Lane Occupancy Charges

FINAL REPORT

April 10, 2001

Submitted by

Dr. Dimitrios G. Goulias
Principal Investigator
Civil Engineering Department
University of Maryland

Dr. Shmuel Yahalom
Co-principal Investigator
Maritime College
State University of New York

Dr. I-Jy Steven Chien
Co-principal Investigator
New Jersey Institute of Technology

NJDOT Research Project Manager

Richard Weed

In Cooperation with

New Jersey
Department of Transportation
Division of Research and Technology
and
U.S. Department of Transportation
Federal Highway Administration
DISCLAIMER STATEMENT

The contents of this report reflects the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the New Jersey Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.
Occupancy of travel lanes during construction and road maintenance are ordinary activities frequently undertaken to maintain the well-being of road infrastructure. When these activities take place impact traffic flow and generate delays on the users. Thus, it imposes costs on the users on heavily traveled routes due to traffic slowdowns or even shutdowns. At rush-hour these direct and indirect costs come to a peak. Construction and road maintenance closures can take place at times that the negative impacts would be minimized. This study focused on the appropriate guidelines for lane occupancy charges that would eventually minimize the disutility of traffic lane closure. The project research team examined heavily traveled locations in the NJ region, with the cooperation of NJ DOT engineers, to examine traffic and construction patterns to be used in the analysis and definition of the general occupancy charge guidelines. Information regarding traffic flow with respect to time of day, season, AADT, highway characteristics, etc. were reviewed in this examination. The project considered both economic and simulation analysis for examining the impact on user cost and construction operations due to different patterns of lane closure.

**16. Abstract**

Occupancy of travel lanes during construction and road maintenance are ordinary activities frequently undertaken to maintain the well-being of road infrastructure. When these activities take place impact traffic flow and generate delays on the users. Thus, it imposes costs on the users on heavily traveled routes due to traffic slowdowns or even shutdowns. At rush-hour these direct and indirect costs come to a peak. Construction and road maintenance closures can take place at times that the negative impacts would be minimized. This study focused on the appropriate guidelines for lane occupancy charges that would eventually minimize the disutility of traffic lane closure. The project research team examined heavily traveled locations in the NJ region, with the cooperation of NJ DOT engineers, to examine traffic and construction patterns to be used in the analysis and definition of the general occupancy charge guidelines. Information regarding traffic flow with respect to time of day, season, AADT, highway characteristics, etc. were reviewed in this examination. The project considered both economic and simulation analysis for examining the impact on user cost and construction operations due to different patterns of lane closure.

**17. Key Words**

Lane Rental, Traffic Simulation, Work Zone Capacity, User Cost.

**18. Distribution Statement**
Acknowledgments

The authors would like to acknowledge the help and assistance of highway engineers from the New Jersey Department of Transportation and the remaining states.
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 1. SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>Summary</td>
<td>1</td>
</tr>
<tr>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>Project Objectives</td>
<td>4</td>
</tr>
<tr>
<td>Organization of the Report</td>
<td>4</td>
</tr>
<tr>
<td>CHAPTER 2. SURVEY RESULTS</td>
<td>5</td>
</tr>
<tr>
<td>CHAPTER 3. TRAFFIC IMPLICATIONS &amp; ANALYSIS</td>
<td>7</td>
</tr>
<tr>
<td>Introduction</td>
<td>7</td>
</tr>
<tr>
<td>Literature Review</td>
<td>8</td>
</tr>
<tr>
<td>Models for Analyzing Freeway Work Zone Delay</td>
<td>8</td>
</tr>
<tr>
<td>Traffic Operations and Capacities at Freeway Lane Closures</td>
<td>11</td>
</tr>
<tr>
<td>Characteristics of Simulation Models</td>
<td>13</td>
</tr>
<tr>
<td>Freeway Work Zone Capacity</td>
<td>14</td>
</tr>
<tr>
<td>Estimation of Work Zone Capacity under Ideal Conditions</td>
<td>15</td>
</tr>
<tr>
<td>Adjustment of Freeway Capacity under Prevailing Conditions</td>
<td>17</td>
</tr>
<tr>
<td>Traffic Delays at Freeway Work Zones</td>
<td>21</td>
</tr>
<tr>
<td>Estimation of Moving Delays</td>
<td>23</td>
</tr>
<tr>
<td>Estimation of Queuing Delays</td>
<td>24</td>
</tr>
<tr>
<td>Model Development</td>
<td>30</td>
</tr>
<tr>
<td>Calculation of Delays by Vehicle Types</td>
<td>34</td>
</tr>
<tr>
<td>Comparison of Estimated Queuing Delays</td>
<td>34</td>
</tr>
<tr>
<td>Procedure for Estimating Work Zone Delay</td>
<td>35</td>
</tr>
<tr>
<td>Sample Calculations</td>
<td>37</td>
</tr>
</tbody>
</table>
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 4. FORMULATING COSTS &amp; MODELS</td>
<td>49</td>
</tr>
<tr>
<td>Economic Implications &amp; Model</td>
<td>49</td>
</tr>
<tr>
<td>Background</td>
<td>49</td>
</tr>
<tr>
<td>Economic Analysis</td>
<td>50</td>
</tr>
<tr>
<td>Methodology</td>
<td>55</td>
</tr>
<tr>
<td>Illustration</td>
<td>56</td>
</tr>
<tr>
<td>CHAPTER 5. SUMMARY &amp; CONCLUSIONS</td>
<td>59</td>
</tr>
<tr>
<td>Summary &amp; Conclusions</td>
<td>59</td>
</tr>
<tr>
<td>Appendix</td>
<td>61</td>
</tr>
<tr>
<td>References</td>
<td>103</td>
</tr>
<tr>
<td>Bibliography</td>
<td>106</td>
</tr>
</tbody>
</table>
## LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Queuing delay estimated by the deterministic queuing model.</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>Typical work zone configurations used for estimating delays by CORSIM</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>Average delay vs. V/C ratio (two lane freeway with one blocked lane without trucks)</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>Average delay vs. V/C ratio (three lane freeway with one blocked lane without trucks)</td>
<td>28</td>
</tr>
<tr>
<td>5</td>
<td>Average delay vs. V/C ratio (four lane freeway with one blocked lane without trucks)</td>
<td>29</td>
</tr>
<tr>
<td>6</td>
<td>Queuing delay of Vehicles in [q(i) + Q(i)]</td>
<td>32</td>
</tr>
<tr>
<td>7</td>
<td>Delay vs. truck percentage</td>
<td>45</td>
</tr>
<tr>
<td>8</td>
<td>Queue delay vs vehicle arrival (0% truck).</td>
<td>46</td>
</tr>
<tr>
<td>9</td>
<td>Queue delay vs vehicle arrival (5% truck).</td>
<td>46</td>
</tr>
<tr>
<td>10</td>
<td>Queue delay vs vehicle arrival (10% truck).</td>
<td>47</td>
</tr>
<tr>
<td>11</td>
<td>Queue delay vs vehicle arrival (15% truck).</td>
<td>47</td>
</tr>
<tr>
<td>12</td>
<td>Queue delay vs vehicle arrival (20% truck).</td>
<td>48</td>
</tr>
<tr>
<td>13</td>
<td>Illustrative example</td>
<td>57</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1. Example of Daily Lane Rental Charges 2
Table 2. Example of Rental Charge Assessed Hourly 3
Table 3. Summary of State responses 6
Table 4. Work zone capacities for various zone configurations 16
Table 5. Passenger car equivalents on general freeway segments. 18
Table 6. Passenger car equivalents for trucks and buses on specific Upgrades 19
Table 7. Passenger car equivalents for recreational vehicles on specific upgrades. 20
Table 8. Passenger car equivalents for trucks and buses on specific downgrades 20
Table 9. Adjustment factor for restricted lane width and lateral clearance. 21
Table 10. Adjustment factor for driver population. 21
Table 11. Work zone capacity and flow rates for various cases. 26
Table 12. Queuing delay vs. V/C ratio vs. delays with various cases 26
Table 13. Input variables 35
Table 14. Estimated Delays from Different Methods 35
Table 15. Flow rates (vph) over time 38
Table 16. Moving delay estimation (Example 1) 39
Table 17. Queuing delay estimation ($C_w = 1450$, 0 % Truck) 40
Table 18. Queuing Delay Estimation ($C_w = 1403$, 5 % Truck) 41
Table 19. Queuing Delay Estimation ($C_w = 1381$, 10 % truck) 42
Table 20. Queuing Delay Estimation ($C_w = 1355$, 15 % Truck) 43
Table 21. Queuing Delay Estimation ($C_w = 1311$, 20 % Truck) 44
Table 22. Total, Queuing and Moving Delays 45
Table 23. Computation of estimated values of travel time savings 52
Table 24. Total queuing and moving delay costs
SUMMARY

