

Hot Mix Asphalt 101

Definition of HMA

In simple terms...:

A mixture of asphalt binder and graded mineral aggregate, mixed at an elevated temperature and compacted to form a relatively dense pavement layer

($\approx 5\%$ binder and $\approx 95\%$ aggregate)

HMA Uses

- Highways
- Airfields
- Port Facilities
- Parking Lots

- Recreational (Bikeways, Tennis Courts, Tracks)
- Hydraulic Structures
- Recycled Material

<u>Components</u>

- Asphalt Binder
- Mineral Aggregate
- Air
- Optional Modifiers/Additives:
 - Binder Modifiers/Additives (e.g., polymers, elastomers, fibers, rubber)
 - Aggregate Modifiers/Additives (e.g., lime, granulated rubber, anti-strip agents)

Components (cont.)

Air void

Components (cont.)

Air 2-20%
Asphalt binder 3-8%
Absorbed asphalt binder <1%
Mineral aggregate 85-95%

NOTE: relative size of rectangles indicate approximate proportions of components in the mix.

Types of HMA Mixtures

- Dense-Graded (DGA)
 - Size evenly distributed from smallest to largest size (wellgraded)
- Open-Graded (or Uniformly-Graded) Friction Course (OGFC)
 - Primarily coarse aggregate with few fines
- Stone Mastic (Matrix) Asphalt (SMA)
 - Mid-size aggregate missing or reduced

Dense Mix

Open Graded Friction Course

Stone Matrix Asphalt

Hot Mix Asphalt

Mixture Design Objectives

Specific Mix Design Objectives

- Stability (permanent deformation resistance)
- Durability
 - Moisture damage and aging
- Fatigue cracking resistance
- Safety (adequate skid resistance)
- Resistance to thermal cracking
- Permeability
- Flexibility

Mix Design Considerations

	Component and Construction Effects on Mixture Properties						
Mixture Property	Asphalt		Aggregate		Asphalt		Degree of
	Stiffness		Gradation		Content		Compaction
	Hard	Soft	Dense	Open	High	Low	High
Stability	X		X			X	High
Durability	-	-	X		X		High
Fatigue	V		V		v		High
Resistance	^		^		^		підп
Skid Resistance	X			-		X	-
Fracture Strength	X		X		X		High
Imperviousness	-	-	X		X		High

Basic Mix Design Philosophy

Asphalt binder content

- As much asphalt as possible for
 - Durability
 - Fatigue resistance
 - Flexibility
- Not so much asphalt to affect
 - Stability
 - Friction

Asphalt Content Impact on HMA Performance – Balancing Act

Consideration of Structural Composition on Mix Design

	1 Stability				
Top 1/3	2 Skid Resistance				
	3 Durability				
	4 Tensile Strength -Thermal Cracking				
Middle 1/3	1 Stability				
	2 Durability				
Bottom 1/3	1 Estique Posistance				
	1 Faligue Resistance				

Superpave Mixture Design

Superior Performing Asphalt Pavements

4 Steps of Superpave Mix Design

1. Materials Selection

3. Design Binder Content

2. Design Aggregate Structure

4. Moisture Sensitivity

Aggregate Properties

Consensus Properties - required

- -coarse aggregate angularity (CAA)
- -fine aggregate angularity (FAA)
- -flat, elongated particles
- -clay content
- Source Properties agency option
 - -toughness
 - -soundness
 - -deleterious materials

Asphalt Binders

Polymer Modified Binders

"Ideal" Asphalt Binder

- Low stiffness at construction temperature
- High stiffness at high in-service temperature
- Low stiffness at low in-service temperature
- Excellent long-term durability

Sources of Asphalt Binder

- Asphalt occurs naturally or is obtained through distillation of petroleum crude oil.
- Examples of natural asphalt include the binder in rock asphalt and Trinidad Lake asphalt.
- More commonly, asphalt is obtained through distillation of crude oil.

Refinery Atmospheric Distillation

Bottom of the Barrel

Polymer-Modified Binders

- The term "polymer" refers to a large molecule formed by chemically reacting many ("poly") smaller molecules (monomers) to one another in long chains or clusters.
- Physical properties of a specific polymer are determined by the sequence and chemical structure of the monomers from which it is made.

Why Polymer-Modified Asphalt?

