Traffic and the 2002 Pavement Design Guide

Katherine Petros FHWA, Office of Infrastructure R&D NJDOT Pavement Technology Workshop February 25, 2003

2002 Pavement Design Guide

NCHRP 1-37A
Final deliverables due April 2003
Evaluation by DOTs
Adoption as the AASHTO Design Guide

2002 Design Guide Traffic Inputs

No more ESALs!

- Traffic input by
 - Vehicle type (number of axles)
 - Axle weight

Quantity and quality of raw traffic data similar to that used to compute ESALs

 Consistent w/ FHWA Traffic Monitoring Guide

Traffic Hierarchical Input Levels:

Input Level	Input Values	Knowledge of Parameters
1	Segment Specific AVC & WIM Measurements	Good
2a	Segment Specific AVC & Regional WIM Measurements	Fair
2b	Regional AVC & WIM Measurements	Fair
3	Site Specific Vehicle Count Data w/Defaults – Educated Guess	Poor

Traffic Module – Input Categories

Volume Adjustment Factors.
 Axle Load Distribution Factors.
 General Traffic Information.

What traffic inputs are needed for design?

🗰 Design Guide 2002 - Untitled

File Edit View Tools Help

AADTT: Average Annual Daily Truck Traffic

Definition:

The average daily number of trucks (vehicle classes 4-13) expected over the base year.

Calculated:

- From AVC/WIM data or trip generation studies.
- By averaging the number of trucks measured over multiple 24-hour periods of time in each season/month & weighted between weekends & weekdays.

Input Level

2

3

AADT: Average Annual Daily Traffic Definition:

The average daily number of vehicles (vehicle classes 1-13) expected over the base year.

Calculated:

- From vehicle count data or trip generation studies.
- > By averaging the number of vehicles measured over multiple periods of time in each season/month & weighted between weekends & weekdays.

Input Level

2

3

Percent Trucks

Definition:

The percent of trucks (vehicle classes 4-13) in the traffic stream that are expected over the base year.

Calculated:

- From vehicle count data or trip generation studies.
- By dividing the number of trucks by the total number of vehicles on a day & averaged for each season/month & weighted between weekends & weekdays.

🎹 Design Guide 2002 - Untitled

File Edit View Tools Help

Truck Traffic Volume Adjustment Factors

Truck Class Distribution Factors.
Monthly Adjustment Factors.
Hourly Distribution Factors.
Traffic Growth Adjustment Factors.

Truck Distribution Factors

	4.	
	4	
4.5-10-10	4.	

2

3

The normalized distribution of truck types expected over the base year.

Calculated:

Definition:

From AVC/WIM data or trip generation studies.

By dividing the number of trucks in a class by the total number of trucks on an average day in the base year.

Input Level

Truck Traffic Classification Factor Definition:

- A factor that is used to group or classify roadways with similar truck traffic compositions and loading characteristics.
 17 Groups defined from LTPP data.
- Defined by functional classification & vehicle count data or trip generation studies

2

1

3

Input Level

Truck Traffic Classification Group in the Same Functional Class Defined by:

