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Introduction

 Desiccation cracking

Sedimentary structures formed as clay-

bearing soils dry and contract. 
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Introduction

Mechanical property change

• impaired strength

• excessive deformation

• increased compressibility

Hydraulic property change

• Increase hydraulic conductivity

• Create preferential pathways for fluids
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Inspection of desiccation cracking

 Visual observation 

 Excavation of trenches 
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Electrical resistivity of soil

A sensitive reflection of 

• The nature of solid 

(mineralogy, shape, fabric, and size distribution)

• Arrangement of voids 

(porosity, tortuosity, connectivity, pore structure)

• Properties of fluid 

(water content, electrical resistivity, solute 
concentration)
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Electrical resistivity measurement

Schematic view of electrical resistivity method
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• I is the injected current (A)

• ΔUMN is the measured electrical potential (V) between M and N

• K is a geometrical coefficient

• MA, MB, NA and NB represent the relative spacing (m) between electrodes
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Applications of electrical resistivity 

tomography (ERT)
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Monitoring CO2 migration in 

shallow sand aquifer

Monitoring moisture change in 

clay embankments

[Gunn et al., 2015][Yang et al., 2015]

Detecting sand-bedrock interface

[Ward et al., 2014]



Experimental set up 

 Electrical Resistivity Measurement (ERM) system

 Crack Monitoring (CM) system 

 Temperature and Relative Humidity (RH) Monitoring (T/RHM) system 

29 cm
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Soil specimen

 Low plasticity clay (CL) 
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Installation of electrode

 Twenty-one electrodes were fabricated using stainless 

steel bolts with a length of 19.0 mm and a diameter of 

2.0 mm. 
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• 3 mm penetration depth: to ensure sufficient soil-electrode interfacial contact.

• The electrode length to electrode spacing ratio is 0.3, a reasonably small value.



Final crack pattern 

 Specimen 1: electrical resistivity 

 Specimen 2: water content measurement

Specimen 2: for water content measurement

Specimen 1: for resistivity measurement

Same crack pattern with similar morphological characteristics
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Image processing procedures

1) Convert original image to grey level

2) Noise removal through filter and binarization

3) Clod and crack recognition and analysis

2 cm
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Crack pattern characterization

• Longitudinal shrinkage strain eLon

• Lateral shrinkage strain eLat

• Surface shrinkage strain eSur

• Number of crack segments Nseg

• Number of clods Nc

• Average width of cracks Wav

• Average area of clods Aav

Crack intersection 

o B
A
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N2
Crack medial axis

Crack segment

13



Laboratory T & RH conditions

 The time histories of temperature and relative 

humidity exhibit minor fluctuations. 
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Water evaporation

 Water content decreases with drying time.

 Evaporation rate decreases with drying time. 
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Desiccation cracking process
2 cm t = 0 h

t = 86.5 h

t = 88.5 h

t = 95.2 h

t = 102.7 h

t = 102.8 h

t = 103.0 h

t = 142.2 h

t = 193.0 h

t = 105.3 h

t = 113.0 h

t = 313.8 h

Crack 1

Crack 2

Crack 3

A total of three cracks were formed

nearly parallel to each other and

perpendicular to the longitudinal

direction of the specimen.

Crack 1: formed at 86.5 h

Crack 2: formed at 102.8 h

Crack 3: formed at 103.0 h

16



Geometrical parameters of crack patterns
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Temporal variation of 𝜌
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Electrical conduction behavior of 

different soils
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Electrical resistivity tomography

 Crack initiation and growth

 Crack pattern (location, width, geometry)

t = 22.0 h

Crack patterns Apparent resistivity images

t = 66.8 h

t = 87.0 h

t = 93.9 h

t = 117.4 h

t = 124.5 h

t = 185.4 h

t = 255.3 h

Log r
(Ohm-m)

2 cm
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Conclusions

 Water evaporation is governed by the temperature and

relative humidity at the soil-air interface.

 The volumetric shrinkage of the specimen shows

evident anisotropic characteristics.

 The evolution of electrical resistivity in clay is

dominated by two competing effects: (1) closer packing

of soil fabric and higher concentration of ions in pore

fluids, and (2) the evaporation-induced water loss

associated with hydration film contraction and

desiccation crack insulation.

 ERT is reliable to map the potential cracks’ positions.
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Future study

 Future works will be carried out to improve our

fundamental understanding of the correlations between

physical and electrical properties of soil in a higher

dimensional space at larger scale during the desiccation

cracking process.
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Thank you!

Contact: zhuc@rowan.edu
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