Site Feature	Condition Description	Estimated Increase in Service Life, Years ^a	
Foundation soils	Nonexpansive soils; coarse-grained soils Expansive soils; moderately to highly plastic soils (PI>35) Frost susceptible soils in cold climates; moderately to highly frost susceptible (Class 3 and 4) ^b	5–10 2–5 2–5	
Water table depth	Deep Shallow; adequate drainage Shallow; inadequate drainage	5–10 5–8 0–2	
Traffic	Low Stop and go-intersections Thoroughfares Heavy loads-special containers Moderate volumes High volumes	5-10 3-6 5-10 5-10 5-10	
Climate	Hot Mild Cold	5-10 2-5 3-6	
Existing pavement condition	HMA Good condition Poor condition; extensive cracking ^c PCC–jointed plain concrete pavement Good condition ^c Poor condition; faulting and midpanel cracking ^c	5-10 1-3 3-6 0-2	

polymer strands developing

more uniform dispersion almost cross-linked

Venezuelan binder modified with 7% EVA, cracked surface, 0.5 x 0.7 mm. Wegan and Brulé, AAPT, 1999.

SMA produced from the modified Venezuelan binder, 0.5 x 0.7 mm. Wegan and Brulé, AAPT, 1999.

Aggregate

Gap-graded HMA produced from the modified Venezuelan binder, 0.5 x 0.7 mm. Wegan and Brulé, AAPT, 1999.

Middle East binder modified with 7% EVA, cracked surface, 0.5 x 0.7 mm. Wegan and Brulé, AAPT, 1999.

SMA produced from the modified Middle East binder, 0.5 x 0.7 mm. Wegan and Brulé, AAPT, 1999.

Rubbers and Plastics

Rubbers Thermoplastic (Elastomers)

Plastics (Plastomers) Thermosetting

Definitions

- Thermoplastic materials soften and become plastic-like when heated but return to their hardened state upon cooling.
- Thermosetting materials flow under stress when heated but, once cooled, cannot be re-softened by heat.

Effect of Loading Rate on Binder Selection

• Example

- -for 55 mph highway <u>NJ Standard Grade</u> PG 64-22
- -for 30 mph highway PG 70-22
- –for intersections PG 76-22

- <u>Slow</u> Bump one grade
- <u>Stopped</u> Bump two grades

Grading System for Asphalt Binders

 Grading System Based on Climate
 PG 64-22

PerformanceAverage 7-dayMin pavementGrademax pavementdesign tempdesign tempdesign temp

Compaction level is a function of traffic and depth of layer

(≥ 4 times Designation Name)

Superpave Mix Selection

9.5

25.0

12.5

37.5

Dense Graded Mixes

"Ideal" HMA Mixture

- Resistant to permanent deformation
- Resistant to fatigue cracking
- "Impermeable"
- Workable
- Flexible
- Good surface texture

Dense-Graded Mixtures

Dense-Graded Mixtures

- Design procedure follows AASHTO R35
- Used extensively in the U.S.
- Binder content: typically 4.5 to 6%
- Field compacted air void content: typically 6 to 8%

Dense-Graded Mixtures: Advantages

- Good interlock of aggregate particles <u>if</u>
 <u>compacted well</u>
- Relatively low permeability if compacted well
- Strength and stiffness derived from binder and aggregate structure
- In NJ, generally a "stiff" mix
- Cheaper than other asphalt mixture types
 - Less asphalt binder, RAP

8%

Dense-Graded Mixtures: Disadvantages

• Selection of optimum binder content:

- Need enough binder for good durability and cracking resistance... BUT
- Not too much binder for good permanent deformation resistance
- Optimum asphalt binder content generally results in relatively thin binder film thickness
- Air void content and permeability are not optimum for moisture damage resistance

 Design for 4% AV, generally placed between 6 to

Open Graded Friction Course

OGFC

Open-Graded Mixtures

Open-Graded Mixtures: Advantages

- High permeability
- High asphalt binder contents resulting in thick binder films
- Lower noise generated by tires as compared with dense-graded mixtures
- Porous nature allows for surface water to drain off surface
 - Reduces splash and spray
- Best applied in areas of faster, continuous traffic with minimal sharp turns

Open-Graded Mixtures: Disadvantages

- Aggregate interlock is shape dependent (generally poor)
- Lower strength and stiffness
- Higher costs associated with polymer-modified binders, higher asphalt content and fibers
- Typically requires additional de-icing applications to maintain "ice free" in cold regions
- Recommended not to be used in areas of high, shear turning and slow moving traffic
 - High, shear turning may cause shoving-type failures
 - Slow moving traffic may clog porous structure

