AR-OGFC & HPTO

BDC11S-01

March 30, 2011

SUBJECT: Revisions to subsections 303.03, 401.02, 401.03, 402.01, 402.02, 402.04, 404.03, 902.02, 902.03, 902.04, 902.05, 902.06 and 1009.01; and test method B-8 of the 2007 Standard Specifications for Road and Bridge Construction. Added Subpart 402.03.02, Section 406, Subsections 902.07, 902.08 and 1009.03 and Test methods B-10, B-11 and B-12 to the 2007 Standard Specifications.

Subsections/Subparts 303.03.01, 401.02.01, 401.03.01, 401.03.02, 401.03.03, 402.01, 402.02.01, 402.02.02, 402.04, 404.03.01, 902.02.02, 902.03.02, 902.03.03, 902.04.03, 902.05.01, 902.05.02, 902.05.03, 902.06.03, 1009.01; and test method B-8 of Standard Specifications. Subpart 402.03.02, Section 406, Subsections 902.07, 902.08 & 1009.03 and test methods B-10, B-11 and B-12 have been added to the Standard Specifications. These revision have been made to correct minor errors, update and add some new specifications such as Asphalt-Rubber Open-Graded Friction Course (AR-OGFC) and High Performance Thin Overlay (HPTO) which are being increasingly utilized.

The following revisions have been incorporated in Standard Input, SI2007 as of March 30, 2011.

SECTION 303 – ASPHALT-STABILIZED DRAINAGE COURSE

303.03.01 Asphalt-Stabilized Drainage Course

D. Spreading and Grading

THE SECOND SENTENCE IS CHANGED TO:

Place asphalt-stabilized drainage course at a laydown temperature between 210 °F and 275 °F.

SECTION 401 HOT MIX ASPHALT (HMA) COURSES

401.02.01 Materials

EMULSIFIED ASPHALT UNDER TACK COAT IS REVISED TO:

Emulsified Asphalt, Grade RS-1, CRS-1, SS-1, SS-1h, Grade CSS-1 or CSS-1h...902.01.03
401.03.01 Preparing Existing Pavement

A. Milling of HMA.
THE FOLLOWING IS ADDED AFTER THE FOURTH PARAGRAPH:

Sawcut at the limit of paving in driveways and at other limits requiring a neat edge between new and existing HMA.

D. Repairing HMA Pavement.
THE ENTIRE TEXT IS CHANGED TO:

If potholes are discovered, notify the RE immediately. The RE may immediately direct repairs of small areas. The RE may require further evaluation of a large area to determine the need for additional milling and paving.

Sawcut existing HMA pavement to a maximum depth of 10 inches, or to the full depth of bound layers, whichever is less. Sawcut lines parallel and perpendicular to the roadway baseline and 3 inches away, at the closest point, from the damaged area to be repaired.

Remove damaged and loose material to a depth of at least 3 and no more than 10 inches below the level of milling within the boundary of the sawcuts to form rectangular openings with vertical sides. Shape and compact the underlying surface to produce a firm, level base. Ensure that the remaining pavement is not damaged.

Apply polymerized joint adhesive or tack coat to the vertical surfaces of the openings. Spread and grade HMA in the opening as directed by the RE. Ensure that the temperature of the HMA when placed is at least 250 °F, and compact as specified in 401.03.03.F. Compact areas not accessible to rollers with a flat face compactor. Compact until the top of the patch is flush with the adjacent pavement surface.

Reuse removed material as specified in 202.03.07.A.

401.03.02 Tack Coat and Prime Coat

TABLE 401.03.02-1 IS CHANGED TO:

<table>
<thead>
<tr>
<th>Material</th>
<th>Spraying Temp, °F</th>
<th>Gallons per Square Yard</th>
<th>Season</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut-Back Asphalt:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC-70</td>
<td>120 to 190</td>
<td>0.05 to 0.15</td>
<td>Oct 15 to Apr 15</td>
</tr>
<tr>
<td>Emulsified Asphalt:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS-1</td>
<td>70 to 140</td>
<td>0.05 to 0.15</td>
<td>All year</td>
</tr>
<tr>
<td>CRS-1</td>
<td>125 to 185</td>
<td>0.05 to 0.15</td>
<td>All year</td>
</tr>
<tr>
<td>SS-1, SS-1h</td>
<td>70 to 140</td>
<td>0.05 to 0.15</td>
<td>All year</td>
</tr>
<tr>
<td>CSS-1, CSS-1h</td>
<td>70 to 140</td>
<td>0.05 to 0.15</td>
<td>All year</td>
</tr>
</tbody>
</table>

TABLE 401.03.02-2 IS CHANGED TO:

<table>
<thead>
<tr>
<th>Material</th>
<th>Spraying Temp, °F</th>
<th>Gallons per Square Yard</th>
<th>Season</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut-Back Asphalt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC-30</td>
<td>85 to 150</td>
<td>0.1 to 0.5</td>
<td>Oct 15 to Apr 15</td>
</tr>
<tr>
<td>MC-70</td>
<td>120 to 190</td>
<td>0.1 to 0.5</td>
<td>Oct 15 to Apr 15</td>
</tr>
<tr>
<td>Emulsified Asphalt:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSS-1</td>
<td>70 to 140</td>
<td>0.1 to 0.50</td>
<td>All year</td>
</tr>
</tbody>
</table>

401.03.03 HMA Courses

H. Air Void Requirements.
THE FOLLOWING IS ADDED AFTER THE THIRD PARAGAPH:
If areas of existing shoulders are found to be insufficient to support the proposed HMA pavement and the required compaction cannot be achieved, notify the RE immediately. The RE may either direct additional milling and paving to provide a suitable base to pave the proposed HMA or waive coring and air void requirements in such shoulder areas.

SECTION 402 –HMA FRICTION COURSE

402.01 DESCRIPTION
THE ENTIRE TEXT IS CHANGED TO:

This Section describes the requirements for constructing open-graded friction courses (OGFC), modified open-graded friction courses (MOGFC) and asphalt-rubber open-graded friction courses (AR-OGFC).

402.02.01 Materials
THE FOLLOWING IS ADDED TO LIST OF MATERIALS

Asphalt-Rubber Open-Graded Friction Course .. 902.07

402.02.02 Equipment
THE FOLLOWING IS ADDED TO LIST OF EQUIPMENT

Asphalt-Rubber Binder Blending Equipment .. 1009.03

402.03 CONSTRUCTION
THE FOLLOWING SUBPART IS ADDED AFTER 402.03.01:

402.03.02 AR-OGFC

A. Paving Plan. At least 20 days before beginning placing the AR-OGFC, submit to the RE for approval a detailed plan of operation as specified in 401.03.03.A.

B. Weather Limitations. If within the 12 hours before paving, the National Weather Service locally forecasts a 50 percent chance or greater of precipitation during the scheduled placement, postpone the placement of AR-OGFC. Do not place AR-OGFC if it is precipitating and do not allow trucks to leave the plant when precipitation is imminent. The Contractor may resume paving operations when the chance of precipitation is less than 50 percent and the surface is dry.

Do not pave if the surface temperature of the underlying pavement is below 50 °F.

C. Test Strip. Construct a test strip as specified in 401.03.03.C. The Department will not require quality control cores or nuclear density testing.

D. Transportation and Delivery of AR-OGFC. Transport and deliver AR-OGFC as specified in 401.03.03.D.

E. Spreading and Grading. Apply tack coat 64-22 as specified in 401.03.02. Place AR-OGFC at a laydown temperature between 275 °F and 330 °F maximum. Spread and grade AR-OGFC as specified in 401.03.03.E, except do not apply polymerized joint adhesive or tack coat to longitudinal joints.

F. Compacting. Immediately after spreading and strike-off, compact AR-OGFC with a minimum of 1 pass of a non-vibratory, 2-axle roller. The RE may direct additional passes to eliminate roller marks. The Contractor may use a vibratory roller if it is operated in static mode.

Orient the drive axles of the roller towards the paver during the compaction operation. Operate rollers at a slow, uniform speed not exceeding 2-1/2 miles per hour. If necessary to prevent adhesion of the AR-OGFC to the rollers, keep the wheels moistened with water mixed with small quantities of detergent or fabric softener.

