued success in this content strand throughout middle and high school. The SGO is aligned to the Common Core State Standards (CCSS), and uses several data points to determine each student’s Preparedness Group (Measure of Academic Progress, Previous Grades, Final, and Diagnostic). The teacher’s chosen to focus on this specific content strand is acceptable as his mSGP score will encompass student achievement on the broader grade-level content standards taught throughout the year.

<table>
<thead>
<tr>
<th>Name</th>
<th>School</th>
<th>Grade</th>
<th>Course/Subject</th>
<th>Number of Students</th>
<th>Interval of Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Math</td>
<td>60</td>
<td>9/14/15 to 4/25/16</td>
</tr>
</tbody>
</table>

Standards, Rationale, and Assessment Method

Name the content standards covered, state the rationale for how these standards are critical for the next level of the subject, other academic disciplines, and/or life/career. Name and briefly describe the format of the assessment method.

Rationale
This SGO focuses on the grade-level algebra content strand from the Common Core State Standards (CCSS), which includes all standards within the Expressions and Equations Domain for Grade 6. Algebraic thinking is a strand of mathematics that relies on strong foundations built throughout elementary and middle school mathematics.

Throughout the Expressions and Equations Domain in Grade 6, students are required to (1) make connections between previous arithmetic understandings and algebraic representations, (2) write and solve equations and inequalities, and (3) represent relationships between variables. By focusing on these skills in Grade 6, student proficiency in algebraic thinking and skills is supported and will enable greater student achievement in their continued study of mathematics in high school. As argued by the National Council of Teachers of Mathematics (NCTM) in Algebra as a Bridge to Success Mathematics for All Students, students “characterizing algebra as a strand of the school curriculum highlights the power and usefulness of algebraic thinking and skills — proficiencies that one academic domain and are evident in many professions and careers. Such an algebra strand in the school curriculum is critical and is accessible for all students.” The emphasis placed in Grade 6 by this SGO will enable students to continue developing their understanding of this critical skill.

Assessment
The assessment of student learning in this SGO will be the Grade 6 Algebra Common Assessment created by the Grade 6 Team. The format of the 50 point assessment is: 10 Selected Response – Multiple Choice (1 point item), 10 Constructed Response (2 point item), and 2 Performance Tasks (10 point items). See attached Assessment Blueprint for details.

Standards
The following Grade 6 CCSS are assessed in this SGO:

6.EE.1: Write and evaluate numerical expressions involving whole-number exponents.
6.EE.2: Write, read, and evaluate expressions in which letters stand for numbers.
6.EE.2c: Write expressions that record operations with numbers and with letters standing for numbers.

Preparedness Group

Information #1

Information #2

Information #3

Remedial
Low
Average
High

Fall MAP Math RIT (Percentile)
Grade 5 Math Final (Percent Correct)
Grade 6 Algebra Diagnostic (Percent Correct)

<42
61-60
61-70
81-100

<64
71-80
91-100
86-100

<56
56-70
73-85

For students whose placement differs based on these data, the student will be placed in the Average Preparedness Group. Students will be placed in the Low or the High Preparedness Groups only if all these information data place the student in those groups. The Remedial Preparedness Group has been specifically created to address the needs of a group of students who have entered grade-level more than two grade levels behind.

The teacher has created a logical system to create Preparedness Groups and has created a particular group to meet the needs of a subset of his students who are more than two grade levels behind. This is a technique that could be used by other teachers who have very high students, where the teacher may want to create a specific Preparedness Group to meet the acceleration needs of those students.

Student Growth Objective

State simply what percentage of students in each preparedness group will meet what target in the space below, e.g. “75% of students in each group will meet the target score.” Describe how the targets reflect ambitious and achievable scores for these students. Use the table to provide more data for each group. Modify the table as needed.

Eighty percent of students in each group will score at their target level as described in the table below on the End of Year Algebra Common Assessment.

Although the Target Score on the SGO Assessment for the Remedial Preparedness Group is not passing on a grading scale, it is appropriate for these students. Their placement is adequately justified and the scoring target represents significant growth for this subset.

Preparedness Group

(e.g. 1, 2, 3)

Number of Students in Each Group

Target Score on SGO Assessment

Remedial
Low
Average
High

6
19
24
11

60%
80%
85%
90%
NEXT STEPS

Be on the lookout for additional supports:

- SGO Quality Rating Rubric
- Updated SGO Excel Tracking and Scoring Tool

SGO Forms and Documents

The following forms and documents are those most commonly used by educators and those produced for the 2015-16 school year for SGO purposes. Their use is optional. A complete set of forms and documents including those published in previous years can be found in the AchieveNJ document library.