Summary
Occupancy of travel lanes during construction and road maintenance are ordinary activities frequently undertaken to maintain the well-being of road infrastructure. When these activities take place impact traffic flow and generate delays on the users. Thus, it imposes costs on the users on heavily traveled routes due to traffic slowdowns or even shutdowns. At rush-hour these direct and indirect costs come to a peak. Construction and road maintenance closures are scheduled events. They can take place at times that the negative impacts would be minimized. This study focused on the appropriate guidelines for lane occupancy charges that would eventually minimize the disutility of traffic lane closure. The project research team examined heavily traveled locations in the NJ region, with the cooperation of NJ DOT engineers, to examine traffic and construction patterns to be used in the analysis and definition of the general occupancy charge guidelines. Information regarding traffic flow with respect to time of day, season, AADT, highway characteristics, etc. were reviewed in this examination. The project considered both economic and simulation analysis for examining the impact on user cost and construction operations due to different patterns of lane closure.

Background
During recent years innovative bidding and contracts (i.e., bonus/rental charge method, cost-plus-time method) have been used in Europe and more recently in the US. FHWA approved this method in 1985, on an experimental basis. To date, several states have used these contractual methods. A national survey was undertaken to examine the experience and use of lane occupancy charges in the 50 US states. The results are presented in a following section of this report. The survey included
questions on the definition and methodologies used in defining lane occupancy charges and the type of economic and traffic analysis used.

Generally, each price bid under this method consist of two parts: the first part involves the activities and cost for the work to be performed; the second part describes the number of days to complete the project and the cost associated for the lane rental amount based on the daily rental rates. With this type of contract a disincentive/incentive provision is being included for accounting for any time overruns and/or early completion respectively.

In addition to the benefits in minimizing construction impacts on road users, it can be concluded that this method provides additional advantages: low competitive bidding is still applicable; increase in contract cost is minimal and contractor typically shortens contract times for taking advantage of the bonus option; projects with this option attract contractors with efficient construction and engineering management practice able to keep projects on schedule.

The lane-by-lane rental method is assessed only when the contractor closes a portion of the roadway. The rental charge is based on the number, duration and configuration of lanes closed. For example, the fee for having one lane and one shoulder closed would be less than that for having two lanes closed. In addition, higher rental amounts can be assessed for peak periods of the day. An illustrative example that was used for defining rental charges by some states is shown in table 1.

Table 1. Example of Daily Lane Rental Charges.
Also lane rental may incorporate different charges depending on the time of day lane closure occurs since it affects different traffic level. An example of such charges are shown in table 2.

Table 2. Example of Rental Charge Assessed Hourly.

<table>
<thead>
<tr>
<th>CLOSURE/OBSTRUCTION</th>
<th>RENTAL CHARGE ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One lane</td>
<td>20,000</td>
</tr>
<tr>
<td>One shoulder</td>
<td>5,000</td>
</tr>
<tr>
<td>One lane and shoulder</td>
<td>25,500</td>
</tr>
<tr>
<td>Two lanes</td>
<td>45,000</td>
</tr>
<tr>
<td>Two lanes and shoulder</td>
<td>50,000</td>
</tr>
</tbody>
</table>

A critical factor in the use of lane rental is the determination of the appropriate rental dollar amount. It has been suggested, and from the survey responses it can be concluded, that appropriate rental charges
must be determined for each project, or potentially project type, on a case-by-case basis. The rental amount should be calculated on the basis of road-user costs estimated to be incurred as a result of anticipated delays and accidents during project construction. Rental amounts may also include construction engineering inspection costs and traffic control and maintenance costs that are anticipated to be generated during construction of the project. The calculation of road-user costs should be justified for each project and must be documented. Several references exist today on estimating road-user costs. However in the majority of the cases lane rental charges are based only on travel delays since several of the remaining parameters are variable in time, and are difficult and time consuming to measure and quantify. Further background information on traffic analysis and user cost analysis are provided in chapters 3 and 4 respectively.

To be effective and accomplish the objectives of applying the lane rental provisions, the rental amount must be defined so that the contractor is encouraged to stimulate innovative and fast-track construction methods, without compromising quality, so as to meet tight schedules. Otherwise, there will be little incentive to accelerate production, and the lane rental provisions may not produce the intended results, other than keeping the project on schedule.

**Project Objectives**
The objective of this study was to address the NJDOT need in developing appropriate guidelines for lane charges that would minimize the closure of traffic lanes. The developed guidelines considered the impact on traffic and road users, depending on the characteristics of the projects. The guidelines identify lane occupancy charges which are suitable to reduce closure of lanes to traffic. The study provides the general lane closure guidelines that can be used on a specific project and with respect to the specific project characteristics related to the
AADT during the time of day, season, and type of highway/ lane closure. These guidelines were defined based on the examination of the effects of lane closures on traffic flow. These guidelines were defined based on project types and characteristics identified by NJDOT engineers. It is expected that the criteria used to determine lane rental for maintenance and construction schedule alternatives are, first, able to reduce private and social costs; second, able to impact construction and maintenance costs; and third, acceptable to the public and decision makers.

**Organization of the Report**

Chapter 1, provides the research background, research objectives and organization of the report. Chapter 2 presents the results of the national survey sent to the 50 states. Chapter 3 provides the methodology and analysis of the traffic analysis and delay evaluation. Chapter 4 presents the economic models and analysis, and Chapter 5 presents the summary and conclusions.
SURVEY RESULTS

From the 50 States to which the lane occupancy survey was sent, it seems that only a few states are using or planning to use this approach in the near future. The responses indicate that only travel delays are used for defining occupancy charges, in many cases occupancy charges were defined on a project by project basis, and typically user cost values used were from the “red book”. In many cases the benefits of using occupancy charges were associated with the reduced construction time for project completion.

The specific responses from the various states that responded to the questionnaire, by January 1999, are included in the Appendix. Table 3 presents a summary of the analysis used in defining lane charges by specific States that provided this information.

States not using Lane Occupancy/Rental Charges

North Dakota, California, Connecticut, Idaho, Louisiana,
Massachusetts, Minnesota, Hawaii, North Dakota, Texas, Utah,
Washington State, Wyoming, Alaska

States planning to use Lane Occupancy/Rental Charges

Wyoming (considering a $400/lane/km), Utah
States using Lane Occupancy/Rental Charges

Arkansas, Colorado, Indiana, Oregon, Wisconsin.

Table 3. Summary of State responses

<table>
<thead>
<tr>
<th>States Using/ Plan to use Lane Charges</th>
<th>Lane Charge Analysis Based On</th>
<th>Economic Analysis</th>
<th>Traffic Analysis/Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oregon</td>
<td>User Cost (red book*)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Arkansas</td>
<td>User Cost (red book*)</td>
<td>Yes (traffic counts)</td>
<td></td>
</tr>
<tr>
<td>Wisconsin</td>
<td>User Cost /QUEWZ</td>
<td>Yes (traffic counts &amp; simulation)</td>
<td></td>
</tr>
<tr>
<td>Indiana</td>
<td>User Cost /QUEWZ</td>
<td>Yes (traffic counts)</td>
<td></td>
</tr>
<tr>
<td>Colorado</td>
<td>User Cost /QUEWZ</td>
<td>Yes (traffic counts &amp; simulation)</td>
<td></td>
</tr>
</tbody>
</table>

1977 AASHTO publication “A manual on user benefit analysis of highway and bus transit improvements”
TRAFFIC IMPLICATIONS & ANALYSIS

Introduction
Traffic congestion occurs when travel demand exceeds the roadway capacity. Congestion can be either recurrent or non-recurrent. Non-recurrent congestion is caused by incidents, while recurrent congestion occurs at bottlenecks caused by geometric conditions such as the reduction in the number of lanes and lane width for roadway maintenance and/or reconstruction.