Remove and replace AR-OGFC that becomes loose, broken, or otherwise defective or that shows an excess or deficiency of asphalt-rubber binder material.
When paving in echelon, keep the rollers for the first lane approximately 6 inches from the unconfined edge adjacent to the second paving operation. After AR-OGFC from the second paver is placed against the uncompacted edge of the mat from the first paver, compact the AR-OGFC on both sides of the joint.

Prevent lateral or vertical displacement of the unconfined edge during the compaction operation. Ensure that the edge of the drums of the rollers extends over the free edge of the mat by at least 6 inches.

When compacting the butt joint, while paving the adjacent lane, place the roller on the newly placed AR-OGFC and overlap the joint by approximately 6 inches.

G. Curing. Following compaction, spray 1 to 3 applications of lime water (a minimum of 50 pounds of pulverized limestone per 2,000 gallons of water) to prevent material pick-up. Apply lime water in a manner that uniformly covers the entire surface of the paving pass. Prior to applying the lime water, do not allow traffic on the AR-OGFC, including the lime water applicator.

H. Opening to Traffic. Remove loose material from the traveled way, shoulder, and auxiliary lanes before opening to traffic. Before opening AR-OGFC to traffic or construction equipment, ensure that the lime water has been applied, the surface is tack free and the surface temperature is less than 140 °F.

I. Ride Quality Requirements. The Department will evaluate the AR-OGFC as specified in 401.03.03.J.

402.04 MEASUREMENT AND PAYMENT

THE FOLLOWING IS ADDED:

<table>
<thead>
<tr>
<th>Item</th>
<th>Pay Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASPHALT-RUBBER OPEN-GRADED FRICTION COURSE</td>
<td>TON</td>
</tr>
</tbody>
</table>

The Department will measure ASPHALT-RUBBER OPEN-GRADED FRICTION COURSE by the ton as indicated on the certified weigh tickets, excluding unused material.

The Department will make payment for TACK COAT 64-22 as specified in 401.04.

SECTION 404 – STONE MATRIX ASPHALT (SMA)

404.03.01 SMA

H. Air Void Requirements.

THE SIXTH PARAGRAPH IN THE SI 2007 IS CHANGED TO:

The ME will determine air voids from 5 cores taken from each lot in random locations. The ME will determine air voids of cores from the values for the maximum specific gravity of the mix and the bulk specific gravity of the core. The ME will determine the maximum specific gravity of the mix according to NJDOT B-3 and AASHTO T 209, except that minimum sample size may be waived in order to use a 6-inch diameter core sample. The ME will determine the bulk specific gravity of the compacted mixture by testing each core according to AASHTO T 331.

THE FOLLOWING SECTION IS ADDED TO DIVISION 400:

SECTION 406 – HIGH PERFORMANCE THIN OVERLAY (HPTO)

406.01 DESCRIPTION

This Section describes the requirements for constructing high performance thin overlay (HPTO).
406.02 MATERIALS

406.02.01 Materials

Provide materials as specified:

- **Tack Coat:**
 - Emulsified Asphalt, Grade RS-1, SS-1, SS-1h, Grade CSS-1 or CSS-1h
 - HPTO

406.02.02 Equipment

Provide equipment as specified:

- Materials Transfer Vehicle (MTV)
- HMA Paver
- Ultra-Thin Paver
- HMA Compactor
- HMA Plant
- HMA Trucks

406.03 CONSTRUCTION

406.03.01 High Performance Thin Overlay (HPTO)

A. **Paving Plan.** At least 20 days before the start of placing the HPTO, submit a detailed plan of operation to the RE for approval as specified in 401.03.03.A.

B. **Weather Limitations.** If within the 3 hours before paving the National Weather Service locally forecasts a 50 percent chance or greater of precipitation during the scheduled placement, postpone the placement of HPTO. Do not place HPTO if it is precipitating and do not allow trucks to leave the plant when precipitation is imminent. The Contractor may resume paving operations when the chance of precipitation is less than 50 percent and the surface is dry.

Do not pave if the surface temperature of the underlying pavement is below 50 °F.

C. **Test Strip.** At least 14 days prior to production of the HPTO, construct a test strip as specified in 401.03.03.C except for the allowance to continue paving. Submit test strip results to the RE. The RE will analyze the test strip results in conjunction with the ME’s results from the HMA plant to approve the test strip. Do not proceed with production paving until receiving written permission from the RE.

If paving HPTO only on a bridge deck, then the test strip is not required.

D. **Transportation and Delivery of HMA.** Transport and deliver HMA as specified in 401.03.03.D.

E. **Spreading and Grading.** Do not start paving of the HPTO until the RE has approved the underlying surface. Apply tack coat as specified in 401.03.02. Place HPTO at the laydown temperature recommended by the supplier of the asphalt binder or the supplier of the asphalt modifier without exceeding 330 °F maximum discharge temperature. Spread and grade HPTO as specified in 401.03.03.E. Do not exceed the maximum lift thickness of 1 ¼”.

F. **Compacting.** Compact as specified in 401.03.03.F. If vibratory compaction causes aggregate breakdown, forces liquid asphalt to the surface or creates a surface with undesirable ride quality, then operate rollers in static mode only. If compacting HPTO on a bridge deck, then operate rollers in static mode only.

G. **Opening to Traffic.** Remove loose material from the traveled way before opening to traffic. Do not allow construction equipment or traffic on the HPTO until the mat cools to a temperature of less than 140 °F.

H. **Air Void Requirements on Roadway.** Mainline lots are defined as the area covered by a day’s paving production of the same job mixed formula between 500 and 2000 tons for the traveled way and auxiliary lanes. The RE will combine daily production areas less than 500 tons with previous or subsequent production areas to meet the
minimum lot requirements. When the maximum lot requirement is exceeded in a day’s production, the RE may divide the area of HMA placed into 2 lots with approximately equal areas.

Ramp pavement lots are defined as approximately 10,000 square yards of pavement in ramps. The RE may combine ramps with less than the minimum area into a single lot. If 2 or more ramps are included in a single lot, the RE will require additional cores to ensure that at least 1 core is taken from each ramp.

Other pavement lots are defined as approximately 10,000 square yards of pavement in shoulders and other undefined areas.

The ME will calculate the percent defective (PD) as the percentage of the lot outside the acceptable range of 2 percent air voids to 7 percent air voids. The acceptable quality limit is 10 percent defective. For lots in which PD < 10, the Department will award a positive pay adjustment. For lots in which PD > 10, the Department will assess a negative pay adjustment.

The ME will determine air voids from 5 cores taken from each lot in random locations. The ME will determine air voids of cores from the values for the maximum specific gravity of the mix and the bulk specific gravity of the core. The ME will determine the maximum specific gravity of the mix according to NJDOT B-3 and AASHTO T-209, except that minimum sample size may be waived in order to use a 6-inch diameter core sample. The ME will determine the bulk specific gravity of the compacted mixture by testing each core according to AASHTO T-166.

The ME will calculate pay adjustments based on the following:

1. **Sample Mean (\(\bar{X} \)) and Standard Deviation (S) of the N Test Results (X1, X2, ..., XN).**

 \[
 \bar{X} = \frac{X_1 + X_2 + ... + X_N}{N}
 \]

 \[
 S = \sqrt{\frac{(X_1 - \bar{X})^2 + (X_2 - \bar{X})^2 + ... + (X_N - \bar{X})^2}{N - 1}}
 \]

2. **Quality Index (Q).**

 \[
 Q_L = \frac{\bar{X} - 2.0}{S}
 \]

 \[
 Q_U = \frac{10 - \bar{X}}{S}
 \]

3. **Percent Defective (PD).** Using NJDOT ST for the appropriate sample size, the Department will determine PD_L and PD_U associated with Q_L and Q_U, respectively. PD = PD_L + PD_U

4. **Percent Pay Adjustment (PPA).** Calculate the PPA for traveled way and ramp lots as specified in Table 401.03.03-3.