- **SGO Overview** (PDF): A 2-page overview of the role of SGOs in AchieveNJ.
- **2.1 Presentation** (PPT | PDF): Updated SGO workshop presentation. Supplemental resources can be found in the document library.
- **SGO 2.1 Guidebook** (PDF | Word): Revised for 2015-16. Includes information about high quality assessments and target setting to improve SGO quality.
- **SGO Quick Start Guide** (PDF): A 2-page guide outlining the SGO process.
- **SGO Form** (PDF | Word): Includes sections to help teachers identify and record information for student starting points, record mid-year adjustments to SGOs, and reflect on SGO process in annual conferences.
- **SGO Excel Tracking and Scoring Tool**: (Locked xls | Unlocked xls) This is a Microsoft Excel-based resource that allows teachers to compile their SGO data and connect it with their scoring form all in one place. There is also a quick start guide that can be used for guidance. If you are unfamiliar with the "Markers of Future Success" scores that are referenced in the tool, you can access a sample of rubric here.
AGENDA

• INTRODUCING CORE CONCEPTS

• USING DATA TO DRIVE INSTRUCTION – PARCC ASSESSMENT DATA

• CLOSING THOUGHTS
MONITORING CYCLES

A process by which teachers...

- **Plan** – Develop curriculum, instruction, and assessments
- **Implement** – Teach or take plan into action
- **Collect** – Gather indicators of student progress or other evidence of practice
- **Analyze** – Identify trends, patterns, and student misconceptions; decide what needs more reinforcement or re-teaching
- **Plan** – Reflect on/ revise the plan based on analysis of the data
How will PARCC results help you as a teacher?

Group discussion: As a group, reflect upon the following statement and discuss how it lends itself to the role PARCC plays in your district and your own teacher practice.

Regardless of your grade level, discipline, or instructional placement the PARCC assessment can play a key role in maximizing student achievement.
PARCC ASSESSMENT DATA

District and School Level Data: Math, ELA, reading and writing, and also by grade levels

Disaggregated data, by subgroups

Item analysis using Evidence Statements

Student-level analysis
MATERIALS NEEDED TO DO THIS WORK

Evidence Based Tables Published by PARCC

Literacy Evidence Tables
(Reading and Writing)

Math Evidence Tables

Partnership Resource Center
Create an Account - It’s Free!
NJ Code: nj1787

PARCC Released Items
Phase I: Predictions - Surfacing perspectives, beliefs, assumptions, predictions, possibilities, questions, and expectations

Phase II: Go Visual - Re-create the data visually

Phase III: Observations - Analyzing the data for patterns, trends, surprises, and new questions that “jump” out

Phase IV: Inferences - Generating hypotheses, inferring, explaining, and drawing conclusions; defining new actions and interactions and the data needed to guide their implementation; building ownership for decisions

Data Driven Dialogue

Look at Evidence Tables to formulate predictions before reviewing data

Please reflect privately and record several of your preliminary thoughts about the data. One or more of the following thought-starters may be helpful.

- I assume...
- I predict...
- I wonder...
- My questions/expectations are influenced by...
- Some possibilities for learning that this data may present...
PROTOCOL ACTIVITY
PHASE 2 GO VISUAL

Re-create the data visually, on large sheets of paper, on a data wall, etc.

Mark up the data to better understand it (i.e., highlight trend lines in different colors, do math calculations and chart those, color code parts of the data that relate to each other).

Make the data your own!
ENGLISH LANGUAGE ARTS / LITERACY
Grade 4 Assessment, Spring 2015

Students with Valid Scores (522)
Purpose: This report presents the average percent correct by item for district, state and PARCC.

Difficulty level is determined at the PARCC level for all reports.

Evidence Statement
Evidence Statement Analysis

This report shows the operational Evidence Statements for the given grade and subject sorted by difficulty.