Percentage of buses

•Percentage of single unit trucks

Percentage of single-trailer trucks

•Percentage of multi-trailer trucks

🛄 Design Guide 2002 - Untitled

File Edit View Tools Help

······ ····· ·····											
🗅 🚅 🔒 X 🖻 💼 🎒		- 0101 0101		🤋 💦							
Project [C:\DG2002\Projects\Pro	oject1.dap	01									
General Information Analysis Status:											
Site (Project Identification								Analys	sis	% Complete	
Apalysis Parameters				_							
		Traff	<u>îc Va</u>	olume A	<u>djustment</u>	Factors		?	×II	1	
	.oad Def	ault A	ADTI	Г					<u>? ×</u>		
								TT distributi	on for the		
	Select	genera	al cate	egory:	Principal	Arterials - Interstate	and Defense 💌 selec	ted Genera	I Category;		
		×	= rec	ommend	ed value		Ve	hicle Class	Percent(%)		
S Inputs								Class 4	13		
🚊 📕 Traffic			*	TTC	Bus %	Multi-Trailer %	Single-trailer and Single-unit(SU) Trucks	01033 4	1.0		
🚊 🛛 📘 Traffic Volume Adjustn	1		*	5	(<2%)	(>10%)	Predominately Single-trailer trucks.	Class 5	8.5		
Monthly Adjustme	2		*	8	(<2%)	(>10%)	"High percentage of single-trailer truck with so			on:	
🔤 🗌 Vehicle Class Distr	3		*	11	(<2%)	(>10%)	Mixed truck traffic with a higher percentage of	Class 6	2.8	L	
	4		*	13	(<2%)	(>10%)	Mixed truck traffic with about equal percentage		·		
Traffic Growth Fac	5	믿		16	(<2%)	(>10%)	Predominantly single-unit trucks.	Class 7	0.3	ars	
Axle Load Distribution	6	냳	*	3	(<2%)	(2 - 10%)	Predominantly single-trailer trucks		-		
	<u> /</u>	냳		/	(<2%)	(2 - 10%)	Mixed truck traffic with a higher percentage of	Class 8	7.6		
	8	냳		10	(<2%)	(2 - 10%)	Mixed truck traffic with about equal percentage		24		
	9	븓늰	•	15	(<2%)	(2 - 10%)	Predominantiy single-unit trucks.	Class 9	/4		
	10	₩.	•	1	(>2%)	(<2%)	Predominantiy single-trailer trucks		1.2		
Wheelbase	11	냳	*	2	(>2%)	(<2%)	"Predominantly single-trailer trucks with a low p	Class 10	1.2		
Climate	12	분물		4	(22%)	(<2%)	Predominantiy single-trailer trucks with a low to Mixed truck troffic with a bigher perceptoge of	Cl., 11	34		
🖻 📕 Structure	14	분구	<u> </u>	0	(~270)	(~2%)	Mixed truck traffic with about equal percentage of		J ^{3.4}	ustomary	
Drainage and Surface	15	분구		12	(~2%)	(~2%)	Mixed truck traffic with a bigher percentage	Class 12	0.6	ministic	
Layers	16	분구		14	(~2%)	(~2%)	Predominantly single unit trucks	01000 12	10.0	3	
	17	┢╴┤	<u> </u>	17	(≈2.5%) (≥25%)	(<2%)	Mixed truck traffic with about equal single-unit	Class 13	0.3		
		11			(20 / 2)				,		
				l			Þ				
							_,,				. 1
						🗸 ок	刘 💢 Cancel			un Analys	is

Monthly Distribution Factors

- Definition:
 - A ratio to adjust the average annual daily truck traffic into monthly truck traffic.

Assumption:

The monthly distribution factors are constant over time.

Default values for each month = 1.0.

Input Level

$$\begin{array}{c|c} 1 & 2 & 3 \\ \hline \checkmark & \checkmark & \checkmark \end{array}$$

Hourly Distribution Factors

- Definition:
 - The percentage of the average annual daily truck traffic (AADTT) within each hour of the day.
 - Assumption:
 - The hourly distribution factors are constant over time and between truck classes.

Input Level

2

3

Time of Day or Hourly Distribution Default Values:

Time of Day Interval	% Daily Truck Traffic	Hourly Distribution Factor
Midnight to 6 AM	13.8	0.023
6 AM to 10 AM	20.0	0.050
10 AM to 4 PM	35.4	0.059
4 PM to 8 PM	18.4	0.046
8 PM to Midnight	12.4	0.031

Truck Traffic Growth Over the Design Period

- Alternate Functions for Increases in Truck Volume:
 - No Growth
 - Linear
 - Compound
- Growth Considered for each Truck Class Separately.
- Opening Date = The date that the roadway is opened to traffic, excluding construction traffic.

Directional Distribution Factors

Definition:

The percentage of the average annual daily truck traffic in one direction along the roadway.

Calculated:

- From AVC or traffic count data measured over time.
- By dividing the average annual daily truck traffic in one direction by the AADTT for a particular year.

Input Level
$$\begin{array}{c|c} 1 & 2 & 3 \\ \hline \sqrt{} & \sqrt{} & \sqrt{} \end{array}$$

Directional Distribution Factors

Assumption:

Directional distribution factors are constant with time and for all truck classes.

Defined for the predominant type of truck.

Defaults for specific truck classes:

	Directional Factor	
4	Buses	0.50
5-7	Single Unit Trucks	0.62
8-10	Single-Trailer Trucks	0.55
11-13	Multi-Trailer Trucks	0.50

Lane Distribution Factors Definition: The percentage of the average annual daily truck traffic in one lane along the roadway. Calculated: From AVC or traffic count data measured over time. > By dividing the average annual daily truck traffic in one lane by the AADTT in one direction for a particular year. 2 3 Input Level

Lane Distribution Factors

Assumption:

Lane distribution factors are constant with time and for all truck classes.

Defined for the predominant type of truck.Defaults for multi-lane roadways:

Total Number of Lanes, Both Directions	Lane Distribution Factor
2	1.0
4	0.9
6	0.6
6+	0.5

Axle Load Distribution Factors

Truck Class and Load Group Dependent

Axle Load Distribution

Definition:

The number of axles in each load interval by axle type for a specific truck class.

Calculated:

From WIM data.