<table>
<thead>
<tr>
<th>Quality</th>
<th>PPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD < 10</td>
<td>PPA = 4 - (0.4 PD)</td>
</tr>
<tr>
<td>10 ≤ PD < 30</td>
<td>PPA = 1 - (0.1 PD)</td>
</tr>
<tr>
<td>PD ≥ 30</td>
<td>PPA = 40 - (1.4 PD)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surface</th>
<th>PPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD < 30</td>
<td>PPA = 1 - (0.1 PD)</td>
</tr>
<tr>
<td>PD ≥ 30</td>
<td>PPA = 40 - (1.4 PD)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intermediate and Base</th>
<th>PPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD < 30</td>
<td>PPA = 1 - (0.1 PD)</td>
</tr>
<tr>
<td>PD ≥ 30</td>
<td>PPA = 40 - (1.4 PD)</td>
</tr>
</tbody>
</table>

Calculate the PPA for other pavement lots as specified in Table 401.03.03-4.
5. **Outlier Detection.** The ME will screen all acceptance cores for outliers using a statistically valid procedure. If an outlier is detected, replace that core by taking an additional core at the same offset and within 5 feet of the original station. The following procedure applies only for a sample size of 5.

1. The ME will arrange the 5 core results in ascending order, in which X_1 represents the smallest value and X_5 represents the largest value.
2. If X_5 is suspected of being an outlier, the ME will calculate:
 \[R = \frac{X_5 - X_4}{X_5 - X_1} \]
3. If X_1 is suspected of being an outlier, the ME will calculate:
 \[R = \frac{X_2 - X_1}{X_5 - X_1} \]
4. If $R > 0.642$, the value is judged to be statistically significant and the core is excluded.

6. **Retest.** If the initial series of 5 cores produces a percent defective value of $PD \geq 50$ for mainline or ramp lots, or $PD \geq 50$ for other pavement lots, the Contractor may elect to take an additional set of 5 cores at random locations chosen by the ME. Take the additional cores within 15 days of receipt of the initial core results. If the additional cores are not taken within the 15 days, the ME will use the initial core results to determine the PPA. If the additional cores are taken, the ME will recalculate the PPA using the combined results from the 10 cores.

7. **Removal and Replacement.** If the final lot $PD \geq 75$ (based on the combined set of 10 cores or 5 cores if the Contractor does not take additional cores), remove and replace the lot and all overlying work. The replacement work is subject to the same requirements as the initial work.

I. **Air Void Requirements on Bridge Deck.** The RE may waive the coring of HPTO constructed on a bridge deck or may require that the Contractor test bridge decks with the thin lift nuclear density gauge. If required by RE, perform nuclear density gauge testing according to ASTM D 2950 at 5 random locations per bridge deck. Use the maximum specific gravity determined at the HMA plant according to AASHTO T 209 to determine percent air voids. If the average air voids for the bridge deck are 8 percent or greater, the RE will require a revised paving plan for any subsequent bridge deck placement of HPTO and may require the HPTO to be removed and replaced.

J. **Ride Quality Requirements.** The Department will evaluate the HPTO as specified in 401.03.03.J.

406.04 MEASUREMENT AND PAYMENT

The Department will measure and make payment for Items as follows:

<table>
<thead>
<tr>
<th>Item</th>
<th>Pay Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH PERFORMANCE THIN OVERLAY</td>
<td>TON</td>
</tr>
</tbody>
</table>

The Department will measure HIGH PERFORMANCE THIN OVERLAY by the ton as indicated on the certified weigh tickets, excluding unused material.

The Department will make payment for TACK COAT as specified in 401.04.

The Department will make payment for CORE SAMPLES, HOT MIX ASPHALT as specified in 401.04.

902.02.02 Composition of Mixtures

TABLE 902.02.02-2 IS CHANGED TO:
Table 902.02.02-2 Additional Fine Aggregate Requirements for HMA

<table>
<thead>
<tr>
<th>Tests</th>
<th>Test Method</th>
<th>Minimum Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncompacted Void Content of Fine Aggregate</td>
<td>AASHTO T 304, Method A</td>
<td>45</td>
</tr>
<tr>
<td>Sand Equivalent</td>
<td>AASHTO T 176</td>
<td>45</td>
</tr>
</tbody>
</table>

902.03.02 Mix Design

THE FOURTH PARAGRAPH IS CHANGED TO:

The ME will test 2 specimens to verify that the final JMF produces a mixture that has a minimum void content as specified in Table 902.03.03-1. The ME will determine percent air voids according to AASHTO T 209, and either NJDOT B-6 or AASHTO T 331.

902.03.03 Sampling and Testing

THE FOLLOWING IS ADDED TO THE FIRST PARAGRAPH:

Ensure that the mix meets the requirements as specified in 902.02.04.A, otherwise the RE or ME will reject the material.

THE FOURTH PARAGRAPH IS CHANGED TO:

The ME will perform sampling according to NJDOT B-2 or ASTM D 3665, and will perform testing for composition according to AASHTO T 308 or NJDOT B-5. Perform testing for air voids according to AASHTO T 209 and either NJDOT B-6 or AASHTO T 331. Perform testing for draindown according to NJDOT B-7 or NJDOT B-8.

902.04.03 Sampling and Testing

THE FIRST PARAGRAPH IS CHANGED TO:

Ensure that the mix meets the requirements as specified in 902.02.04.A, otherwise the RE or ME will reject the material. Maintain the temperature of the mix between 300 °F and 330 °F. Perform and meet requirements for quality control testing as specified in 902.02.04.C.

902.05.01 Composition of Mixture

THE FIFTH PARAGRAPH IS CHANGED TO:

For fine aggregate, use stone sand conforming to 901.05.02. Ensure that the combined fine aggregate in the mixture conforms to the requirements in Table 902.02.02-2.

902.05.02 Mix Design

THE FIRST PARAGRAPH IS CHANGED TO:

Design the SMA to meet the requirements in Table 902.05.02-1 and Table 902.05.02-2. Prepare the JMF according to AASHTO R 46. Determine the JMF at 4 percent air voids and 75 gyrations of the Superpave gyratory compactor.

Table 902.05.02-2 SMA Mixtures Volumetrics For Design and Plant Production

<table>
<thead>
<tr>
<th>Property</th>
<th>Production Control Tolerances</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Voids</td>
<td>±1%</td>
<td>4.0%</td>
</tr>
<tr>
<td>Voids in Mineral Aggregate (VMA)</td>
<td>–</td>
<td>17.0% minimum</td>
</tr>
<tr>
<td>VCA<sub>mix</sub></td>
<td>–</td>
<td>Less than VCA<sub>Asf</sub></td>
</tr>
<tr>
<td>Draindown @ production temperature</td>
<td>–</td>
<td>0.30% maximum</td>
</tr>
<tr>
<td>Asphalt Binder Content (NJDOT B-5)</td>
<td>±0.15%</td>
<td>6% minimum</td>
</tr>
<tr>
<td>Asphalt Binder Content (AASHTO T 308)</td>
<td>±0.40%</td>
<td>6% minimum</td>
</tr>
<tr>
<td>Tensile Strength Ratio (AASHTO T 283)</td>
<td>–</td>
<td>80% minimum</td>
</tr>
</tbody>
</table>
902.05.03 Sampling and Testing
THE FOLLOWING IS ADDED TO THE FIRST PARAGRAPH:
Ensure that the mix meets the requirements as specified in 902.02.04.A, otherwise the RE or ME will reject the material.

THE SECOND PARAGRAPH IS CHANGED TO:
During production at the plant, the ME will take a sample from each 700 tons of production to verify composition and air voids. Conduct draindown, VCAmix, VCAdry, and VMA testing as directed by the ME. Perform tests according to AASHTO R 46.

THE THIRD PARAGRAPH IS CHANGED TO:
The ME will perform sampling according to NJDOT B-2 or ASTM D 3665, and will perform testing for composition according to AASHTO T 308, or NJDOT B-5. The ME will determine bulk specific gravity of the compacted sample according to AASHTO T 166 or AASHTO T 331. The ME will use the most current QC maximum specific gravity test result, obtained according to AASHTO T 209, in calculating the volumetric properties of the SMA. Perform testing for draindown according to AASHTO T 305.

902.06.03 Sampling and Testing
THE FOLLOWING IS ADDED TO THE FIRST PARAGRAPH:
Ensure that the mix meets the requirements as specified in 902.02.04.A, except that the temperature of the mix at discharge is required to be between 230 °F and 275 °F, otherwise the RE or ME will reject the material.