The application for delay measures include the traditional capacity improvement, alternatives analysis, operations evaluation, and a wide range of planning evaluations, such as the determination of lane closure configuration over time and space for a roadway maintenance or reconstruction project. In order to perform routine maintenance or reconstruction activities on freeways, lanes and shoulders are frequently closed. Due to physical loss of roadway space and rubbernecking factor, capacity at work zone decreases, thus traffic delays increase. Vehicular delay is often calculated by comparing actual travel speeds to desired travel speeds (e.g., free-flow speed). Many agencies didn't explicitly report the methodology used to calculate delay, but it is assumed that, in most instances, delay is calculated as the difference in average travel speeds and “acceptable or desired” speeds. The magnitude of delay associated with a work zone mainly depends on the distribution of traffic flow over the maintenance period and the corresponding work zone capacity. The estimation of traffic delays caused by freeway work zones is essential for scheduling of maintenance and construction activities as well as for estimating the life-cycle cost of pavement rehabilitation, restoration, resurfacing and reconstruction works (i.e., 4-R) alternatives.

In this study, the delays caused by vehicle deceleration, acceleration and in a queue are classified into moving delay and queuing delay. Deterministic queuing model is widely accepted by practitioners \(^{1,2,3,4,5}\) for estimating queuing delay. However it was usually underestimated because the approaching and shock-wave delays were neglected. \(^{5,7}\) CORSIM, a microscopic traffic simulation model, can
mimic the traffic operation at work zones and thus can be used to estimate queuing delays at work zones. Despite its reliability, tedious work to prepare input files for different geometry, traffic and roadway condition may lessen its application for delay analysis purpose. Therefore it is necessary to develop an analytical model that will replicate the simulated results for estimating queuing delays under various demand, roadway and traffic conditions.

In this study, queuing delay is estimated by combining the simulation results and a deterministic model, while a mathematical model is developed for estimating moving delay. Microscopic simulation model CORSIM in TSIS 4.02 is used for this purpose.

**Literature Review**

In order to perform the work zone delay analysis, a thorough review of previous studies related to freeway work zone has been conducted and discussed below.

**Models for Analyzing Freeway Work Zone Delay**

Two well-known types of methods developed for analyzing freeway queuing delay include deterministic queuing models \(^{(3,8,9,10)}\) and the shock wave models. \(^{(11,12)}\) The deterministic queuing model has been used for estimating delays in practice for decades. It is often depicted using a deterministic queuing diagram as shown in Figure 1. The critical inputs to the deterministic queuing diagram (DQD) are the demand volume \(Q\), freeway capacity \(C\), work zone capacity \(C_w\), and work zone duration \(t_f\). The shaded area is the total delay to the traffic stream, and is given by the following equation:
Figure 1. Queuing delay estimated by the deterministic queuing model.

\[
\text{Delay} = \frac{t_1^2(C - C_w)(Q - C_w)}{2(C - Q)}
\]  

The main limitations in the existing deterministic models for estimating work zone congestion are summarized as follows.

1. Some methods used peak hour factors instead of actual traffic counts to estimate traffic demand during work zone period.
2. Data on traffic counts and work zone times are often not collected simultaneously.
3. The speeds used to estimate work zone delay are not the actual speeds through the work zone queues.
4. An assumption that the initial demand level is smaller than freeway capacity is not valid under peak conditions.
The shock wave model estimates queuing delay by assuming that (1) the traffic flow is analogous to fluid flow, and (2) the shock wave speed propagates linearly. In the determination of queuing delay, the shock wave speed is approximated based on traffic density, which is considered difficult to measure form flow density relations. In 1978, Wirasinghe developed a model based on shock wave theory to determine individual and total delays upstream of incidents (10). The model was formulated considering traffic conditions under different densities and areas which are formed by shock waves in the time-space plot. Later, in 1995, Al-Deck, Garib, and Radwan presented a method which utilized detailed incident and traffic data collect simultaneously in several traffic surveillance systems at different locations in the U.S (10). In that study, recurrent and non-recurrent congestion can be identified, while shock wave theory was used to estimate incident congestion. The method was applied on the Rt I-880 project in Alameda County, California (10). Satisfactory results were achieved for both isolated and multiple incident cases.

In 1984, Memmott and Dudek developed a computer program, called Queue and User Cost Evaluation of Work Zones (QUEWZ), which can assess the work zone user costs, including the user delay and vehicle operating costs (6). QUEWZ was developed based on traffic data collected from Texas highways. In QUEWZ, a deterministic queuing model is used to estimate queue delay, while approach speed, calculated by using the equations taken from the Highway Economic Evaluation Model and an assumed speed-volume relations, is used to estimate delay through the lane-closure section (13).

In 1998, Chien and Schonfeld developed a mathematical model to optimize work zone length on four lane (two-lane two-way) highways where one lane in each direction at a time was closed for performing maintenance activities (10). In that study, deterministic queuing theory was used to estimate user delay caused by the lane closure. The optimal work zone length was determined by minimizing the total cost including the agency, accident, and user delay costs. In addition to the queuing delay cost, the moving delay incurred by vehicles traversing through work zone was considered to formulate the user delay function.
In 1999, Jiang conducted a study for Indiana Department of Transportation, in which the work zone related delays were classified into (1) deceleration delay: incurred by vehicle deceleration before entering work zones, (2) moving delay: incurred by vehicles passing through work zones with lower speed, (3) acceleration delay: incurred by vehicles acceleration after existing work zones, and (4) queuing delay caused by ratio of vehicle arrival and discharge rates (4).

In a recent study, Nam and Drew found that deterministic queuing models always underestimate the delays comparing with that estimated by shock wave models (7).

**Traffic Operations and Capacities at Freeway Lane Closures**

Previous studies (See references 14,15,16 and17.) that dealt with traffic operations and capacities at freeway lane closures are reviewed, which provide valuable information in designing simulation networks, determining calibration parameters and evaluating delays in this study. In 1985, Nemeth and Rathi conducted a simulation study for a hypothetically created freeway network by using FREESIM and indicated the potential impact of speed reduction at freeway lane closures (14). They found that compliance with the reduced speed limit had no significant impact on the number of uncomfortable decelerations, but it reduced variance in speed distribution over the work zone. The results showed that the speed reduction at work zones does not create hazardous disturbances in traffic flow.

In 1985, Rouphail and Tiwari investigated speed characteristics near freeway lane closure areas (15). They identified factors affecting speed through a lane closure, including (1) geometric related factors (i.e., the configurations of lane closures before and within the work zone, grade and curvatures, effective lane width and lateral clearance, sight distance and proximity to on and off ramps), (2) traffic related factors (i.e., flow rates passing through work zone areas and truck percentage in traffic stream), (3) traffic control related factors (i.e., arrow board, and canalization devices, speed zoning signs, the presence of flagmen), and (4) work zone activity related factors (i.e., location, crew size, equipment type, noise, dust level, and length of work...
zone). They also found that the vehicle mean speed through a work zone decreased while (1) the intensity of construction and maintenance activities increased, and (2) the construction and maintenance activities moved closer to the travel lanes. Later, in 1997, Pain, McGee, and Knapp conducted a comprehensive speed studies and found that the mean speed significantly varied with the configurations of lane closures (e.g., right lane closure, left lane closure, and a two-lane bypass), traffic control devices (e.g., cones, tubular cones, barricades, and vertical panels), and locations within work zones (17).

Later in 1988, Routhail, Yang, and Fazio derived various mean values and coefficients of variation to describe the speed changes in different work zones (16). They found that the average speed in a work zone did not vary considerably under light traffic conditions; however, the speed recovery time took longer as traffic volumes increased.

Capacity reduction is the most critical factor that influences traffic delays. Several studies identified that the capacity at freeway work zone mainly depends on (1) lane closure configuration, (2) on-ramp and off-ramp proximity, (3) lane narrowing, (4) physical barriers, (5) percentage of heavy vehicles in the traffic stream, (6) additional warning signs, (7) reduced speed limit, and (8) grade (See references 3, 15, 18, and 19.). However, the detailed procedure for estimating freeway work zone capacity that can capture the influence of above variables was not developed.

Previous studies also developed different methods to identify capacities of freeway work zones. Dudek and Richards identified work zone capacity as the hourly traffic volume under congested conditions (3). In this analysis capacity was calculated by considering the traffic volume that can pass through work zones in an hour, and considering the queue formed upstream from the lane closure. The 1994 Highway Capacity Manual provided typical capacity values of freeway work zones. As Dixon, Hummer, and Lorscheider indicated, these values were obtained using traffic data collected on roadways in Texas, which may not represent the roadway capacity in other states because of different freeway characteristics and driving behaviors (18).
Characteristics of Simulation Models
CORSIM (CORridor SIMulator), a microscopic simulation model developed by Federal Highway Administration (FHWA), contains the features of NETSIM and FREESIM. It is viewed as one of the most comprehensive traffic simulation model, which can simulate traffic operations, including incident conditions (i.e., work zones and accidents), surface streets and freeways.

