The New Jersey Department of Education is pleased to provide the 2000-2001 GEPA Sample Form as tools for gauging students’ achievement on the administration of these tests. Although the sample forms contain previously tested items and are built to specifications similar to the “real” test, they are not the “real” test. As such, these sample forms are not intended to predict student scores on the GEPA. There are several reasons for this:

1. Student performance on this or any test will vary from day to day.
2. The sample form will be given under less standardized conditions than the conditions used for the live tests.
3. The sample forms will be scored locally without the extensive training and accuracy controls used to score the live tests.
4. Continued instruction will occur in the time between the administration of the sample form and the live test.

However, this sample form can be used to screen for students who may have difficulty reaching the Proficient level. Also, by examining questions that a student or group of students (e.g., a classroom) answer incorrectly, teachers can identify possible strengths and weaknesses in specific skills. The scoring key provides links to the Core Curriculum Content Standards and the Directory of Test Specifications and Sample Items to help you understand the content, skill and process domains that each question represents.

Individual student performance on these sample forms can be interpreted as follows:

<table>
<thead>
<tr>
<th>Level</th>
<th>Score Range</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 – 30.5</td>
<td>There is a good chance that the student would not score at the Proficient level.</td>
</tr>
<tr>
<td>2</td>
<td>31.0 – 3.5</td>
<td>There is a good chance that the student would score just above or just below the Proficient level cut-score.</td>
</tr>
<tr>
<td>3</td>
<td>36.0 – 52.0</td>
<td>There is a good chance that the student is at or above the Proficient level.</td>
</tr>
</tbody>
</table>

The New Jersey Department of Education highly recommends that teachers use sample form results as only one piece of information when determining the instructional needs of a student or group of students.
<table>
<thead>
<tr>
<th>Item #</th>
<th>Correct Answer</th>
<th>Descriptors (Content Cluster, Knowledge Area, Skill)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A Life, Environment, Systems</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B Life, Structure of Living Things, Systems</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C Physical, Force and Motion, Conceptual Understanding</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>D Earth, Universe, Systems</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>B Life, Environment, Systems</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>A Physical, Properties of Matter, Problem Solving</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>A Physical, Energy, Systems</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>D Physical, Energy, Systems</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>D Earth, Structure of the Earth, Problem Solving</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>C Physical, Energy, Conceptual Understanding</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>B Life, Diversity, Systems</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>A Earth, Structure of the Earth, Problem Solving</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>A Life, Diversity, Conceptual Understanding</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>D Physical, Force and Motion, Problem Solving</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>B Earth, Structure of the Earth, Problem Solving</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>See Rubric Physical, Properties of Matter, Problem Solving</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>B Life, Structure of Living Things, Conceptual Understanding</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>B Earth, Structure of the Earth, Problem Solving</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>B Physical, Energy, Problem Solving</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>D Earth, Structure of the Earth, History of Science</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>B Life, Structure of Living Things, Conceptual Understanding</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>C Earth, Universe, Systems</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>A Physical, Energy, Mathematics</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>C Physical, Force and Motion, Problem Solving</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>C Physical, Properties of Matter, Technology</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>B Earth, Universe, Mathematics</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>D Life, Environment, Systems</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>B Earth, Universe, Systems</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>D Life, Structure of Living Things, Systems</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>A Physical, Atoms, Conceptual Understanding</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>B Earth, Structure of the Earth, Problem Solving</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>See Rubric Earth, Structure of the Earth, Systems</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>A Physical, Force and Motion, Problem Solving</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>C Life, Environment, Technology</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>B Earth, Structure of the Earth, Systems</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>D Physical, Properties of Matter, Problem Solving</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>C Earth, Universe, Systems</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>C Life, Environment, Conceptual Understanding</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>B Physical, Properties of Matter, Problem Solving</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Omitted</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>C Earth, Universe, Conceptual Understanding</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>A Physical, Properties of Matter, Problem Solving</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>A Physical, Force and Motion, Problem Solving</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>D Life, Diversity, Problem Solving</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>A Physical, Force and Motion, Conceptual Understanding</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Omitted</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>D Life, Environment, Conceptual Understanding</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>See Rubric Life, Environment, Systems</td>
<td></td>
</tr>
</tbody>
</table>
Scoring Instructions

Official scores for open-ended items on a live test are derived from two independent readings of each student response. If you do not plan to use a second scorer, simply assign the same score twice. *Responses that are unintelligible, not in English, off topic, not responsive, or only a partial fragment are assigned a score of zero points.* If you have difficulty deciding on a score point or feel a particular response lies between two score points on the rubric, you may assign “split” scores (i.e., 2 and 3). Based on the item types, the two scores are either added together or averaged (which can result in half-points) in computing the total number of points earned.