THE FOLLOWING SUBSECTIONS ARE ADDED

902.07 ASPHALT-RUBBER OPEN-GRADED FRICTION COURSE (AR-OGFC)

902.07.01 Composition of Mixture
Mix AR-OGFC in a plant listed on the QPL and conforming to the requirements for HMA plants specified in 1009.01. Ensure the HMA plant is equipped with asphalt-rubber binder blending equipment as specified in 1009.03. Composition of mixture for AR-OGFC is coarse aggregate, fine aggregate and asphalt-rubber binder. Ensure that the mixture conforms to the following requirements:
1. Use aggregates that conform to 901.05. Use fine aggregate that is manufactured stone sand and conforms to Table 902.02.02-2.
2. Do not use RAP, CRCG, GBSM, or RPCSA.
3. Use asphalt-rubber binder that conforms to 902.07.02.

902.07.02 Asphalt-Rubber Binder
A. Materials. Use the following materials:
 1. Ground Crumb Rubber. Ensure that the ground crumb rubber has a specific gravity of 1.15 ± 0.05, is free of wire or other contaminating materials, and contains not more than 0.5 percent fabric. Use crumb rubber that is ambient ground and conforms to the gradation requirements specified in Table 902.07.02-1. Ensure that the moisture content is less than 0.75 percent. The Contractor may add up to four percent calcium carbonate by weight of the granulated rubber, to prevent the particles from sticking together.
Submit to the ME a certification of compliance, as specified in 106.07, for the ground crumb rubber. In addition, ensure that the certificates confirm that the rubber is a crumb rubber, derived from processing whole scrap tires or shredded tire materials; and the tires from which the crumb rubber is produced are taken from automobiles, trucks, or other equipment owned and operated in the United States. Include with the certifications verifications that the processing did not produce, as a waste product, casings, or other round tire material that can hold water when stored or disposed of above ground.

2. Asphalt Binder. Use asphalt binder that conforms to AASHTO M 320, Table 1; PG 64-22, PG 58-28 or an approved blend of both grades.

The asphalt binder producer is required to provide the asphalt binder quality control plan annually to the ME for approval. Ensure that the quality control plan conforms to AASHTO R 26.

Submit to the ME a certification of compliance, as specified in 106.07, for the asphalt binder. The ME will perform quality assurance sampling and testing of each asphalt binder lot as defined in the approved quality control plan.

B. Mixing. Using the asphalt-rubber binder blending equipment in 1009.03, produce the asphalt-rubber binder to contain at least 17 percent ground rubber by the weight of total asphalt binder (asphalt + crumb rubber). Ensure that the temperature of the asphalt cement is between 350 and 400 °F at the time of addition of the ground rubber. Ensure that there are no agglomerations of rubber particles in excess of two inches in the least dimension in the mixing chamber.

Document that the proportions are accurate and that the rubber has been uniformly incorporated into the mixture. Report as directed by the ME. Ensure that the crumb rubber and asphalt-cement are thoroughly mixed before beginning the one-hour reaction period. Rubber floating on the surface or agglomerations of rubber particles is evidence of insufficient mixing. Maintain the temperature of the asphalt-rubber binder immediately after mixing between 325 and 375 °F. Maintain the temperature of the asphalt-rubber binder for at least one hour before using.

C. Properties. Prepare asphalt-rubber binder using the “wet process.” Physical properties are required to comply with the requirements of ASTM D 6114, Type II, except for the properties specified in Table 902.07.02-2.

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Procedure</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resilience: 77 °F; %, minimum</td>
<td>ASTM D 5329</td>
<td>25</td>
</tr>
<tr>
<td>Rotational Viscosity(^1) 350 °F; cP</td>
<td>NJDOT B-12</td>
<td>2000 – 4000</td>
</tr>
</tbody>
</table>

1. The viscotester used must be correlated to a Rion (formerly Haake) Model VT-04 viscotester using the No. 1 Rotor. The Rion viscotester rotor, while in the off position, is required to be completely immersed in the binder at a temperature from 350 ± 3 °F for a minimum heat equilibrium period of 60 seconds, and the average viscosity determined from three separate constant readings (±500 cP) taken within a 30 second time frame with the viscotester level during testing and turned off between readings. Continuous rotation of the rotor may cause thinning of the material immediately in contact with the rotor, resulting in erroneous results.

D. Handling and Testing. Once the asphalt-rubber binder has been mixed, thoroughly agitate during periods of use to prevent settling of the rubber particles. During production, maintain asphalt-rubber binder between 325 and 375 °F. Ensure that asphalt-rubber binder is not held at 325 °F or higher for more than 16 hours. Allow asphalt-rubber
binder held for more than 16 hours to cool. To reuse, gradually reheat to between 325 and 375 °F. Do not cool and reheat more than one time. Do not store asphalt-rubber binder above 250 °F for more than four days.

For each load or batch of asphalt-rubber binder, provide the RE with the following:

1. The source, grade, amount, and temperature of the asphalt cement before the addition of rubber.
2. The source and amount of rubber and the rubber content expressed as percent by the weight of the asphalt cement.
3. Times and dates of the rubber additions and resultant viscosity test.
4. A record of the temperature, with time and date reference for each load or batch. The record begins at the time of the addition of rubber and continue until the load or batch is completely used. Take readings and record every temperature change in excess of 20 °F, and as needed to document other events that are significant to batch use and quality.

902.07.03 Mix Design

Submit binder and mix designs including JMF for each mixture performed by an AASHTO accredited lab with at least five successfully completed asphalt-rubber open-graded friction course projects greater than 5,000 tons each. Include a statement naming the source of each component and a report with the results for the criteria specified in Table 902.07.03-1. Include a report detailing the rotational viscosity of the asphalt-rubber binder at 60, 90, 135, 240, and 1440 minutes. Submit lab qualifications and references to the ME for approval prior to beginning work.

Design the mix to meet the criteria in Table 902.07.03-1.

<table>
<thead>
<tr>
<th>Table 902.07.03-1 JMF Master Ranges and Mixture Requirements AR-OGFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve Sizes</td>
</tr>
<tr>
<td>1/2"</td>
</tr>
<tr>
<td>3/8"</td>
</tr>
<tr>
<td>No. 4</td>
</tr>
<tr>
<td>No. 8</td>
</tr>
<tr>
<td>No. 200</td>
</tr>
<tr>
<td>Minimum asphalt-rubber binder, %</td>
</tr>
<tr>
<td>Minimum % Air Voids, design</td>
</tr>
</tbody>
</table>

1. Aggregate percent passing to be determined based on dry aggregate weight.
2. Asphalt-rubber binder content to be determined based on total weight of mix.

Determine and verify the JMF according to NJDOT B-8. Ensure that the JMF is within the master range specified in Table 902.07.03-1.

Prepare compacted test specimens for submittal to the ME at least 30 days before the initial production date. Prepare these specimens from material mixed according to the final JMF, using 50 gyrations of the Superpave gyratory compactor according to AASHTO T 312.

The ME will test 2 specimens to verify stone-on-stone contact according to NJDOT B-8 and that the final JMF produces a mixture that has a minimum void content as specified in Table 902.07.03-1. The ME will determine percent air voids according to AASHTO T 209 and AASHTO T 331.

The ME will test 2 test specimens for abrasion and impact resistance using a modified L.A. Abrasion Test according to NJDOT B-8. The maximum allowable loss as calculated by this method is 30 percent.

Do not modify, which includes changing the asphalt cement supplier, the JMF unless the ME approves the modification.

902.07.04 Sampling and Testing

A. **General Acceptance Requirements.** The RE or ME may reject and require disposal of any batch or shipment that is rendered unfit for its intended use due to contamination, segregation, improper temperature, lumps of cold material, or incomplete coating of the aggregate. For other than improper temperature, visual inspection of the material by the RE or ME is considered sufficient grounds for such rejection.
For asphalt-rubber binder, ensure that the temperature of the mixture at discharge from the plant or surge and storage bins is at least 290 °F but not greater than 330 °F.