CORSIM runs on a microcomputer and simulates various traffic flows (i.e., volumes, vehicle compositions) operating on roadways with different geometric conditions (i.e., grades, radius of curvature, super-elevations on the freeway, lane additions/drops) and freeway incidents (i.e., accidents, work zones rubbernecking factor) while considering various driver types (i.e., cautious, aggressive) and vehicle types (i.e., auto, truck, carpool, bus) characteristics (i.e., length, acceleration/deceleration rate). The vehicle movements are modeled based on car following, lane changing, and crash avoidance maneuvers programmed in the CORSIM model.\(^{(20)}\) Many researchers have employed CORSIM for freeway operational analysis, such as velocity and capacity studies.\(^{(1,2,14)}\) In 1999, Vadakpat, Stoffels and Dixon calibrated and validated CORSIM model for work zones\(^{(20)}\). They found that the default value of CFSF and 50 percent rubbernecking factor can reasonably replicate the vehicle and driver behavior at work zones based on the work zone data collected from several sites in North Carolina.

Freeway Work Zone Capacity
Traffic flow and roadway capacity are the principal determinants of traffic delays. In general, as the traffic flow exceeds the capacity that can be accommodated by a work zone (if a number of lanes are closed for maintenance or reconstruction activities), a queue forms, whose length depends on the magnitude of the excess flow and the duration to reopen the closed lanes.

A microscopic traffic simulation model, CORSIM, developed by Federal Highway Administration (FHWA) US Department of Transportation (USDOT), is extensively
used for the approximation of work zone capacity and delay analysis. In order to reduce tremendous simulation time due to simulating various work zone configurations while considering various traffic (e.g., traffic volume and composition) and geometric conditions (lane width, grade section percentage and length, and numbers of normal and closed lanes), the capacity adjustment factor based on the capacity under ideal conditions defined in the Highway Capacity Manual (HCM) is introduced here for traffic engineering studies, such as estimating delays.

**Estimation of Work Zone Capacity under Ideal Conditions**

According to the definition of “capacity” in 1994 HCM, it is “the maximum hourly rate which persons or vehicles can reasonably be expected to traverse a point or a uniform section of a lane or roadway during a given time period under prevailing roadway, traffic and control conditions” (22). The maximum equivalent hourly flow rate is determined based on a maximum fifteen-minute flow rate under ideal conditions. The ideal conditions represent 12 feet minimum lane width, 6 feet minimum lateral clearance between the edge of the travel lane and the nearest roadside or median obstacle or object influencing traffic behavior, all passenger cars in the traffic stream, and a driver population dominated by regular and familiar users of the facility.

Simulation approaches have been used to approximate freeway capacity for years. CORSIM, a microscopic traffic simulation model, is able to simulate the exact number of vehicles passing through a designated link (containing a work zone) during a specific time period. Thus, the work zone capacity defined in this study is the maximum hourly flow passing through the zone approximated by CORSIM. In order to approximate work zone capacity, the entry flow rate, the number of vehicles passing a point in a unit time, is gradually increased. The maximum flow is identified when the entry flow exceeds the observed flow passing through a work zone (see figure 2).

In order to reduce the statistical variance incurred by using simulation approaches for the analysis (e.g., the maximum observed flow varies while the random number seed is changed), the maximum discharged flow rate (capacity) is determined based on the
average of flow approximated from the average maximum flows obtained from 10 one-hour simulation runs with different random number seeds. The work zone capacities under ideal conditions for various zone configurations are summarized in table 4, where the average link speed is 65 mile per hour (mph).

![Diagram of work zone configurations](image)

Figure 2. Typical work zone configurations used for estimating delays by CORSIM.

<table>
<thead>
<tr>
<th>Freeway Types (Lanes per direction)</th>
<th>Work Zone Capacity with One Blocked Lane (vph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Case 1) 14 @ 500 ft</td>
<td>(Case 2) 14 @ 500 ft</td>
</tr>
<tr>
<td>(Case 3) 14 @ 500 ft</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Work zone capacities for various zone configurations.
### Adjustment of Freeway Capacity under Prevailing Conditions

Any prevailing conditions differing from the ideal conditions defined in the HCM will reduce the maximum service flow rate, the capacity. These conditions may come from a single factor or a combination of factors including heavy vehicle factor $f_{HV}$, lane width and lateral clearance factor $f_W$ and driver population factor $f_P$.

As suggested by the 1994 HCM, the adjusted hourly maximum flow rate (vph) under prevailing condition can be approximated by using the correction factors:

$$ V = vNf_w f_{HV} f_P $$  \hspace{1cm} (2)

where:
- $V$ = service flow rate under prevailing roadway and traffic conditions
- $v$ = peak flow rate under ideal conditions (passenger cars per hour per lane - pcphpl)
- $N$ = number of opened lanes,
- $f_w$ = factor to adjust for the effect of restricted lane widths and lateral clearances,
- $f_{HV}$ = factor to adjust for the effects of trucks and recreational vehicles, and
- $f_P$ = factor to adjust for the effect of recreational or unfamiliar driver population

The heavy vehicle factor $f_{HV}$ can be calculated from equation 3, which was discussed in equations 3-5 of the 1994 HCS.

$$ f_{HV} = \frac{1}{1 + P_T (E_T - 1) + P_R (E_R - 1)} $$  \hspace{1cm} (3)

where:
- $E_T$ = passenger car equivalents for trucks/buses in the traffic stream,
- $E_R$ = passenger car equivalents for recreational vehicles in the traffic stream,
\[ P_T = \text{proportion of trucks/buses in the traffic stream, and} \]
\[ P_R = \text{proportion of recreational vehicles, in the traffic stream.} \]

The equivalent number of passenger cars per truck was investigated and summarized in the 1994 HCM, where tables 5 and 6 are used for converting given vehicle compositions to the corresponding equivalent numbers of passenger cars. In 1997, a freeway capacity analysis by Chien and Chowdhury developed a method to find the equivalent passenger cars per truck using simulation approach \(^1\). In that study, they found the results are consistent with the 1994 HCM when the grade is small and the section length is short. In equation 3, the variables \( E_T \) and \( E_R \) can be found from tables 5 through 8, while other factors, such as \( f_w \) and \( f_R \), can be obtained from tables 9 and 10, respectively.

### Table 5. Passenger car equivalents on general freeway segments.

<table>
<thead>
<tr>
<th>TYPE OF TERRAIN</th>
<th>CATEGORY</th>
<th>LEVEL</th>
<th>ROLLING</th>
<th>MOUNTAINOUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>( E_T ) for trucks and buses</td>
<td>1.5</td>
<td>3.0</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>( E_T ) for recreational vehicles</td>
<td>1.2</td>
<td>2.0</td>
<td>4.0</td>
<td></td>
</tr>
</tbody>
</table>

Source: Table 3-3, 1994 Highway Capacity Manual (HCM)

### Table 6. Passenger car equivalents for trucks and buses on specific upgrades

<table>
<thead>
<tr>
<th>GRADE (%)</th>
<th>LENGTH (MI)</th>
<th>( E_T )</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PERCENT TRUCKS AND BUSES</td>
<td>2</td>
</tr>
<tr>
<td>&lt; 2</td>
<td>All</td>
<td>1.5</td>
</tr>
<tr>
<td>2</td>
<td>0-¼</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>¼-½</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>½-¾</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>¾-1</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>1-1½</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>&gt;1½</td>
<td>4.5</td>
</tr>
<tr>
<td>3</td>
<td>0-¼</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>¼-½</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>½-¾</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>¾-1</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>1-1½</td>
<td>8.0</td>
</tr>
</tbody>
</table>

18
<table>
<thead>
<tr>
<th>GRADE (%)</th>
<th>LENGTH OF GRADE (MI)</th>
<th>$E_R$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>≤ 2</td>
<td>All</td>
<td>1.2</td>
</tr>
<tr>
<td>3</td>
<td>0- ½</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>&gt;½</td>
<td>2.0</td>
</tr>
<tr>
<td>4</td>
<td>0-½</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>½-¾</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>&gt;½</td>
<td>3.0</td>
</tr>
<tr>
<td>5</td>
<td>0-¼</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>¼-½</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>&gt;½</td>
<td>4.5</td>
</tr>
<tr>
<td>6</td>
<td>0-¼</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>¼-½</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>&gt;½</td>
<td>6.0</td>
</tr>
</tbody>
</table>

NOTE: If the length of grade falls on a boundary, apply the longer category; interpolation may be used to find equivalents for intermediate percent grades.