English Language Arts / Literacy

Grade 4 Assessment, Spring 2015

<table>
<thead>
<tr>
<th>Difficulty Order Most to Least</th>
<th>Evidence Statement</th>
<th>Common Core State Standard(s)</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RL 4.5.1</td>
<td>RL.4.05</td>
<td>Reading: Literature</td>
</tr>
<tr>
<td>2</td>
<td>RL 4.5.1</td>
<td>RL.4.05</td>
<td>Reading: Informational Text</td>
</tr>
<tr>
<td>3</td>
<td>RI 4.3.1</td>
<td>RL.4.03</td>
<td>Reading: Informational Text</td>
</tr>
<tr>
<td>4</td>
<td>RI 4.8.1</td>
<td>RL.4.08</td>
<td>Reading: Informational Text</td>
</tr>
<tr>
<td>5</td>
<td>RI 4.2.1</td>
<td>RL.4.02</td>
<td>Reading: Informational Text</td>
</tr>
<tr>
<td>6</td>
<td>RI 4.6.1</td>
<td>RL.4.06</td>
<td>Reading: Informational Text</td>
</tr>
<tr>
<td>7</td>
<td>RL 4.2.1</td>
<td>RL.4.02</td>
<td>Reading: Literature</td>
</tr>
<tr>
<td>8</td>
<td>RI 4.2.2</td>
<td>RL.4.02</td>
<td>Reading: Informational Text</td>
</tr>
<tr>
<td>9</td>
<td>RL 4.3.2</td>
<td>RL.4.03</td>
<td>Reading: Literature</td>
</tr>
<tr>
<td>10</td>
<td>RI 4.1.1</td>
<td>RL.4.01</td>
<td>Reading: Informational Text</td>
</tr>
<tr>
<td>11</td>
<td>RI 4.2.3</td>
<td>RL.4.02</td>
<td>Reading: Informational Text</td>
</tr>
<tr>
<td>12</td>
<td>RL 4.3.3</td>
<td>RL.4.03</td>
<td>Reading: Informational Text</td>
</tr>
<tr>
<td>13</td>
<td>RI 4.3.3</td>
<td>RL.4.03</td>
<td>Reading: Informational Text</td>
</tr>
<tr>
<td>14</td>
<td>RL 4.6.1</td>
<td>RL.4.06</td>
<td>Reading: Literature</td>
</tr>
<tr>
<td>15</td>
<td>RL 4.1.1</td>
<td>RL.4.01</td>
<td>Reading: Literature</td>
</tr>
<tr>
<td>16</td>
<td>RL 4.2.2</td>
<td>RL.4.02</td>
<td>Reading: Informational Text</td>
</tr>
<tr>
<td>17</td>
<td>RI 4.3.2</td>
<td>RL.4.03</td>
<td>Reading: Informational Text</td>
</tr>
</tbody>
</table>
PROTOCOL ACTIVITY
PHASE 2 GO VISUAL
EVIDENCE STATEMENT ANALYSIS REPORT

MATHEMATICS
Grade 3 Assessment, Spring 2015

<table>
<thead>
<tr>
<th>Difficulty Order Most to Least</th>
<th>Evidence Statement</th>
<th>Common Core State Standard(s)</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>3.C.2</td>
<td>3.OA.B.06</td>
<td>Operations and Algebraic Thinking</td>
</tr>
<tr>
<td>37</td>
<td>3.C.1-1</td>
<td>3.OA.B.05</td>
<td>Operations and Algebraic Thinking</td>
</tr>
<tr>
<td>38</td>
<td>3.C.4-5</td>
<td>3.MD.C.07</td>
<td>Measurement and Data</td>
</tr>
<tr>
<td>39</td>
<td>3.NF.3c</td>
<td>3.NF.A.03.c</td>
<td>Numbers and Operations - Fraction</td>
</tr>
<tr>
<td>40</td>
<td>3.OA.7-1</td>
<td>3.OA.C.07</td>
<td>Operations and Algebraic Thinking</td>
</tr>
<tr>
<td>41</td>
<td>3.C.1-2</td>
<td>3.OA.D.09</td>
<td>Operations and Algebraic Thinking</td>
</tr>
<tr>
<td>42</td>
<td>3.OA.3-3</td>
<td>3.OA.C.07</td>
<td>Operations and Algebraic Thinking</td>
</tr>
<tr>
<td>43</td>
<td>3.MD.3-1</td>
<td>3.MD.B.03</td>
<td>Measurement and Data</td>
</tr>
<tr>
<td>44</td>
<td>3.OA.3-4</td>
<td>3.OA.A.04</td>
<td>Operations and Algebraic Thinking</td>
</tr>
<tr>
<td>45</td>
<td>3.MD.5</td>
<td>3.MD.C.05</td>
<td>Measurement and Data</td>
</tr>
<tr>
<td>46</td>
<td>3.OA.3-2</td>
<td>3.OA.A.03</td>
<td>Operations and Algebraic Thinking</td>
</tr>
<tr>
<td>47</td>
<td>3.MD.2-3</td>
<td>3.MD.A.02</td>
<td>Measurement and Data</td>
</tr>
<tr>
<td>48</td>
<td>3.C.1-3</td>
<td>3.MD.C.07</td>
<td>Operations and Algebraic Thinking</td>
</tr>
<tr>
<td>49</td>
<td>3.Int.1</td>
<td>Multiple</td>
<td>Multiple</td>
</tr>
<tr>
<td>50</td>
<td>3.C.5-2</td>
<td>3.MD.C.07.b 3.MD.C.07.d</td>
<td>Measurement and Data</td>
</tr>
<tr>
<td>51</td>
<td>3.MD.7d</td>
<td>3.MD.C.07.d</td>
<td>Measurement and Data</td>
</tr>
<tr>
<td>53</td>
<td>3.C.4-6</td>
<td>3.OA.D.09</td>
<td>Operations and Algebraic Thinking</td>
</tr>
</tbody>
</table>
Engage with the actual data and note only the facts that you can observe in the data.