By averaging the daily number of axles measured within each load interval of an axle type for a truck class divided by the total number of axles for all load intervals.

Input Level

2

3

Axle Load Distribution

4.		

Defaults:

Normalized distributions for Level 3 defined from LTPP data.

Factors dependent on the Truck Traffic Classification Group.

Rural Pavement Design Classes, Single Axles

General Truck Traffic Information

Number of axles per truck class.
Axle configuration.
Lateral truck traffic wander.

Number of Axles per Axle Type Per Truck Class

Definition:

The average number of axles for each axle type within each truck class.

Calculated:

From WIM data measured over time.

By dividing the total number of a specific axle type measured for a truck class by the total number of trucks in that class.

Input Level

Number of Axles per Axle Type Per Truck Class

• Assumption: The number of axles for each axle type are constant with time. **Default Values** for Level 3 **Defined** from LTPP Data.

Truck Class	Single Axles	Tandem Axles	Tridem Axles
4	1.62	0.39	0.00
5	2.00	0.00	0.00
6	1.02	0.99	0.00
7	1.00	0.26	0.83
8	2.38	0.67	0.00
9	1.13	1.93	0.00
10	1.19	1.09	0.89
11	4.29	0.26	0.06
12	3.52	1.14	0.06
13	2.15	2.13	0.35

Tire Pressure

Definition:
The hot inflation pressure of the tire.
10 % above cold inflation pressure
It is assumed that the hot inflation pressure equals the contact pressure.
Default Values

Single = 120 psi
Dual = 110 psi

Input Level

1	2	3
\checkmark	\checkmark	\checkmark

Traffic Wander

Used to calculate pavement responses & the number of axle load applications over a point for predicting distress & performance.

Mean wheel location = 18 in.
Standard deviation = 10 in.
Design lane width.

Traffic Module Inputs -Summary

Input Parameters		Input Level				
Input Parameters	1	2a	2b	3		
AADTT for Base Year	~	1	1			
Truck Distribution Factors for Base Year	\checkmark	~	~			
Axle Load Distribution by Truck & Axle Type	\checkmark	1	~			
Monthly Distribution Factors	~	1	1	\checkmark		
Hourly Distribution Factors	1	1	1	1		

Traffic Module Inputs -Summary

Input Parameters		Input	Level	
Input Parameters	1	2a	2b	3
AADT for Base Year				\checkmark
Percent Trucks for Base Year				1
Truck Traffic Classification Factor				\checkmark
Directional Distribution Factor	1	1	\checkmark	\checkmark
Lane Distribution Factor	\checkmark	\checkmark	\checkmark	\checkmark
Truck Traffic Growth Function/Factor	~	~	\checkmark	1

Traffic Module Inputs -Summary

Input Parameters		Input Level					
		2a	2b	3			
No. of Axle Types per Truck Class	1	1	1				
Axle Spacing	1	1	√				
Axle Load Groups	1	1	1	~			
Tire Spacing/Axle Configuration	~	1	1	1			
Tire Pressure	1	\checkmark	1	\checkmark			

🎹 Design Guide 2002 - Untitled File Edit View Tools Help 🗅 🚅 🖬 | X 🖻 💼 🥌 🗛 🐎 🕮 🏛 💡 📢 Project [C:\DG2002\Projects\Project1.dgp] Analysis Status: General Information Site/Project Identification Analysis % Complete Analysis Parameters 💈 Inputs Results Traffic ÷ input Summary Traffic Volume Adjustment Factors 🗐 Project Monthly Adjustment 📋 Traffic General Project Information: Vehicle Class Distribution Ē Climatic Value Parameter Hourly Truck Distribution Ē Design Туре Traffic Growth Factor 📋 Layer 20 Years Design Life Axle Load Distribution Factors Location Output Summary 📩 🔄 General Traffic Inputs Number Axles/Truck Axle Configuration Wheelbase Properties Climate Value Setting 📩 📕 Structure Units US Customary Drainage and Surface Properties Analysis Type Deterministic Default Input Level 3 Layers Run Analysis

Traffic Module Output Files

Year	Month	Hour	Axle	Load Group				
			Туре					
				0-2	2-4	4-6		х-у
k	j	I	Single					
			Tandem					
			Tridem					
			Quad					

Comparison of Level 1 and Level 3 LTPP Data

Quality of LTPP Traffic Data Calibration SPS 5 & 6

Passing LTPP Quality Control Checks SPS Traffic Data in a Typical Year

None Some Meet Requirements

2002 Pavement Design Guide Traffic Module Summary

- Extensive computations within traffic module for incremental damage accumulation.
 Module is flexible allowing user to use other default values.
- Default values based on LTPP data collected over time.
- Level 1 data is more reliable than Level 3.

Website: www.2002designguide.com