Source: Table 3-4, 1994 Highway capacity manual (HCM)

### Table 7. Passenger car equivalents for recreational vehicles on specific upgrades.

### Table 8. Passenger car equivalents for trucks and buses on specific downgrades
<table>
<thead>
<tr>
<th>Lane Width (ft)</th>
<th>Obstructions on One Side</th>
<th>Obstructions on Two Sides</th>
<th>Adjustment Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>5 ≤ 4</td>
<td>1.5&lt;sup&gt;a&lt;/sup&gt;</td>
<td>1.5&lt;sup&gt;a&lt;/sup&gt;</td>
<td>1.5&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>5 &gt; 4</td>
<td>5.5</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>≥ 6 ≤ 4</td>
<td>1.5&lt;sup&gt;a&lt;/sup&gt;</td>
<td>1.5&lt;sup&gt;a&lt;/sup&gt;</td>
<td>1.5&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>≥ 6 &gt; 4</td>
<td>7.5</td>
<td>6.0</td>
<td>5.5</td>
</tr>
</tbody>
</table>

<sup>a</sup>Value for level terrain
Source: Table 3-6, 1994 Highway Capacity Manual (HCM)

Table 9. Adjustment factor for restricted lane width and lateral clearance.

### Table 9. Adjustment factor for restricted lane width and lateral clearance.

<table>
<thead>
<tr>
<th>Distance from Traveled Way to Obstruction (ft)</th>
<th>Obstructions on One Side</th>
<th>Obstructions on Two Sides</th>
<th>Adjustment Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1.00</td>
<td>0.95</td>
<td>0.90</td>
</tr>
<tr>
<td>11</td>
<td>0.99</td>
<td>0.94</td>
<td>0.93</td>
</tr>
<tr>
<td>10</td>
<td>0.89</td>
<td>0.88</td>
<td>0.86</td>
</tr>
<tr>
<td>≥ 12</td>
<td>1.00</td>
<td>0.95</td>
<td>0.90</td>
</tr>
<tr>
<td>11</td>
<td>0.95</td>
<td>0.90</td>
<td>0.86</td>
</tr>
<tr>
<td>10</td>
<td>0.86</td>
<td>0.82</td>
<td>0.78</td>
</tr>
</tbody>
</table>

<sup>a</sup>Interpolation may be used for lane width or distance from traveled way to obstruction.
Source: Table 3-2, 1994 Highway Capacity Manual (HCS)

Table 10. Adjustment factor for driver population.

<table>
<thead>
<tr>
<th>Traffic Stream Type</th>
<th>Adjustment Factor (f&lt;sub&gt;p&lt;/sub&gt;)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekday, commuter (familiar user)</td>
<td>1.00</td>
</tr>
<tr>
<td>Recreational or other</td>
<td>0.75-0.99</td>
</tr>
</tbody>
</table>

Source: Table 3-7, 1994 Highway Capacity Manual (HCM)

Traffic Delays at Freeway Work Zones

The estimation of traffic delays at freeway work zones is essential for planning and scheduling maintenance and construction activities. Traffic delay mainly incurred by motorists waiting in queues as well as traveling within work zones below their desired speeds due to the limited capacity caused by either lane closure or rubbernecking factor.

Traffic delays consist of those in congested and not-congested traffic conditions. When the arrival flow rate exceeds the work zone capacity, traffic congestion occurs and therefore results in vehicle queues. On the other hand, as the arrival rate is below
the work zone capacity, vehicles may pass through the work zone smoothly with lower speed than that under normal condition. The proposed method for estimating work zone related delays with CORSIM in conjunction with the 1994 HCM and queuing theory is developed and discussed below.

In this study, the delays due to vehicle deceleration, acceleration, and in queue are aggregated, called queue delay, and estimated by CORSIM. The delay due to reduced travel speed through the work zone is called moving delay, which is estimated by a mathematical model.

The definition of user delay is the difference between the average travel times under normal (without work zone situation) and roadway maintenance (with work zone) situation, multiplied by the number of vehicles passing through the zone in a given time period. The magnitude of delay associated with a work zone mainly depends on the variation of traffic flow over the maintenance period and the corresponding work zone capacity, which can be classified into moving and queuing delays. The moving delay is incurred by vehicles traveling within the work zone, which increases as the average zone speed decreases. The speed reduction is mainly caused by the disturbance of work zone barriers and the variation of traffic density. In addition, motorists may suffer another type of delay, called queuing delay, when they stop-and-go in queues at the upstream of the work zone. A queue will form once the traffic flow exceeds the work zone capacity, whose length changes dynamically because of flow variation over time.

Furthermore, if the inflow demand exceeds work zone capacity during a given time period (the duration of time periods $t_p$ are assumed to be one hour in this study), vehicles can not be completely discharged before the end of the time period. Thus, the queue discharging time will be extended to the next time period. If inflow rates continuously exceed the capacity in a series of time periods, the queue growing rate varies with the inflow rates in different time periods. In general, the total number of vehicles in a queue can be fully discharged until the cumulative inflow rates reaches
the cumulative capacity over a number of time periods. In addition, while forming the queue, the shock wave delay associated with the discharged and in-coming flows is a fraction of queue delay. Unfortunately, it is hard to formulate mathematically.

Estimation of Moving Delays
The moving delay is incurred by motorists traveling through a work zone with reduced travel speed. The speed reduction may be caused by the lack of roadway clearance, narrowed lanes, rubbernecking factors, etc. The moving delay can be obtained by the product of the travel time difference of travel times (under normal and work zone conditions) and the flow rate passing through the work zone. Depending on the relation of the work zone capacity $C_w$, the inflow volume $Q(i)$, and a queue accumulate from the previous time period $q(i)$, the moving delay $t_m(i)$ of time period $i$ is formulated based on different situations discussed below.

Situation 1: $Q(i) + q(i) \leq C_w$

In this situation, the total inflow volume can pass through the work zone in the same time period. Therefore, the moving delay is:

$$t_m(i) = \left( \frac{L}{V_w} - \frac{L}{V_a} \right) [Q(i) + q(i)]$$  \hspace{1cm} (4)

where $V_a$, $V_w$ and $L$ represent average operating speed without the work zone, average work zone speed and work zone length, respectively. In equation 4 $q(i)$ can be determined by the excess traffic flows accumulated from previous time periods, and formulated as follows:

$$q(i) = \sum_{j=k}^{i-1} Q(j) - (i-k)C_w \quad \text{where } i > k, \forall i$$  \hspace{1cm} (5)
where \( k \) is the beginning time period as demand \( Q(k) \) is greater than capacity \( C_w \).

For example, if \( k = 3 \), the queue length at the beginning of the 6th time period is:

\[
q(6) = \sum_{j=3}^{6-1} Q(j) - (6 - 3)C_w = Q(3) + Q(4) + Q(5) - 3C_w
\]

**Situation 2:** \( Q(i) + q(i) > C_w \),

If \( Q(i) + q(i) > C_w \), the term \( [Q(i) + q(i)] \) in equation 4 is replaced by \( C_w \) subject to the work zone capacity constraint, such that the moving delay \( t_M(i) \) at time period \( i \) is

\[
t_M(i) = \left( \frac{L}{V_w} - \frac{L}{V_a} \right) C_w
\]

Note that the average work zone speed \( V_w \) can be determined from the data collected from roadway surveillance systems in the study sites or empirical speed functions (e.g., BPR functions), to reflect the realistic travel speed varying with the change of traffic volume and roadway capacity ratio.

**Estimation of Queuing Delays**

In this section, a model, integrating simulation results and a deterministic queuing model, is developed for estimating queuing delay. In order to estimate the queuing delays with CORSIM, a computerized freeway segment on the east bound Rt I-80 in New Jersey is established for simulation. The major data were collected from NJDOT, including road geometry, traffic volumes, and average speeds at specific data stations. Some traffic data were found from an HOV lane evaluation study report by Parsons Brinkerhoff, Garmer Associates, and New Jersey Institute of Technology \(^{(10)}\). The simulation model is calibrated by fine tuning parameter such as car following sensitivity factors, vehicle startup delay, and driver response leg times to reflect the realistic traffic operations on I-80. After validating the calibrated model, three typical
freeway work zone configurations, such as shown in figure 2, are simulated with various input of entry volumes, and work zone capacities, while the corresponding queue delay can be observed from simulation output.