Combine and mix the aggregates and asphalt-rubber binder to ensure that at least 95 percent of the coarse aggregate particles are entirely coated with asphalt-rubber binder as determined according to AASHTO T 195. If the ME determines that there is an on-going problem with coating, the ME may obtain random samples from 5 trucks and will determine the adequacy of the mixing on the average of particle counts made on these 5 test portions. If the requirement for 95 percent coating is not met on each sample, modify plant operations, as necessary, to obtain the required degree of coating.

B. Quality Control Testing. The HMA producer is required to provide a quality control (QC) technician who is certified by the Society of Asphalt Technologists of New Jersey as an Asphalt Technologist, Level 2. The QC technician may substitute equivalent technician certification by the Mid-Atlantic Region Technician Certification Program (MARTCP). Ensure that the QC technician is present during periods of mix production for the sole purpose of quality control testing and to assist the ME. The ME will not perform the quality control testing or other routine test functions in the absence of, or instead of, the QC technician.

The QC technician is required to perform sampling and testing according to the approved quality control plan, to keep the mix within the limits specified for the mix being produced. The QC technician may use acceptance test results or perform additional testing as necessary to control the mix.

For each acceptance test, perform maximum specific gravity testing according to AASHTO T 209 on a test portion of the sample taken by the ME. Sample and test coarse aggregate, fine aggregate and mineral filler according to the approved quality control plan for the plant.

C. Acceptance Testing. During production, the ME will take one random acceptance sample from each 700 tons of production to verify composition. The ME will perform sampling according to NJDOT B-2 or ASTM D 3665, and will perform testing for composition according to AASHTO T 308 or NJDOT B-5. Perform testing for air voids according to T 209 and either B-6 or T 331. Perform testing for draindown according to NJDOT B-8.

Conduct air voids and draindown tests as directed by the ME.

If the composition testing results are outside of the production control tolerances specified in Table 902.07.04-1 for an acceptance sample, determine if a plant adjustment is needed and immediately run a quality control sample. If the quality control sample is also outside of the control tolerances in Table 902.07.04-1, immediately take corrective action to bring the mix into compliance. Take additional quality control samples after the corrective action to ensure that the mix is within the production control tolerances. If two consecutive acceptance samples are outside the tolerances specified in Table 902.07.04-1, immediately stop production. Obtain ME approval of a plant correction plan before resuming production. Upon restarting production, do not transport mixture to the Project Limits before the results of a QC sample from the mixture indicate that the mixture meets JMF tolerances. The ME will reject mixture produced at initial restarting that does not meet tolerances.

<table>
<thead>
<tr>
<th>Sieve Sizes</th>
<th>Production Control Tolerances from JMF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2"</td>
<td>±6.0</td>
</tr>
<tr>
<td>3/8"</td>
<td>±5.5</td>
</tr>
<tr>
<td>No. 4</td>
<td>±5.5</td>
</tr>
<tr>
<td>No. 8</td>
<td>±4.5</td>
</tr>
<tr>
<td>No. 200</td>
<td>±2.0</td>
</tr>
<tr>
<td>Asphalt-rubber binder, % (AASHTO T 308)</td>
<td>±0.40</td>
</tr>
<tr>
<td>Asphalt-rubber binder, % (NJDOT B-5)</td>
<td>±0.15</td>
</tr>
<tr>
<td>Minimum % Air Voids</td>
<td>1.0% less than design requirement</td>
</tr>
</tbody>
</table>

1. Production tolerances may fall outside of the wide band gradation limits in Table 902.07.03-1.
902.08 HIGH PERFORMANCE THIN OVERLAY (HPTO)

902.08.01 Composition of Mixture

Mix HPTO in a plant that is listed on the QPL and conforms to the requirements for HMA Plants as specified in 1009.01. The composition of the mixture for HPTO is coarse aggregate, fine aggregate, and asphalt binder, and may also include mineral filler. Do not use Reclaimed Asphalt Pavement (RAP), Ground Bituminous Shingle Material, Remediated Petroleum Contaminated Soil Aggregate, or Crushed Recycled Container Glass (CRCG). Use asphalt binder and aggregates that meet the following requirements:

1. For the asphalt binder, use PG 76-22 as specified in 902.01.01.
2. Use coarse aggregate that is argillite, gneiss, granite, quartzite, or trap rock and conforms to 901.05.01.
3. For fine aggregate, use stone sand conforming to 901.05.02 and has an uncompacted void content of at least 45 percent when tested according to AASHTO T 304, Method A. In addition, the minimum sand equivalent is 45 percent when tested according to AASHTO T 176.
4. If necessary, use mineral filler as specified in 901.05.03.

902.08.02 Mix Design

At least 45 days before initial production, submit a job mix formula for the HPTO on forms supplied by the Department. Include a statement naming the source of each component and a report showing the results meet the criteria specified in Tables 902.08.03-1 and 902.08.03-2.

For the job mix formula for the HPTO mixture, establish the percentage of dry weight of aggregate passing each required sieve size and an optimum percentage of asphalt binder based upon the weight of the total mix. Determine the optimum percentage of asphalt binder according to AASHTO R 35 and M 323 with an Ndes of 50 gyrations. Before maximum specific gravity testing or compaction of specimens, condition the mix for 2 hours according to the requirements for conditioning for volumetric mix design in AASHTO R 30, Section 7.1. If the absorption of the combined aggregate is more than 1.5 percent according to AASHTO T 84 and T 85, condition the mix for 4 hours according to AASHTO R 30, Section 7.2 prior to compaction of specimens (AASHTO T 312) and determination of maximum specific gravity (AASHTO T 209). Ensure that the job mix formula is within the master range specified in, Table 902.08.03-1.

Ensure that the job mix formula provides a mixture that meets a minimum tensile strength ratio (TSR) of 85 percent when prepared according to AASTHO T 312 and tested according to AASHTO T 283 with the following exceptions:

1. Before compaction, condition the mixture for 2 hours according to AASHTO R 30 Section 7.1.
2. Compact specimens with 40 gyrations.
3. Extrude specimens as soon as possible without damaging.
4. Use AASHTO T 269 to determine void content.
5. Record the void content of the specimens.
6. If less than 55 percent saturation is achieved, the procedure does not need to be repeated, unless the difference in tensile strength between duplicate specimens is greater than 25 pounds per square inch.
7. If visual stripping is detected, modify or readjust the mix.

For each mix design, submit three gyratory specimens and one loose sample corresponding to the composition of the job mix formula, including the design asphalt content. The ME will use these samples for verification of the properties of the job mix formula. Compact the specimens to the design number of gyrations (Ndes). To be acceptable all three gyratory specimens must comply with the gradation and asphalt content requirements in Table 902.08.03-1 and with the control requirements in Table 902.08.03-2. The ME reserves the right to be present at the time of molding the gyratory specimens.

In addition, submit 6 gyratory specimens and a 5 gallon bucket of loose mix to the ME. Compact the additional gyratory specimens according to AASHTO T 312. Ensure that the 6 gyratory specimens are 77 millimeters high and have an air void content of 5.0 ± 0.5 percent. The ME will use the additional samples for performance testing of the HPTO mix. The ME will test the specimens using an Asphalt Pavement Analyzer according to AASHTO TP 63 at 64 °C, 100 pounds per square inch hose pressure, and 100 pound wheel load. The ME will approve the job mix formula if the average rut depth for the 6 specimens in the asphalt pavement analyzer testing is not more than 4 millimeters in 8,000 loading cycles. If the job mix formula does not meet the APA criteria, redesign the HPTO mix.
If unsatisfactory results for any specified characteristic of the work make it necessary, establish a new job mix formula for approval. In such instances, if corrective action is not taken, the ME may require an appropriate adjustment.

If a change in sources is made or a change in the properties of materials occurs, the ME will require that a new job mix formula be established and approved before production can continue.

902.08.03 Sampling and Testing

A. General Acceptance Requirements. The RE or ME may reject and require disposal of any batch or shipment that is rendered unfit for its intended use due to contamination, segregation, improper temperature, lumps of cold material, or incomplete coating of the aggregate. For other than improper temperature, visual inspection of the material by the RE or ME is considered sufficient grounds for such rejection.