Please study the data privately and record several of your observations.

Remember:
Just the facts! If you catch yourself using the following words, then stop.

Because... Therefore... It seems... However...
During Phase IV Inferences dialogue, you...

- generate multiple explanations for your Phase III Observations.
- identify additional data that may be needed to confirm/contradict your explanations.
- propose solutions/responses.
- identify data needed to monitor implementation of your solutions/responses.
NEXT STEPS

Action Plan

<table>
<thead>
<tr>
<th>Action Steps</th>
<th>By Whom</th>
<th>By Whom</th>
<th>Resources and Support Available/Needed</th>
<th>Potential Barriers or Resistance</th>
<th>Communication Plan for Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>What needs to be done?</td>
<td>Who will take actions?</td>
<td>By what date will the action be done?</td>
<td>Resources Available</td>
<td>Resources Needed</td>
<td>What individuals and organizations might resist? How?</td>
</tr>
<tr>
<td>Step 1:</td>
<td>By _______</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2:</td>
<td>By _______</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3:</td>
<td>By _______</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4:</td>
<td>By _______</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Team Focus Area:

Change to Be Sought:

Collaborating Group(s):
AGENDA

- INTRODUCING CORE CONCEPTS
- USING DATA TO DRIVE INSTRUCTION
- CLOSING THOUGHTS
MOVING FORWARD

Plan
Implement
Analyze
Collect

Collaborative Teams
Data Audits
SMART Goals
Collaborative teams provide educators opportunities to have evidence based conversations.

Depending on the nature and length of the monitoring cycle, different types of collaborative teams may be appropriate.

- 1 on 1 meetings
- Small Teams (3-5 people)
- Large Groups
EFFECTIVE PARTNERSHIPS

- Subject Area Teachers
- School Improvement Panel/I&RS
- Professional Learning Communities
- Leadership Teams
- Virtual Collaboration

Effective Partnerships

Grade Level Teams
School Teams
District Teams
SETTING A SMART GOAL

GOAL SETTING

S - SPECIFIC
M - MEASURABLE
A - ATTAINABLE
R - RELEVANT
T - TIME-BOUND

Our SMART Goal is...
In order to achieve our SMART goal we will follow the plan mapped below:

<table>
<thead>
<tr>
<th>Action Steps</th>
<th>What steps or activities will you initiate to achieve the goal?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designation</td>
<td>Who will be responsible for the work?</td>
</tr>
<tr>
<td>Timeframe</td>
<td>What is a realistic timeframe for each step or activity?</td>
</tr>
<tr>
<td>Evidence</td>
<td>What impact on student learning do we expect to see?</td>
</tr>
</tbody>
</table>
WRITE A SMART GOAL THAT “STICKS”

No goal: 0%
Set a goal: 20%
Write it down: 35%
Accountability partner: 51%
Specific action steps: 86%

Now that you have a goal, let’s make it stick!

Picking you up at 6:30!

Want to meet up at the gym?
Sure!

Nov. 5
Gym
Today 6:30PM
MODULE REFLECTION

Gallery Walk

Create **data-driven** SMART goals from the following partnership choices on post-it notes

- Post created goals on the Effective Partnership chart paper
- Review created goals by teams, making comments on presented chart paper
ADDITIONAL RESOURCES

- Collaborative Teams Toolkit
- Blended Online Learning

 Modules
- NJ CORE
- PARCC PRC