As defined previously, the total queuing delay is the product of the travel time difference between the average travel times with and without work zone conditions and the demand. In order to estimate queuing delays, both normal and work zone (one blocked lane) conditions with various entry volume and work zone capacity $(V/C_w)$ ratios are simulated. The duration of each simulation run, which is also the duration of lane closure, is determined based on the assumption that all entry vehicles can pass through the work zone before the end of simulation.

After conducting simulation analysis, it is found that if the traffic volume is low (e.g. at $V/C_w = 0.4$ or less), the queuing delay is relatively small compared with that as $V/C_w > 0.5$ and thus is not considered. Table 11 shows different hourly entry volumes represented by $V/C_w$ ratios for the three work zone cases.

The queuing delay corresponding to the entry volume can be determined by the difference between the delays with and without work zone conditions. To reduce statistical variance of delay estimated by simulation, the traffic delays observed from simulation are averaged by simulating 10 times for any given entry volume with different random number seeds. The average queuing delay (min/veh) corresponding to each entry volume can be obtained from simulated total delay by dividing by the entry volume. The mean and the standard deviation of queuing delays for each of the three cases with various $V/C_w$ ratios are obtained and summarized in table 12 and shown in figures 3, 4, and 5.

Table 11. Work zone capacity and flow rates for various cases.

<table>
<thead>
<tr>
<th>Case #</th>
<th>$C_w$ : Work Zone Capacity (vph)</th>
<th>Flow Rates ($V/C_w$ Ratio)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1450</td>
<td>From 0.5 to 1.8 with the increment of 0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>From 0.5 to 1.7 with the increment of 0.1</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----------------------------------------</td>
</tr>
<tr>
<td>2</td>
<td>4000</td>
<td>From 0.5 to 1.7 with the increment of 0.1</td>
</tr>
<tr>
<td>3</td>
<td>6550</td>
<td>From 0.5 to 1.4 with the increment of 0.1</td>
</tr>
</tbody>
</table>
Table 12. Queuing delay vs. V/C ratio vs. delays with various cases.

<table>
<thead>
<tr>
<th>$V/C_w$ Ratio</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>*0.017 (0.011)</td>
<td>0.039 (0.019)</td>
<td>0.056 (0.011)</td>
</tr>
<tr>
<td>0.6</td>
<td>0.042 (0.009)</td>
<td>0.080 (0.028)</td>
<td>0.115 (0.016)</td>
</tr>
<tr>
<td>0.7</td>
<td>0.054 (0.018)</td>
<td>0.140 (0.026)</td>
<td>0.246 (0.032)</td>
</tr>
<tr>
<td>0.8</td>
<td>0.075 (0.019)</td>
<td>0.250 (0.040)</td>
<td>0.556 (0.046)</td>
</tr>
<tr>
<td>0.9</td>
<td>0.193 (0.048)</td>
<td>0.872 (0.100)</td>
<td>1.175 (0.060)</td>
</tr>
<tr>
<td>1</td>
<td>0.681 (0.502)</td>
<td>2.841 (0.157)</td>
<td>2.722 (0.164)</td>
</tr>
<tr>
<td>1.1</td>
<td>4.171 (1.132)</td>
<td>6.015 (0.246)</td>
<td>5.754 (0.103)</td>
</tr>
<tr>
<td>1.2</td>
<td>8.639 (0.432)</td>
<td>9.686 (0.226)</td>
<td>9.272 (0.271)</td>
</tr>
<tr>
<td>1.3</td>
<td>12.780 (0.846)</td>
<td>13.637 (0.495)</td>
<td>13.148 (0.242)</td>
</tr>
<tr>
<td>1.4</td>
<td>17.552 (0.980)</td>
<td>17.865 (0.532)</td>
<td>16.974 (0.131)</td>
</tr>
<tr>
<td>1.5</td>
<td>21.701 (0.826)</td>
<td>21.958 (0.463)</td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>25.960 (0.764)</td>
<td>25.877 (0.506)</td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td>30.686 (1.412)</td>
<td>30.254 (0.551)</td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>35.263 (1.006)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 3. Average delay vs. V/C ratio (two lane freeway with one blocked lane without trucks)
Figure 4. Average delay vs. V/C ratio (three lane freeway with one blocked lane without trucks)
Figure 5. Average delay vs. V/C ratio (four lane freeway with one blocked lane without trucks)
**Model Development**

In order to avoid simulating huge number of situations (combinations of demand flow rates, traffic composition, geometric conditions, and work zone length and duration), a method integrating the concept of deterministic queuing model and simulation is developed for estimating the queuing delay caused by lane closures (based on work zone configurations) on freeways. The traffic flow distribution over time and work zone capacity are the major inputs from the model users to approximate queuing delays. The queuing delay in each time period is calculated based on the queue length accumulated from the previous time period. If the queue length is zero at time period \( i \), the queuing delay \( T_Q(i) \) incurred by flow rate \( Q(i) \) can be obtained from equation 8.

\[
T_Q(i) = t_a(i)Q(i)
\]  

(8)

where \( t_a(i) \) representing average queuing delay can be observed based on \( V/C_w \) ratio as shown in figures 3, 4 and 5.

However, if there is a queue accumulating from the previous time periods \( q(i) > 0 \), the queuing delay is determined based on flow rate \( Q(i) \), work zone capacity \( C_w \) and the duration to discharge \( q(i) \). Two situations are considered to approximate the queuing delay and discussed below.

**Situation 1 :** \( q(i) + Q(i) > C_w \)

If the delay experienced by the first and the last vehicles of the studied time period passing through the work zone can be determined, the total queuing delay incurred by \( Q(i) \) at time period \( i \) can be formulated as follows

\[
T_Q(i) = \frac{T_f(i) + T_L(i)}{2}Q(i)
\]  

(9)
where $t_F(i)$ and $t_L(i)$ represent queue delays experienced by the first and the last vehicles in $Q(i)$ before entering the work zone, respectively.

Assuming that the vehicles in the queue entering the work zone are based on a first-come-first-serve basis, the queue delay experienced by the first vehicle of $Q(i)$ entering the work zone is equal to the discharging time of queuing vehicles accumulated from the previous time period $(i-1)$. Therefore, $t_F(i)$ is

$$t_F(i) = \frac{q(i)}{C_w} \quad (10)$$

In order to find the queuing delay of the last vehicle, the average queuing delay $t_a(i)$ incurred by $[q(i) + Q(i)]$ in time period $i$ for two, three, and four-lane cases can be observed from the curves shown in figures 3, 4, and 5, respectively. After determining the average queuing delay, the total queuing delay $T_{Q+q}(i)$ in time period $i$ can be obtained from equation 9.

$$T_{Q+q}(i) = [q(i) + Q(i)]r_a(i) \quad (11)$$

In order to simplify the vehicle delay diagram shown in figure 6, the queue delay is assumed to be increasing linearly as the demand increases. The total queue delay $T_{Q+q}(i)$ can be formulated as

$$T_{Q+q}(i) = \frac{1}{2}[q(i) + Q(i)]r_L(i) \quad (12)$$
By substituting $T_{Q+q}(i)$ in equation 12 into equation 11, the queuing delay experienced by the last vehicle is

$$t_L(i) = 2t_a(i)$$  \hspace{1cm} (13)

Based on the values of $t_F(i)$ and $t_L(i)$ obtained from equations 9 and 12, the total queuing delay $T_Q(i)$ can be determined from equation 9.

**Situation 2: $q(i) + Q(i) \leq C_w$**

If the sum of $q(i)$ and $Q(i)$ in time period $i$ is less than or equal to work zone capacity $C_w$, the volume of $q(i) + Q(i)$ will be discharged by the end of this time period. Thus,
only a fraction of approaching demand in time period i will be affected by \( q(i) \). The time (hour) \( t \) required to discharge the queue is

\[
t = \frac{q(i)}{[C_w - Q(i)]}
\]

(14)

Thus, the total number of vehicles \( Q_a(i) \) affected by \( q(i) \) in time period \( i \) is:

\[
Q_a(i) = tQ(i)
\]

(15)

The queuing delay expressed by \( Q_a(i) \) can be estimated by equation 9, in which \( t_L(i) \) will be estimated by equation 16.

\[
t_L(i) = 2t_a(i) \frac{t}{t_p(i)}
\]

(16)

In equation 16, \( t_a(i) \) can be observed from figures 3, 4 and 5, while \( V/C_w = 1 \); and \( t_p(i) \) is the duration of time period \( i \).