Ensure that the temperature of the HPTO at discharge from the plant or surge and storage bins is maintained between 300 and 330 °F.

Combine and mix the aggregates and asphalt binder to ensure that at least 95 percent of the coarse aggregate particles are entirely coated with asphalt binder as determined according to AASHTO T 195. If the ME determines that there is an on-going problem with coating, the ME may obtain random samples from 5 trucks and will determine the adequacy of the mixing on the average of particle counts made on these 5 test portions. If the requirement for 95 percent coating is not met on each sample, modify plant operations, as necessary, to obtain the required degree of coating.

B. Sampling. The ME will take 5 stratified random samples of HPTO for volumetric acceptance testing from each lot of approximately 3500 tons of a mix. When a lot of HPTO is less than 3500 tons, the ME will take samples at random for each mix at the rate of one sample for each 700 tons. The ME will perform sampling according to AASHTO T 168, NJDOT B-2, or ASTM D 3665.

Use a portion of the samples taken for composition testing, unless composition is determined by hot bin analysis. If using hot bin analysis at a fully automated batch plant, take 5 samples from each lot corresponding to the volumetric acceptance samples, under the supervision of the ME.

C. Quality Control Testing. The HMA producer is required to provide a quality control (QC) technician who is certified by the Society of Asphalt Technologists of New Jersey as an Asphalt Technologist, Level 2. The QC technician may substitute equivalent technician certification by the Mid-Atlantic Region Technician Certification Program (MARTCP). Ensure that the QC technician is present during periods of mix production for the sole purpose of quality control testing and to assist the ME. The ME will not perform the quality control testing or other routine test functions in the absence of, or instead of, the QC technician.

The QC technician is required to perform sampling and testing according to the approved quality control plan, to keep the mix within the limits specified for the HPTO mix being produced. The QC technician may use acceptance test results or perform additional testing as necessary to control the mix.

To determine the composition, perform ignition oven testing according to AASHTO T 308. For fully automated plants, the QC technician may determine composition using hot bin analysis according to NJDOT B-5. Use only one method for determining composition within a lot.

For each acceptance test, perform maximum specific gravity testing according to AASHTO T 209 on a test portion of the sample taken by the ME. Sample and test coarse aggregate, fine aggregate, mineral filler, and RAP according to the approved quality control plan for the plant.

D. Acceptance Testing and Requirements. The ME will determine volumetric properties at Ndes for acceptance from samples taken, compacted, and tested at the HMA plant. The ME will compact HPTO to 50 gyrations, using equipment according to AASHTO T 312. The ME will determine bulk specific gravity of the compacted sample according to AASHTO T 166. The ME will use the most current QC maximum specific gravity test result in calculating the volumetric properties of the HPTO.

The ME will determine the dust-to-binder ratio from the composition results as tested by the QC technician.

Ensure that the HMA mixture conforms to the requirements specified in Table 902.08.03-2, and to the gradation requirements in Table 902.08.03-1. If 2 samples in a lot fail to conform to the gradation or volumetric requirements, immediately initiate corrective action.
The ME will test a minimum of 1 sample per lot for moisture, basing moisture determinations on the weight loss of an approximately 1600-gram sample of mixture heated for 1 hour in an oven at 280 ± 5 °F. Ensure that the moisture content of the mixture at discharge from the plant does not exceed 1.0 percent.

E. Performance Testing. Provide 6 gyratory specimens and a 5 gallon bucket of loose mix to the ME. Compact the additional gyratory specimens according to AASHTO T 312. Ensure that the 6 gyratory specimens are 77 millimeters high and have an air void content of 5.0 ± 0.5 percent. The first sample is required to be taken in the first lot of production. Thereafter, every third lot is required to be sampled. The ME will use the samples for performance testing of the HPTO mix. The ME will test the specimens using an Asphalt Pavement Analyzer according to AASHTO TP 63 at 64 °C, 100 pounds per square inch hose pressure, and 100 pounds wheel load. If the HPTO mix exceeds the APA criteria of 4 mm in 8000 loading cycles, the ME may stop production until corrective action is taken. If the HPTO mix exceeds the APA criteria of 12 mm in 8000 loading cycles, the RE may require removal and replacement of the lot of HPTO.

<table>
<thead>
<tr>
<th>Table 902.08.03-1 HPTO Grading of Total Aggregate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve Size</td>
</tr>
<tr>
<td>3/8”</td>
</tr>
<tr>
<td>#4</td>
</tr>
<tr>
<td>#8</td>
</tr>
<tr>
<td>#16</td>
</tr>
<tr>
<td>#30</td>
</tr>
<tr>
<td>#50</td>
</tr>
<tr>
<td>#100</td>
</tr>
<tr>
<td>#200</td>
</tr>
</tbody>
</table>

Minimum Percent Asphalt by Mass of Total Mix: 7%

<table>
<thead>
<tr>
<th>Table 902.08.03-2 Volumetric Requirements for Design and Control of HPTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Density (of Max. Sp. Gr.)</td>
</tr>
<tr>
<td>N<sub>des</sub> (50 gyrations)</td>
</tr>
<tr>
<td>--------------------------------</td>
</tr>
<tr>
<td>Design Requirements</td>
</tr>
<tr>
<td>Control Requirements</td>
</tr>
</tbody>
</table>

SECTION 1009 – HMA PLANT EQUIPMENT

1009.01 HMA PLANT

A. Requirements for HMA Mixing Plants.

THE FOLLOWING IS ADDED AFTER THE SECOND PARAGRAPGH:
The HMA producer is required to have a quality control (QC) program plan approved annually by the ME as per Materials Approval Procedure MAP-102. The HMA producer is required to ensure that the QC plan conforms to the requirements outlined in the report entitled “Hot Mix Asphalt Quality Control Program Plan” prepared by the Department of Transportation and New Jersey Asphalt Paving Association. Failure to follow these requirements will result in rejection of HMA materials supplied by the HMA producer and removal of the HMA supplier from the QPL.

THE FOLLOWING SUBSECTION IS ADDED AFTER 1009.02:

1009.03 ASPHALT-RUBBER BINDER BLENDING EQUIPMENT

Provide equipment for preparation of Asphalt-Rubber Binder. Ensure that the unit is equipped with a crumb rubber feed system capable of continuously supplying the asphalt cement feed system, and is capable of fully blending the individual crumb rubber particles with the asphalt cement. Use an asphalt-rubber binder storage tank that is equipped with a heating system capable of maintaining the temperature of the binder between 325 and 375 °F during the reaction. Ensure the asphalt-rubber binder storage tank is also equipped with an internal auger mixing device, oriented horizontally in the tank, capable of maintaining a uniform mixture of the asphalt-rubber binder.

Ensure that the tanks for storage of asphalt-rubber binder are equipped to uniformly heat the material to the required temperature under effective and positive control at all times. Ensure that heating is accomplished so that no flame comes in contact with the heating tank.

Provide a circulating system of sufficient capacity for the binder to ensure continuous circulation between the storage tank and proportioning units during the entire operating period. Ensure that the discharge end of the binder circulating pipe is maintained below the surface of the binder in the storage tank to prevent discharge of hot binder into the open air.

Ensure that pipe lines and fittings are steam or oil jacketed, electrically or otherwise heated, and insulated to prevent heat loss.

Provide valves according to AASHTO T 40, except ensure that a sampling valve is also located in the lowest third of each storage tank.

If the plant has been equipped with a water injection type asphalt foaming system, ensure that the system will allow the proper amount of asphalt rubber binder to be supplied continuously or provide a by-pass to ensure that the proper amount of asphalt rubber binder is supplied to the mix.
NJDOT TEST METHODS

NJDOT B-8 – DETERMINING JOB MIX FORMULA FOR MODIFIED OPEN-GRADED FRICTION COURSE MIXES

C. Procedure.

3. Relative VMA Asphalt Content.

THE FOURTH SENTENCE IN THE FIRST PARAGRAPH IS CHANGED TO:

Determine the bulk specific gravity, Gmb from each specimen according to NJDOT B-6 or AASHTO T 331.

THE FOOTNOTE FOR GMB IN THE SECOND EQUATION IS CHANGED TO:

Gmb = the bulk specific gravity of the specimen as determined by NJDOT B-6 or AASHTO T 331.