Wet Weather Accidents - TxDOT

Refore OCEC

Aftor

Year	2001	2002	2003	2004	% Change
Total # Accidents	29	51	44	17	-58.9
Dry Weather Accidents	10	23	13	15	-2.2
Wet Weather Accidents	19	28	21	2	-91.2
Fatalities	0	1	5	0	-100
Total Injuries	25	16	21	0	-100
Annual Rainfall (in)	42.9	36.0	21.4	52.0	55.5
Total Rain Days	57	56	37	70	40.0

Reduction in Splash and Spray

Reduced Pavement-Related Noise

Surface Type	dB(A)
OGFC	97.2
Novachip®	98.8
9.5 mm SMA	98.0
12.5 mm SMA	100.5
Micro-Surfacing	98.8
12.5 mm SP	97.8

Stone Matrix (Mastic) Asphalt

SMA

Stone Mastic (Matrix) Asphalt (SMA) or Gap-Graded Mixtures

SMA Mixtures

- Used as a wearing course (e.g., SMA)
- Mix design methods:
 - AASHTO R46-08, Designing Stone Matrix Asphalt (SMA)
 - Some states have variations of AASHTO R46
- Binder content: typically 5 to 7%
 - Polymer-modified binder and fibers used to minimize draindown
- Compacted air void content: typically 6 to 8%

SMA Materials

- Usually use locally available aggregates:
 - Cubical and tough
 - Modified (lime, antistrip liquids)
- Usually use locally available binders: – Modified

SMA Advantages

- Good aggregate interlock
- Low permeability
- Strength and stiffness derived from binder and aggregate structure
- Relatively high binder contents provide good durability
- Best used in areas of heavy traffic where rutting and fatigue cracking are concerns

SMA Disadvantages

- Asphalt suppliers not accustomed to producing – some "growing pains"
- Additional time and effort in material production
 - Aggregates!
- Typically use a modified binder (higher cost)
 Costs typically prohibit use in "normal" traffic areas

Designing with Asphalt Rubber

Asphalt Rubber Applications

- Asphalt rubber is the process of adding recycled, crumb rubber to hot mix asphalt (called dry process) or the asphalt binder (called wet process) to modify the final mixture
- Difficult to use in dense-graded mixtures due to residual crumb rubber
- Best used in gap-graded type mixtures (SMA and OGFC)

Why Put Tire Rubber in Asphalt?

Tire rubber is an engineering tool to:

- Reduce cracking
- Naturally increase asphalt content and asphalt film thickness (providing an increase in durability)
- High asphalt binder viscosity prevents bleeding, flushing and drain-down
- Asphalt enhancement due to rubber increases both the high and low temperature performance
- Limited research has shown the addition of rubber also reduces pavement-related noise

AR-OGFC Uses Approximately 1000 Tires Per Lane-Mile

What Defines Asphalt Rubber?

ASTM D6114

 Asphalt rubber is a blend of asphalt cement, reclaimed tire rubber and certain additives, in which the rubber component is at least 15% by weight of the total blend and has reacted in the hot asphalt cement sufficiently to cause swelling of the rubber particles

Swelling of Crumb Rubber

Electron-microscope: Immediately after mixing (dry process)

Swelling of Crumb Rubber (cont.)

Electron-microscope: 2 hours after mixing (dry process)

Asphalt Rubber

Methods of adding rubber to asphalt

- <u>Wet Process</u> rubber is added to the liquid asphalt binder before being mixed at the hot mix asphalt plant (i.e., rubber is wet before mixing)
- Dry Process rubber is added at the same time the asphalt and aggregate are mixed (i.e., rubber is dry before mixing)

Designing with Asphalt Rubber

- If wet process, previous SMA and OGFC design procedures can be used
 - Some state agencies utilize the "Arizona" method
- Only exception is evaluating compatibility and modification of crumb rubber with proposed base asphalt binder

Asphalt Rubber Binder

- Brookfield viscosity
- Resilience (ASTM D5329)
- Softening point
- Penetration
- Ductility

Fatigue Cracking Resistance of Asphalt Rubber Mixtures vs. Conventional Mixtures

AR-OGFC vs. Unmodified OGFC

Tire/Pavement Noise Results