The queuing delay incurred by the rest of, say \( (t_p(i) - t)Q(i) \), can be estimated from equation 8 after replacing \( t_a(i) \) by \( t_a(i) \frac{t}{t_p} \).

**Calculation of Delays by Vehicle Types**

The total delay \( T_D \) is the summation of moving and queuing delay incurred by all motorists traveling on the freeway during work zone activity hours. Assuming that a work zone activity on a freeway can not be removed on time. The extended duration covers from time period 1 to n. The resulting total delay \( T_D \) can be formulated as
\[ T_D = \sum_{i=1}^{n} [T_M(i) + T_V(i)] \] (17)

Since the total delay is incurred by different types of vehicles (e.g., trucks and passenger cars), the delay can be categorized by types of vehicles in the traffic stream using the equation 17.

\[ T_D^c = T_D \times X^c \] (18)

where \( T_D^c \) is the total delay incurred by type \( c \) vehicles and \( X^c \) is the percentage of type \( c \) vehicles in the traffic stream.

**Comparison of Estimated Queuing Delays**

In order to observe the variation and compare the difference among the estimated queue delays obtained from CORSIM, the proposed method and the deterministic queuing model, the total delays caused by various work zone configurations are analyzed and shown in table 14. The flow rates and capacities over four hours (4 time periods) are given in table 13. The total queue delay estimated by CORSIM is obtained by averaging total delays generated by ten simulation runs with different random number seeds. From table 14, it is shown that the queue delay obtained from the proposed method is closure to that observed from CORSIM. However, the deterministic queuing model significantly underestimates the total queuing delay. Since the delay caused by shock wave and acceleration/deceleration, while vehicles are approaching the work zone is not taken into consideration by the deterministic model, the total queuing delay thus is underestimated.

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Case 1 (0% truck)</th>
<th>Case 2 (0% truck)</th>
<th>Case 3 (0% truck)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 13: Input variables
<table>
<thead>
<tr>
<th>(1 hr)</th>
<th>Demand (pcph)</th>
<th>Capacity (pcph)</th>
<th>Demand (pcph)</th>
<th>Capacity (pcph)</th>
<th>Demand (pcph)</th>
<th>Capacity (pcph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1740</td>
<td>1450</td>
<td>5200</td>
<td>4000</td>
<td>7205</td>
<td>6550</td>
</tr>
<tr>
<td>2</td>
<td>1740</td>
<td>1450</td>
<td>4000</td>
<td>4000</td>
<td>7205</td>
<td>6550</td>
</tr>
<tr>
<td>3</td>
<td>1450</td>
<td>1450</td>
<td>3600</td>
<td>4000</td>
<td>5895</td>
<td>6550</td>
</tr>
<tr>
<td>4</td>
<td>870</td>
<td>1450</td>
<td>3200</td>
<td>4000</td>
<td>5895</td>
<td>6550</td>
</tr>
</tbody>
</table>

Table 14. Estimated Delays from Different Methods

<table>
<thead>
<tr>
<th>Methods</th>
<th>Total Delay (veh-hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Case 1</td>
</tr>
<tr>
<td>Proposed Model</td>
<td>1831.46</td>
</tr>
<tr>
<td>Simulation Model</td>
<td>1810.18</td>
</tr>
<tr>
<td>Deterministic Model</td>
<td>1450</td>
</tr>
</tbody>
</table>

Procedure for Estimating Work Zone Delay

**Step 1: Estimation of Work Zone Capacity**

Determine $f_w$ referring table 9

Determine $f_{HV}$ using equation 3 and referring tables 5 through 8.

Determine $f_p$ referring table 10

Determine Work Zone Capacity using equation 2, which can be obtained by simulation or by using the volumes suggested by 1994 Highway Capacity Manual.

**Step 2: Estimation of Moving Delay**

Determine $q(i)$ using equation 5.

If $Q(i) + q(i) \leq C_w$, Find $T_{M}(i)$ using equation 4.

If $Q(i) + q(i) > C_w$, Find $T_{M}(i)$ using equation 6.
Step 3: Estimation of Queue Delay

If $q(i) = 0$, Determine $T_Q(i)$ using equation 8.

If $q(i) \neq 0$

If $Q(i) + q(i) > C_w$, Determine $t_F(i)$ using equation 10.

Determine $t_L(i)$ using equation 13.

Determine $T_Q(i)$ using equation 9.

If $Q(i) + q(i) \leq C_w$,

Determine $t$ using equation 14.

Determine $t_F(i)$ using equation 10.

Determine $t_L(i)$ using equation 13 (use V/C ratio 1)

Determine $T_{Ql}(i)$ using equation 9, where $Q_1(i) = tQ(i)$

Determine $T_{Q2}(i)$ using equation 8, where $Q_2(i) = (1 - t)Q(i)$ and $\frac{V}{C} = \frac{Q(i)}{C_w}$

Step 4: Calculation of Delays by Vehicle Types

Calculate the total delay using equation 17.

Determine the total delay by vehicle types using equation 18.

Sample Calculations

In order to illustrate the use of the developed model, several typical examples with hypothetical conditions are discussed below.

Example 1:

Number of Lanes per direction = 2
Number of lane closed = 1
Work zone Length = .5 mile
Work zone capacity = 1450 pcph
Duration of work = 10 hours
Average approaching speed = 70 mph
Average work zone speed = 50 mph  
Flow rates over 10 hours are shown in table 15.  
Truck = 0%, 5%, 10%, 15%, and 20%  
Grade = 0%

The work zone is scheduled to finish at 5:00 AM; however all lanes of this work zone are opened to the public until 3:00 PM. Details of moving and queuing delays are determined. Moving delay is shown in table 16, while Queuing delay with 0, 5, 10, 15, and 20% truck are shown in tables 17, 18, 19, 20, and 21, respectively. The total delay includes the queuing and moving delays caused by trucks and cars and is summarized in table 22 and show in figure 7. Queuing delays at all time periods with $V/C_w \geq 1$ for 0, 5, 10, 15, and 20 % trucks are shown in figures 8, 9, 10, 11, and 12, respectively.

Table 15. Flow rates (vph) over time

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Duration (hr)</th>
<th>Demand Flow Rate (vph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5:00 –6:00</td>
<td>800</td>
</tr>
<tr>
<td>2</td>
<td>6:00-7:00</td>
<td>1000</td>
</tr>
<tr>
<td>3</td>
<td>7:00-8:00</td>
<td>1200</td>
</tr>
<tr>
<td>4</td>
<td>8:00-9:00</td>
<td>1600</td>
</tr>
<tr>
<td>5</td>
<td>9:00-10:00</td>
<td>1500</td>
</tr>
<tr>
<td>6</td>
<td>10:00-11:00</td>
<td>1200</td>
</tr>
<tr>
<td>7</td>
<td>11:00-12:00</td>
<td>1000</td>
</tr>
<tr>
<td>8</td>
<td>12:00-13:00</td>
<td>700</td>
</tr>
<tr>
<td>9</td>
<td>13:00-14:00</td>
<td>700</td>
</tr>
<tr>
<td>10</td>
<td>14:00-15:00</td>
<td>700</td>
</tr>
<tr>
<td>Time Period (i)</td>
<td>Duration (hrs)</td>
<td>( C_w^p ) (vph)</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>1</td>
<td>5:00-6:00</td>
<td>1381</td>
</tr>
<tr>
<td>2</td>
<td>6:00-7:00</td>
<td>1381</td>
</tr>
<tr>
<td>3</td>
<td>7:00-8:00</td>
<td>1381</td>
</tr>
<tr>
<td>4</td>
<td>8:00-9:00</td>
<td>1381</td>
</tr>
<tr>
<td>5</td>
<td>9:00-10:00</td>
<td>1381</td>
</tr>
<tr>
<td>6</td>
<td>10:00-11:00</td>
<td>1381</td>
</tr>
<tr>
<td>7</td>
<td>11:00-12:00</td>
<td>1381</td>
</tr>
<tr>
<td>8</td>
<td>12:00-13:00</td>
<td>1381</td>
</tr>
<tr>
<td>9</td>
<td>13:00-14:00</td>
<td>1381</td>
</tr>
<tr>
<td>10</td>
<td>14:00-15:00</td>
<td>1381</td>
</tr>
</tbody>
</table>