THE FOLLOWING TEST METHODS ARE ADDED:

NJDOT B-10 – OVERLAY TEST FOR DETERMINING CRACK RESISTANCE OF HMA

A. Scope. This test method is used to determine the susceptibility of HMA specimens to fatigue or reflective cracking. This test method measures the number of cycles to failure.

B. Apparatus. Use the following apparatus:

1. Overlay Tester. An electro-hydraulic system that applies repeated direct tension loads to specimens. The machine features two blocks, one is fixed and the other slides horizontally. The device automatically measures and records a time history of load versus displacement every 0.1 sec at a selected test temperature. The sliding block applies tension in a cyclic triangular waveform to a constant maximum displacement of 0.06 cm (0.025 in.). This sliding block reaches the maximum displacement and then returns to its initial position in 10 sec. (one cycle).

2. Temperature Control System. The temperature chamber must be capable of controlling the test temperature with a range of 32 to 95 °F (0 to 35 °C).

3. Measurement System. Fully automated data acquisition and test control system. Load, displacement, and temperature are simultaneously recorded every 0.1 sec.

4. Linear Variable Differential Transducer (LVDT). Used to measure the horizontal displacement of the specimen (+/- 0.25 in.). Refer to manufacturer for equipment accuracy for LVDT.

5. Electronic Load Cell. Used to measure the load resulting from the displacement (5000 lb capacity). Refer to manufacturer for equipment accuracy for load cell.

6. Specimen Mounting System. Used two stainless steel base plates to restrict shifting of the specimen during testing. The mounting jig holds the two stainless steel base plates for specimen preparation.

7. Cutting Template.

8. Two Part Epoxy. Two part epoxy with a minimum 24 hour tensile strength of 600 psi (4.1 MPa) and 24 hour shear strength of 2,000 psi (13.8 MPa).

9. 10 lb weight (4.5 kg). Used to place on top of specimens while being glued to specimen platens.

10. ¼ inch Width Adhesive Tape. Placed over gap in plates to prevent the epoxy from bonding the plates together.

11. Paint or Permanent Marker. Used to outline specimens on platens for placement of epoxy.

12. 3/8-in. Socket Drive Handle with a 3-in. (7.6 cm) extension.

C. Procedure. Perform the following steps:

1. Sample Preparation.
a. **Laboratory Molded Specimens** - Use cylindrical specimens that have been compacted using the gyratory compactor (AASHTO T 312). Specimen diameter must be 6 inches (150 mm) and a specimen height must be 4.5 inches +/- 0.2 inches (115 +/- 5 mm).

Note 1 - Experience has shown that molded laboratory specimens of a known density usually result in a greater density (or lower air voids) after being trimmed. Therefore, it is recommended that the laboratory technician produce molded specimens with an air void level slightly higher than the targeted trimmed specimen. Determine the density of the final trimmed specimen in accordance with AASHTO T 166.

b. **Core Specimens** – Specimen diameter must be 6 inches +/- 0.1 inch (150 mm +/- 2 mm). Determine the density of the final trimmed specimen in accordance with AASHTO T166.

2. **Trimming of Cylindrical Specimen.** Before starting, refer to the sawing device manufacturer’s instructions for cutting specimens.

 a. Place the cutting template on the top surface of the laboratory molded specimen or roadway core. Trace the location of the first two cuts by drawing lines using paint or a permanent maker along the sides of the cutting template.

 b. Trim the specimen ends by cutting the specimen perpendicular to the top surface following the traced lines. Discard specimen ends.

 c. Trim off the top and bottom of the specimen to produce a sample with a height of 1.5 inches +/- 0.02 inches (38 mm +/- 0.5 mm).

 d. Measure the density of the trimmed specimen in accordance with AASHTO T 166. If the specimen does not meet the density requirement as specified for performance testing for the mix being tested, then discard it and prepare a new specimen.

 e. Air dry the trimmed specimen to constant mass, where constant mass is defined as the weight of the trimmed specimen not changing by more than 0.05% in a 2 hour interval.

3. **Mounting Trimmed Specimen to Base Plates (Platens).**

 a. Mount and secure the base plates (platens) to the mounting jig. Cut a piece of adhesive tape approximately 4.0 inches (102 mm) in length. Center and place the piece of tape over the gap between the base plates.

 b. Prepare the epoxy following manufacturer’s instructions.

 c. Cover a majority of the base plates (platens) with epoxy, including the tape. Glue the trimmed specimen to the base plates.

 d. Place a 10 lb (4.5 kg) weight on top of the glued specimen to ensure full contact of the trimmed specimen to the base plates. Allow the epoxy to cure for the time recommended by the manufacturer. Remove the weight from the specimen after the epoxy has cured.

 e. Turn over the glued specimen so the bottom of the base plates faces upward. Using a hacksaw, cut a notch through the epoxy which can be seen through the gap in the base plates. The notch should be cut as evenly as possible and should just begin to reach the specimen underneath the epoxy. Great care should be taken not to cut more than 1/16 inch (1.58 mm) into the specimen.

 f. Place the test sample assembly in the Overlay Tester’s environmental chamber for a minimum of 1 hour before testing.

4. **Start Testing Device.** Please refer to manufacturer’s equipment manual prior to operating equipment.

 a. Turn on the Overlay Tester. Turn on the computer and wait to ensure communication between the computer and the Overlay Tester occurs.

 b. Turn on the hydraulic pump using the Overlay Tester’s software. Allow the pump to warm up for a minimum of 20 minutes.

 c. Turn the machine to load control mode to mount the sample assembly.
5. **Mounting Specimen Assembly to Testing Device.** Enter the required test information into the Overlay Tester software for the specimen to be tested.
 a. Mount the specimen assembly onto the machine according to the manufacturer’s instructions and the following procedural steps.
 1. Clean the bottom of the base plates and the top of the testing machine blocks before placing the specimen assembly into the blocks. If all four surfaces are not clean, damage may occur to the machine, the specimen, or the base plates when tightening the base plates.
 2. Apply 15 lb-in of torque for each screw when fastening the base plates to the machine.

6. **Testing Specimen.**
 a. Perform testing at a constant temperature recommended by the New Jersey Department of Transportation for the mixture in question. This is typically either 59 °F (15 °C) or 77 °F (25 °C).

 Note 3 – Ensure the trimmed specimen has also reached the constant temperature required.
 b. Start the test by enabling the start button on the computer control program. Perform testing until a 93% reduction or more of the maximum load measured from the first opening cycle occurs. If 93% is not reached, run the test until a minimum of 1,200 cycles.
 c. After the test is complete, remove the specimen assembly from the Overlay Tester machine blocks.

D. **Report.** Include the following items in the report:
 1. Date and time molded or cored.
 2. NJDOT mixture identification.
 3. Trimmed specimen density.
 4. Starting Load.
 5. Final Load.
 6. Percent decline (or reduction) in Load.
 7. Number of cycles until failure.
 8. Test Temperature

NJDOT B-11- DETERMINING GRADATION OF CRUMB RUBBER FOR ASPHALT MODIFICATION

A. **Scope.** This method is used to determine the gradation of the crumb rubber for asphalt-rubber binder

B. **Apparatus.** Use the following apparatus:
 1. Oven capable of maintaining a temperatures of 140 ± 10 °F for drying sample to a constant weight.
 2. Rubber balls having a weight of 8.5 ± 0.5 grams, a diameter of 24.5 ± 0.5mm mm, and a Shore Durometer “A” hardness of 50 ± 5 per ASTM Designation D 224
 3. No. 8, 16, 30, 50, 100, and 200 sieves conforming to AASHTO M 92.
 4. Mechanical sieve shaker conforming to AASHTO T 27.
 5. Balance conforming to AASHTO M 231 and having a minimum capacity of 100 grams with a precision of 0.1 gram.