To compute the total score, add the following:

- Count one point for each correct answer on multiple-choice items (maximum of 43 points possible)
- Scores of open-ended items 16, 32, and 48 (average of two scores for each item – minimum of 0, maximum of 3 points possible for each item or 9 total maximum points possible)

Total of 52 maximum points possible.

Refer to the Directory of Test Specifications and Sample Items for the Grade Eight Proficiency Assessment (GEPA) and High School Proficiency Assessment (HSPA) in Science, published by the New Jersey Department of Education in February 1998 for further information.
2000-2001 GEPA Science
Item 16
Pond/Lake
Rubric

3 points The student:
- states or clearly implies that the lake and the sandstone will increase in
temperature
 and/or
 that the sandstone heats up more rapidly than the lake.
- Explains that the answer is based on the pond/soil chart
 or
 that soil and water absorb heat from the sun and/or that water absorbs
 less heat than land.
- Offers at least one valid reason that the prediction might be incorrect.*

(Answer may include minor but not major factual errors.)

2 points The student's response includes two of the three points.

1 point The student's response includes one of the three points
 or
 correct information given is compromised by the quantity of incorrect information.

0 points The response is incorrect, irrelevant, or inappropriate.

*Possible valid responses include, but are not limited to
- different bodies of water (depth, size)
- different shore (soil vs. stone)
- time (7:00-12:00 vs. ??)
- possible vegetation
- different exterior temperature
- wind

Additionally, students' papers may be unscorable for the following reasons:

<table>
<thead>
<tr>
<th>Code</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>No Response</td>
</tr>
<tr>
<td>OT</td>
<td>The paper was off-topic.</td>
</tr>
<tr>
<td>NE</td>
<td>The paper was in a language other than English.</td>
</tr>
<tr>
<td>WF</td>
<td>The paper was written in the wrong format, e.g., the student responded with a poem instead of an essay.</td>
</tr>
<tr>
<td>FR</td>
<td>The paper contained only a fragment of a response.</td>
</tr>
</tbody>
</table>

Unscorable student papers receive a score of 0.
DIRECTIONS FOR QUESTION 16: Respond fully to the open-ended question that follows. Show your work and clearly explain your answer. You may use words, tables, diagrams, or drawings. Write your answer on page 3 of your answer folder.

16. A classmate measures the temperature of pond water and the soil that surrounds it every hour for a period of five hours on a sunny day. The measurements are shown in the chart below.

<table>
<thead>
<tr>
<th>Time (Hours)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>21</td>
<td>23</td>
</tr>
<tr>
<td>(°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>16</td>
<td>16</td>
<td>19</td>
<td>21</td>
<td>23</td>
<td>26</td>
</tr>
<tr>
<td>(°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The next day, at a nearby lake that has a shore of sandstone, you measure the temperature of the sandstone and water at 7 a.m. You find that both have a temperature of 13°C.

If it is sunny all day:

- What do the results of the experiment at the pond predict about the temperature of the sandstone and the lake water at noon?

- Explain your answer.

- Explain why your prediction, based on the data, might be incorrect.
16. The results of the experiment at the pond predicted about the temperature of the sandstone and the water at noon, that it will be sunny.
They predict that as the lake gets warmer the water gets soaked up by the soil and then it heats the soil here is an example.

At noon the sun is at its hottest point and it is directly over the lake so at 7am it will be cold but warmer. My answer also could be incorrect because it is winter the sun really isn't out also clouds and storms could affect it.
16. I think the results from the experiment would be 30°C. I feel this way because it is a sunny day and on sunny days things tend to expand in temperature. Based on the data, my prediction might be incorrect because...
The results show that because the pond is smaller, it doesn't take as long to warm up.

The lake has more area, and takes more heat to warm it up.

The soil of the pond is more dense than the sandstone. It will absorb more heat. The sandstone will not absorb as much heat because the heat will probably pass through it.

My prediction may be incorrect because the person who measured the pond could have gone there later in the day when the sun had been up for a while.
The results of the temperatures are that the sand
forms faster than the water.
The experiment shows that the soil heats quicker than the water does when the time reached noon.

