Improving HMA Performance with Superpave®

Federal Highway Administration
Highway Pavements R&T

- Critical issues
 - Pavements are the backbone of transportation.
 - Growing expectations of the highway user for smoother ride and reduced delay and disruption.
Long Life Pavements for the 21st Century

Critical issues

- “Just in time” delivery has increased from 10% in 1990 to over 60% in 2000.

- Of every dollar invested in highways more than 50 cents goes to pavements.

- 4 million miles of roadways in US
Why Superpave?

- Pavement performance for the US highways was not improving.
- Demands on the system were increasing.
- New materials coming on the market were difficult to evaluate.
Changes

- Increased traffic and loadings
- Supply sources
- Use of baghouses
- Use of recycled materials (RAP)
- Drum plants vs. batch plants
- Personnel experience
- Staff reductions
Evolution of Traffic

- **Interstate highways - 1956**
- **AASHTO Road Test - 1958-62**
 - still widely used for pavement design
 - legal truck load - 73,280 lbs
- **Factors for higher stresses**
 - 75% increase in truck miles (1973 - 1993)
 - Legal truck load limit increase in 1982 (73,280 to 80,000 pounds)
 - Advent of radial tires
Business as usual will not work!

Pavement Performance
Distress Modes in Asphalt

- Primary three are:
 - Rutting
 - Fatigue cracking
 - Low-temperature cracking
Rutting
Fatigue Cracking
Low Temperature Cracking
Binder Specifications

The pavement see many temperatures and loads.

Heavy Trucks
Binder Grade is a function of environment and traffic level.
HMA Behavior

- **Asphalt Binder Behavior**
 - Temperature
 - Time of Loading
 - Age also important

- **Aggregate Behavior**
 - Surface Characteristics
 - Particle Shape
 - Gradation

- **Asphalt Mixture Behavior**
 - Asphalt Behavior
 - Aggregate Behavior
 - Characteristics of combination
Time vs. Temperature

60°C: 1 hour

25°C: 1 hour

25°C: 10 hours
Binder Behavior - Aging

- Asphalt Reacts with Oxygen
 - “oxidative” or “age” hardening

- During Construction - Short Term
 - hot mixing
 - placing/compaction

- In Service - Long Term
 - hot climate worse than cool climate
 - summer worse than winter

- Volatilization - Short Term
 - volatile components evaporate during construction
Pre-Superpave Asphalt Property Measurements

Penetration (1900s)

- 0 sec
- 5 sec

Viscosity (1950s)

- Vacuum

100 g

CANNON

100 A9

FHWA
Pre-Superpave Shortcomings

- Viscosity
 - viscous effects only

- Penetration
 - empirical measure of viscous and elastic effects

- No Low Temperature Properties Measured

- Problems with Modified Asphalt Characterization

- Specification Proliferation

- Long Term Aging not Considered
Temperature, C

Consistency (pen or vis)

hard

soft

pen

vis

-15 25 60 135

A

B

C

FHWA
Superpave Binder Measurements

- Temperature Relationships
- Pavement Age Relationships
Asphalt Mixture Behavior

- Permanent Deformation
- Fatigue Cracking
- Low Temperature Cracking
Rutting in Asphalt Layer

- Original profile
- Weak asphalt layer
- Shear plane
Repeated Shear Deformation

Deformation vs. Number of Loads

- Elastic
- Plastic (permanent)
Mixture Resistance to Rutting

- **Asphalt Binder**
 - stiff and elastic at high temperatures

- **Aggregate**
 - high inter-particle friction
 - gradation acts like *one large elastic stone*
Fatigue Cracking

- Distress in Wheel path
- Progressive Damage
 - longitudinal cracking
 - alligator cracking
 - potholes
- Affected by
 - asphalt binder
 - aggregates
 - pavement structure
HMA must be strong & resilient
HMA Fatigue Behavior

- Longer Fatigue Life
 - flexible materials
 - low stress/strain level

- Shorter Fatigue Life
 - stiff materials
 - high stress/strain level

- Exception
 - thick pavements
 - non-deflecting support layers

Heavy Trucks

FHWA
Low Temperature Cracking

- Environmental Distress
- Stresses/Strains Induced by Temperature Change
- Transverse Cracks
- One Cycle vs Many Cycles
- Affected Primarily by Asphalt Binder
Cures for Low Temperature Cracking

- Use Less Stiff Asphalt Binder
 - lower stiffness at low temps
 - relaxation of stresses
- Use Asphalt Binder Less Prone to Aging
- Construct HMA with Proper Air Voids
The Superpave System

- What is Superpave
 - A performance-related binder specification
 - A performance-related mix specification
 - Mixture analysis tools
Superpave Performance Testing

What Are We Doing?

Still under development
Final Payoff

Better asphalt pavements
Extended service life