C. **Procedure.** The crumb rubber for asphalt rubber binder is required to conform to the gradations specified below when tested in accordance with ASTM Designation C 136 except as follows:
 1. Obtain 100 ± 5 grams from the crumb rubber sample and dry to a constant weight at a temperature of not less than 135 °F nor more than 145 °F and record the dry sample weight.
 2. Place the crumb rubber sample and 5.0 grams of talc in a one pint jar, then shake it by hand for a minimum of one minute to mix the crumb rubber and the talc. Continue shaking or open the jar and stir until the particle agglomerates and clumps are broken and the talc is uniformly mixed.
 3. Place one rubber ball on each sieve. After sieving the combined material for 10 ± 1 minutes, disassemble the sieves. Brush remaining material adhering to the bottom of a sieve into the next finer
sieve. Weigh and record the weight of the material retained on the No. 8 sieve and leave this material (do not discard) on the scale or balance. Ensure that observed fabric balls remain on the scale or balance and are placed together on the side of the scale or balance to prevent the fabric balls from being covered or disturbed when placing the material from finer sieves on to the scale or balance. Add the material retained on the next finer sieve (No. 16 sieve) to the scale or balance. Weigh and record that weight as the accumulative weight retained on that sieve (No. 16 sieve). Continue weighing and recording the accumulative weights retained on the remaining sieves until the accumulated weight retained in the pan has been determined. Before discarding the crumb rubber sample, separately weigh and record the total weight of the fabric balls in the sample.

4. Determine the weight of material passing the No. 200 sieve (or weight retained in the pan) by subtracting the accumulated weight retained on the No. 200 sieve from the accumulated retained weight in the pan. If the material passing the No. 200 sieve (or weight retained in the pan) has a weight of 5 grams or less, cross out the recorded number for the accumulated weight retained in the pan and copy the number recorded for the accumulated weight retained on the No. 200 sieve and record that number (next to the crossed out number) as the accumulated weight retained in the pan. If the material passing the No. 200 sieve (or weight retained in the pan) has a weight greater than 5 grams, cross out the recorded number for the accumulated weight retained in the pan, subtract 5 grams from that number and record the difference next to the crossed out number. The adjustment to the accumulated with retained in the pan is made to account for the 5 grams of the talc added to the sample. For calculation purposes, the adjusted accumulated weight is the same as the adjusted accumulated weight retained in the pan. Determine the percent passing based on the adjusted total sample weight and recorded to the nearest 0.1 percent.

D. Report. Report all test results on ME provided forms.

NJDOT B-12 – DETERMINING ROTATIONAL VISCOSITY OF ASPHALT RUBBER BINDER

A. Scope. This method presents procedures for sampling and testing of asphalt-rubber binder in the field using a handheld portable rotational analog or digital viscometer.

B. Apparatus. Use the following apparatus:

1. **Viscometer.** A hand held high range rotational viscometer. Analog models with indicator needles and scaled dial displays or digital read out viscometers may be used. Analog models that have been found acceptable include Rion Model VT-04E and Haake Model, VT-02. Digital models that have been found acceptable include Haake VT 2 Plus.
2. **Rotor.** A cylinder with a diameter of 24 ± 1.1 millimeters, height of 53 ± 0.1 millimeters, and a vent hole attached to a spindle or shaft with length of 87 ± 2 millimeters that is compatible with the selected viscometer. Acceptable rotors include Rion No. 1, Haake No 1, or an equivalent.
3. **Thermometer.** Digital with metal jacket probe accurate to 1 °F.
4. **Sample Containers.** Clean 1 gallon metal cans with lids and wire bale.
5. **Viscosity Standard Oils.** Fluids calibrated in absolute viscosity centipoise (cP).
6. **Viscometer Holder.** Clean metal container or stand for safely storing the viscometer between tests.
7. **Level Surface.** Level surface not directly on the ground.
8. **Heat Source.** A controllable heat source (i.e. a hot plate, gas stove, or burner) to maintain the temperature of the asphalt-rubber sample at 350 ± 3 °F while measuring viscosity.
9. **Personal Equipment.** Eye protection and heat resistant gloves.

C. Procedure. Perform the following steps:

1. **Calibration of Equipment.** Calibrate the equipment as follows:
 a. Verify the accuracy of the viscometer by comparing the viscosity results obtained with the hand held viscometer to 3 separate calibration fluids of known viscosities ranging from 1000 cP to 5000 cP. The known viscosity value are based on the fluid manufacturer’s standard test temperature or based on the test temperature versus viscosity correlation table provided by the fluid manufacturer.
b. The viscometer is considered accurate if the values obtained are within 300 cP of the known viscosity.

c. Verify the calibration of the rotational viscometer using viscosity standards before use at each site.

2. **Sampling Asphalt-Rubber Binder.** Provide new sample containers and ensure that they are clean before using. Before sampling, draw at least 1 gallon from an appropriate sample valve on the interaction tank and discard. Then reopen the sample valve and draw at least 3/4 of a gallon for testing.

3. **Preparing Asphalt-Rubber Binder Samples for Testing.** Prepare the asphalt-rubber binder as follows:
 a. Immediately transport the sample to the testing area. Ensure that the testing area is close to the sampling location to reduce the potential for temperature loss.
 b. Set the open asphalt-rubber binder sample container on the level surface on or over the heat source.
 c. To prevent scorching or burning, manually stir the asphalt-rubber binder sample using a metal stir rod or the temperature probe.
 d. Continue stirring until a consistent asphalt-rubber binder temperature of 350 ± 3 °F is achieved. Record the actual test temperature with the corresponding viscosity measurement.
 e. Insert the viscometer spindle and rotor into the hot asphalt-rubber binder sample near the edge of the can. Ensure that the spindle and rotor are not inserted deeper than the immersion depth mark on the shaft and are not plugging the vent hole. During insertion, the spindle and rotor may be tilted slightly to keep the vent hole clear.
 f. Allow the rotor to acclimate to the temperature of the asphalt-rubber binder for approximately 1 minute. During acclimation, stir the sample thoroughly and measure the temperature.
 g. Orient the sample and the rotor so that the rotor is near the center of the sample, align the depth mark on the shaft with the asphalt-rubber binder surface, and level the viscometer in order to measure viscosity.

4. **Testing.** Analog viscometers include a level bubble to help orient the device to ensure that the rotor and shaft remain vertical. Digital viscometers may not include a level bubble. If a level bubble is not included, attach a small adhesive bubble to the viscometer or use a framework with a level bubble.

Test the asphalt-rubber binder as follows:
 a. As soon as the viscometer is leveled and the depth mark is even with the asphalt-rubber binder surface, begin rotor rotation. When using a digital viscometer, activate the continuous digital display according to the manufacturer’s recommendations. Read and record the peak viscosity value (The peak measurement typically represents the viscosity of the asphalt-rubber binder; report and log that value. As the rotor continues to turn, it “drills” into the sample and spins rubber particles out of its measurement area. This may cause thinning of the material in contact with the rotor erroneously indicating a drop in the apparent viscosity of the asphalt-rubber binder) from the graduated scale labeled with the corresponding rotor number or from the digital display.
 b. After completing the first measurement, move the viscometer rotor away from the center of the sample can without removing it from the asphalt-rubber binder sample. Turn off the rotor rotation.
 c. Stir the asphalt-rubber binder sample thoroughly.
 d. Repeat Steps 1, 2, and 3. Take 3 measurements and average the results to determine the viscosity.
 e. Return the viscometer to its holder with the rotor suspended in a suitable solvent. Before using the rotor again, wipe off the solvent and dry the rotor to avoid solvent contamination of the next sample.

D. **Calculations.** Some meters read in units of mPa·s (0.001 Pascal-seconds) or dPa·s (0.1 Pa·s), while others may read in centipoise (cPs) units. The conversion is 1 Pa·s = 1000 cPs.

E. **Report.** Include the following items in the report:
 1. Date and time sampled.
 2. Location of asphalt-rubber binding blending plant.
 3. Test temperature and viscosity.
4. Rotor designation.
5. Viscometer model and serial number

Implementation Code R (ROUTINE)

Changes must be implemented in all applicable Department projects scheduled for Final Design Submission at least one month after the date of the BDC announcement. This will allow designers to make necessary plan, specifications, and estimate/proposal changes without requiring the need for an addenda or postponement of advertisement or receipt of bids.

Recommended By:

ORIGINAL SIGNED

Walter McGrosky
Director,
Capital Program Support

Approved By:

ORIGINAL SIGNED

Richard T. Hammer
Assistant Commissioner,
Capital Program Management