I got my answer by comparing the temperature. I noticed that when the closer it got to noon the soil temperature was greater than the water.

Even if the data was incorrect I predict that the soil will still be warmer because it is a solid and can trap heat. On the other hand the water is liquid and can not hold the heat very well. My answer might also be incorrect because it depends what time of the year it is.
16.

- I predict that the temperature of the sandstone will be greater than the water because the sun light heats the rock faster than the water. Because the sun has to heat all the water and the rock are small then the water. If the water is deep the sun does not go down to the bottom of the water and does not heat as fast. The rock is smaller and might heat faster. I might be incorrect because sandstone it heated so much it will blow up I know that because it happen to me. So sandstone might not conduct heat as much.
If the temperature is 13°C at 7 a.m. on a sunny day the next day, by noon the water and soil temperature will increase. The water temperature may be 20°C and the soil temperature may be 23°C.

I think the water temperature may be 20°C because the graph shows in 1 hour the temperature increases by 1°C, then the 2nd hour by 1°C, the 3rd hour by 1°C, the 4th hour by 2°C, and the 5th hour by 2°C. When you follow the same procedure you get 20°C.

I think the soil temperature may be 23°C because I followed the procedure.
16. The results at the experiment at the pond predicts the temperature at the lake at noon will be 20°C. I got this # because at the pond in the beginning the temperature was 16°C it increased by 7° in 3 hours, the temperature at the lake was 13°C and it may increase to 20°C over 5 hours. My prediction may be wrong because the pond data may not have been taken at 7:00 am which means the sun may have rose at a different speed. It may also be wrong because the pond is surrounded by soil and the lake is surrounded by sediment. The two materials may have different effects on the water. The last reason I have that I may be wrong is maybe that either the lake or the pond may get more sunlight, one may be blocked off by the sun by trees.
16. The results of the experiment at the pond predict that the temperature of the sandstone and the lake water at noon will be around 23°C. I think this way because the pond water and soil temperature both almost increased 10°C for a period of 5 hours on a sunny day. Most likely it will increase because that's what happened to the pond. Also after 5 hours on a sunny day, the temp usually goes up by noon.

Based on the data given, my prediction could also be incorrect. First, the first data is at a pond and the next day at a lake. It's different water. Second, the temperature may not be as warm on sunny as the day before and only go up after 6°C.
16. The results of the experiment at the pond predict that the temperature of the sandstone and the lake water will increase at noon. In the chart above the temperature of the water and soil increased each hour, so at a nearby lake it should do the same. My prediction could be incorrect because the sandstone could hold a different temperature than the lake water and could start to decrease. Because we are testing two different variables, sandstone and soil, my predictions can be incorrect.
The results of the experiment at the pond predict that temperature of the water will be 23°C and the sandstone will be 26°C at noon. This is because the same experiment, done the day before, revealed these results, and if both days have the same temperature, the 2 results should be equal, as well. My prediction could be incorrect because on day 2, the temperature of sandstone is being calculated, not soil. Also, the size of the lake could differ from the size of the pond, causing one to warm more rapidly than the other.
Sample Response

The step that is left out is condensation. This is the process by which water vapor (or evaporated water) condenses and becomes water (or solid) again. Without condensation water would have no way of returning to the ground after evaporating.

3 Points Student successfully completes the task by identifying condensation as the missing step, and by describing that condensation is the process by which water vapor (or gas, or air) condenses and becomes water again. Also explains that without condensation water would have no way to return to earth after it evaporates. Must contain the work condensation.

2 Points Student adequately completes the task by identifying the missing process with or without the term condensation, and by describing that condensation is the process by which water vapor (or gas, or air) condenses and becomes water again or identifies condensation and explains water would have no way to return to earth after it evaporates. Identifies the missing process with or without the term condensation.

1 Point Student completes the task by identifying condensation as the missing step or gives a partial explanation that does not complete the process and does not identify the process. All other explanations are unclear or inappropriate.

0 Points Attempts the task, but the response is incorrect, irrelevant, or inappropriate.
DIRECTIONS FOR QUESTION 32: Respond fully to the open-ended question that follows. Show your work and clearly explain your answer. You may use words, tables, diagrams, or drawings. Write your answer on page 15 of your answer folder.

The above apparatus models the workings of the water cycle, but one step in the cycle is left out.

- Identify the missing step.
- Describe what happens during that step in the water cycle.
- Explain why the cycle would cease to exist if this step were left out in real life.
The water has to go back up and has to have some other place to fall. The water goes back down. We would all drown because, of all the water on Earth.
The missing step is when the water evaporates after the water goes into the pan.

- The water would convert from a liquid into water vapor.
- If the water didn't evaporate back into a gas, then the cycle could never recycle and begin again in the first place.
In the step of the water cycle when you pour the water on to the pan and put it in heat the water will evaporate. When you put water in the heat it is going to disappear because the heat dries it up.

I think the step that is left out is the temperature. Without the temperature they are not going to find out the temperature of the heat.
64. The step that's missing is the step when the evaporated water turns to droplets to form a cloud.
64. The step that is missing is **condensation**.

- During the process, the glucose and water would combine.

- In reality, it would just be water when in fact it is water.
The first step is taking the water that was evaporated back and using it again.

1. The straw has water fill, like a rainstorm into a pan.
2. The pan has holes in it which drops the "rain droplets" into a sheet pan.
3. The sheet pan, which is on a slant, has sand under where the water falls so when the water slides down it will bring some sand with it.
4. Then the water falls into a round pan which is directly under allight.
5. The light sends heat to the round pan which will evaporate the water.
6. The procedure will repeat over and over.

The water would not go through the straw and they would have to find another way for water. Which would defeat the whole purpose of the experiment.
64. The missing step is the making clouds. The water evaporates and forms a cloud when the cloud gets big enough it starts to rain. You could not have rain without clouds so there would be no rain. Where would the evaporated water go if it did not have to make a cloud?
The missing step in the model of how the water cycle works is when the clouds disperse the water that evaporated into the clouds. The cycle would cease to exist if this step was missing. This is because first the rain is picked up from a cloud. Then the rain falls to the earth. Next, the rain gradually collects and is evaporated into the clouds again. Without the last step, the cycle would be broken and the water would just stay on Earth.

Step 1
- Clouds fill up with water

Step 2
- Water goes up into clouds

Step 3
- Clouds form

Step 4
- Clouds start to rain

Step 5
- Puddles form

Step 6
- Cloud comes along and picks up rain again
64. The missing step is condensation.

This occurs when a lake gets hot and evaporates into the air. When it's in the air, clouds absorb the evaporated water, making the cloud heavier. When the cloud gets too heavy, it lets the water out known as precipitation.

If this step wouldn't occur, there would be no rain.
64. The step of condensation is missing in this step. Evaporated water comes together forming clouds, causing it to rain without this step water could not fully circulate. The water would go up in the air never come back and gradually water would no longer exist on earth.

With condensation:

SUN

Clouds

Condensation

Evaporation

Rain

Water

Sand

Without condensation:

SUN

Water continues to evaporate

Gas

House

No condensation

Rain

No.

Page 15
The step that is missing in the model of the water cycle is condensation. This is a crucial step, when evaporated water condenses in the atmosphere into clouds, and eventually into precipitation. This occurs when the moist evaporated water rises up. When it meets with the cold air in the upper atmosphere, it cools and condenses into small droplets. If then condenses further to the point it drogs to the earth as precipitation.

If this step were left out, the water cycle would cease to exist. This is true because if water continued to evaporate and never condense, then water would never return to the earth. As a result, we would lose all the water, since it would never precipitate. This will cause all living organisms to die out, since we all need water for survival. That is why condensation is absolutely essential to the water cycle.
64. The missing step is condensation. During this step, at first the water must evaporate. Then the air temp must reach the dewpt. temperature and the water will begin to condense. The water will condense into clouds of some sort. Then, for it to rain, the water vapor must condense on some condensation nuclei (after the air is saturated). Then, the raindrop would combine with other drops and when it is heavy enough, it would fall.

In real life, if this step was left out, the water would disappear. The sun would shine and the water would evaporate, but it would not condense so there would never be rain. That means at one point, all the water would evaporate and we'd have none left. That shows this cycle wouldn't exist.
2000 GEPA SCIENCE
ITEM 48
RUBRIC
RABBIT/GRASS POPULATIONS

3 points The student makes predictions about both rabbit and plant populations at six months and five years with reasonable explanations. The answer must include the rabbit population response to the lack of food at five years; e.g., lower population of rabbits, migration, or death.

2 points The student makes reasonable predictions about both time frames with at least an implied explanation for one time.

OR

The student may have grasped all the elements of the answer but has failed to express or connect them clearly.

1 point The student makes a prediction or explanation of the population(s) for only one time frame.

0 point The response is incorrect, irrelevant, or inappropriate
The only predator of the rabbit population in a meadow ecosystem has been removed.

- Predict what will happen to both the rabbit and the plant populations in the ecosystem in the first 6 months and after 5 years.
- Explain the reasons for your predictions.
48. The rabbits will either be eaten by another animal or they will go out and have more bodies. In the first 6 months the rabbit will probably just die. After 5 years the rabbit will have more bodies or just die or be eaten.

I already explained my reason.
The population of both the plant and animals will increase over time.

Birds will fly into the trees and get seeds off the trees. When they fly away, they drop the seed and that makes more plants. The rabbits will mate and make more rabbits. This process will keep going and going.

Score Point: 0
I predict that in the first 6 months that they would try to find other food but after 5 years that they would die out. My reasons are because if that's all they eat and they go away what are they going to eat? They would try to find other food.
48.

The population of the rabbits would increase while plants decrease. After six months, the change would show but very slightly because not much time has passed. After five years, there will be various problems in the ecosystem. Also since plants are one of the most important food, because it is second on the food web, many of the plant-eating animals, or herbivores, will slowly die out. That means the population of the rabbits will increase. The population of the animals that eat the predators of the rabbit will also gradually die out or find new prey. Overall the food web would be destroyed and eventually all animals would die out and there will be no ecosystem.

Score Point: 1
Since the only predator has been removed, the rabbits are no longer threatened. Over time, the rabbit population will steadily increase through reproduction. Because of this, the plants will decrease also. This can be a problem and explains why we must have predators in every environment.
If the predator of the rabbit population has been removed, there will probably be overcrowding by the rabbits, and then the plants they eat will be extinct. Because without something eating the rabbits, they will keep producing and that will cause overcrowding. The food will become extinct because all of the rabbits will be eating it.

Diagram:

```
PREDATOR -> OVERPOPULATION OF THE RABBITS -> EATING ALL OF THE PLANTS
```

taken away
I think that if the only predator of the rabbit dies out then the rabbit population will swell, and grass will become sparse. Since the predator of the rabbit is gone then the rabbit will keep reproducing and the area will become overpopulated with rabbits. Plus, if the area is filled with rabbits their won't be enough grass to feed them all, and the grass will run out.
In the first six months everything will pretty much remain the same because rabbit reproduction either hasn't or has occurred. The only thing is the don't have to hide from anything or anyone just graze all they want with or without their babies.

The next five years will be a complete change. The rabbits will have reproduced five times since the predator has been eliminated causing a major boom in rabbit population. The plant growth that they have been eating will have decreased immensely since the rabbits probably eat faster than the plants can grow.

The reason behind my prediction is that without the predator the rabbits don't have to run and hide and eat just enough to satisfy so as to not be hungry and if noticed by predator hide. The rabbits will not have been killed so more of them eat than before so without the predator major damage will occur.
48. If the predator of the Rabbit was torn out of the Meador the rabbit population would increase to thousands. The plant population would decrease a lot because of all the rabbits eating all of them. The reason behind this is because if there is not any predator to keep the population of the rabbits maintained then these going to keep on reproducing. The Rabbits would keep on eating the plants because that's there food source. The plants would become very scarce.
48. In the first six months that the rabbits have no predators, they will flourish. Then, after five years go by, the plants will be gone and rabbits will begin to die out. Without predators, there will be no one to control the rabbit population from getting out of hand. Since the plants won't be able to produce enough food for all the rabbits, both the plants and rabbits will die out over time.
During the first 6 months in which the predator of rabbits has been removed, the rabbit population will increase because it is no longer threatened by any organism, while the plant population will decrease because a greater number of rabbits are feeding on it. After five years, the plant population will have severely diminished because of intense feeding by the rabbits. As its food source begins to grow scarce, the rabbit population will also decrease. As they compete for food, the rabbits will be forced to adapt to their changing environment, until eventually only the fastest and healthiest rabbits, those who successfully adapted, will survive.
48. If the predators are gone, the rabbit population will increase rapidly at a very fast rate. Since there is no threat of death, the rabbits will eventually spend more time out of their burrows. This increase of population growth over 6 months will be very large. The many new young will need food to eat, and they will eventually, over the course of about 6 or 3 years, eat all food there. The rabbits will need more food to support their immense population and probably before 5 years will move to another area and eat what is there, like migrating.