Table 17. Queuing delay estimation \((C_w^p = 1450, 0 \% \text{ Truck})\)

<table>
<thead>
<tr>
<th>Time Period (I)</th>
<th>Flow Rate ( Q(i) ) (vph)</th>
<th>( q(i) ) (veh)</th>
<th>( \frac{Q(i) + q(i)}{C_w^p} )</th>
<th>( t_F(i) ) (min)</th>
<th>( t_L(i) ) (min)</th>
<th>( t_a(i) ) (min/veh)</th>
<th>( T_g(i) ) (veh-min)</th>
<th>( \sum_{i=1}^{10} T_g(i) ) (veh-hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>800</td>
<td>0</td>
<td>0.55</td>
<td>-</td>
<td>-</td>
<td>0.03</td>
<td>23.94</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1000</td>
<td>0</td>
<td>0.69</td>
<td>-</td>
<td>-</td>
<td>0.05</td>
<td>52.76</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1200</td>
<td>0</td>
<td>0.83</td>
<td>-</td>
<td>-</td>
<td>0.11</td>
<td>129.06</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1600</td>
<td>0</td>
<td>1.10</td>
<td>-</td>
<td>-</td>
<td>4.33</td>
<td>6920.11</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1500</td>
<td>150</td>
<td>1.14</td>
<td>6.21</td>
<td>11.73</td>
<td>-</td>
<td>13453.81</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>960</td>
<td>200</td>
<td>1.00</td>
<td>8.28</td>
<td>1.09</td>
<td>-</td>
<td>4495.42</td>
<td></td>
</tr>
</tbody>
</table>

39
<table>
<thead>
<tr>
<th>Time Period (I)</th>
<th>Flow Rate $Q(i)$ (vph)</th>
<th>$q(i)$ (veh)</th>
<th>$\frac{Q(i) + q(i)}{C^p_w}$</th>
<th>$t_F(i)$ (min)</th>
<th>$t_L(i)$ (min)</th>
<th>$t_a(i)$ (min/veh)</th>
<th>$T_q(i)$ (veh-min)</th>
<th>$\sum_{i=1}^{10} T_q(i)$ (veh.-hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>800</td>
<td>0</td>
<td>0.57</td>
<td>-</td>
<td>-</td>
<td>.03</td>
<td>26.70</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1000</td>
<td>0</td>
<td>0.71</td>
<td>-</td>
<td>-</td>
<td>0.06</td>
<td>55.45</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1200</td>
<td>0</td>
<td>0.85</td>
<td>-</td>
<td>-</td>
<td>0.13</td>
<td>158.36</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1600</td>
<td>0</td>
<td>1.13</td>
<td>-</td>
<td>-</td>
<td>5.56</td>
<td>8892.19</td>
<td>616.547</td>
</tr>
<tr>
<td>5</td>
<td>1500</td>
<td>185</td>
<td>1.19</td>
<td>7.86</td>
<td>16.51</td>
<td>-</td>
<td>18277.29</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1200</td>
<td>271</td>
<td>1.04</td>
<td>11.48</td>
<td>4.13</td>
<td>-</td>
<td>9367.61</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>140</td>
<td>56</td>
<td>1.00</td>
<td>2.38</td>
<td>0.18</td>
<td>-</td>
<td>173.42</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>860</td>
<td>0</td>
<td>0.71</td>
<td>-</td>
<td>-</td>
<td>0.06</td>
<td>6.49</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>700</td>
<td>0</td>
<td>0.49</td>
<td>-</td>
<td>-</td>
<td>0.02</td>
<td>11.78</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>700</td>
<td>0</td>
<td>0.49</td>
<td>-</td>
<td>-</td>
<td>0.02</td>
<td>11.78</td>
<td></td>
</tr>
</tbody>
</table>

Table 18. Queuing Delay Estimation ($C^p_w = 1403$, 5% Truck)
Table 19. Queuing Delay Estimation ($C_w^p = 1381$, 10% truck)

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>$\sum_{i=1}^{10} T_Q(i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Period (I)</td>
<td>Flow Rate $Q(i)$ (vph)</td>
<td>$q(i)$ (veh)</td>
<td>$\frac{Q(i) + q(i)}{C_w^p}$</td>
<td>$t_F(i)$ (min)</td>
<td>$t_L(i)$ (min)</td>
<td>$t_a(i)$ (min/veh)</td>
<td>$T_Q(i)$ (veh-min)</td>
<td>(veh.-hr)</td>
</tr>
<tr>
<td>1</td>
<td>800</td>
<td>0</td>
<td>0.58</td>
<td>-</td>
<td>-</td>
<td>.04</td>
<td>29.46</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1000</td>
<td>0</td>
<td>0.72</td>
<td>-</td>
<td>-</td>
<td>0.06</td>
<td>59.07</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1200</td>
<td>0</td>
<td>0.83</td>
<td>-</td>
<td>-</td>
<td>0.16</td>
<td>187.66</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1600</td>
<td>0</td>
<td>1.16</td>
<td>-</td>
<td>-</td>
<td>6.79</td>
<td>10864.28</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1500</td>
<td>219</td>
<td>1.24</td>
<td>9.52</td>
<td>20.99</td>
<td>-</td>
<td>22880.89</td>
<td>835.96</td>
</tr>
<tr>
<td>6</td>
<td>1200</td>
<td>338</td>
<td>1.11</td>
<td>14.69</td>
<td>9.57</td>
<td>-</td>
<td>14558.52</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>410</td>
<td>157</td>
<td>1.00</td>
<td>6.83</td>
<td>0.56</td>
<td>-</td>
<td>1524.07</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>590</td>
<td>0</td>
<td>0.72</td>
<td>-</td>
<td>-</td>
<td>0.06</td>
<td>14.31</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>700</td>
<td>0</td>
<td>0.51</td>
<td>-</td>
<td>-</td>
<td>0.02</td>
<td>13.11</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>700</td>
<td>0</td>
<td>0.51</td>
<td>-</td>
<td>-</td>
<td>0.02</td>
<td>13.11</td>
<td></td>
</tr>
</tbody>
</table>

Table 20. Queuing Delay Estimation ($C_w^p = 1355$, 15% Truck)

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>$\sum_{i=1}^{10} T_Q(i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Period (I)</td>
<td>Flow Rate $Q(i)$ (vph)</td>
<td>$q(i)$ (veh)</td>
<td>$\frac{Q(i) + q(i)}{C_w^p}$</td>
<td>$t_F(i)$ (min)</td>
<td>$t_L(i)$ (min)</td>
<td>$t_a(i)$ (min/veh)</td>
<td>$T_Q(i)$ (veh-min)</td>
<td>(veh.-hr)</td>
</tr>
<tr>
<td>1</td>
<td>800</td>
<td>0</td>
<td>0.59</td>
<td>-</td>
<td>-</td>
<td>.04</td>
<td>32.22</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1000</td>
<td>0</td>
<td>0.74</td>
<td>-</td>
<td>-</td>
<td>0.06</td>
<td>62.69</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1200</td>
<td>0</td>
<td>0.89</td>
<td>-</td>
<td>-</td>
<td>0.18</td>
<td>216.95</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1600</td>
<td>0</td>
<td>1.19</td>
<td>-</td>
<td>-</td>
<td>8.02</td>
<td>12836.35</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1500</td>
<td>251</td>
<td>1.30</td>
<td>11.17</td>
<td>25.42</td>
<td>-</td>
<td>27442.20</td>
<td>1092.71</td>
</tr>
</tbody>
</table>
Table 21. Queuing Delay Estimation \( (C_w = 1311, 20\% \text{ Truck}) \)

<table>
<thead>
<tr>
<th>Time Period ((i))</th>
<th>Flow Rate (Q(i)) (vph)</th>
<th>(q(i)) (veh)</th>
<th>(\frac{Q(i) + q(i)}{C_w})</th>
<th>(t_F(i)) (min)</th>
<th>(t_L(i)) (min)</th>
<th>(t_s(i)) (min/veh)</th>
<th>(T_Q(i)) (veh-min)</th>
<th>(\sum_{i=1}^{10} T_Q(i)) (veh-hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>800</td>
<td>0</td>
<td>0.61</td>
<td>-</td>
<td>-</td>
<td>.04</td>
<td>34.26</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1000</td>
<td>0</td>
<td>0.76</td>
<td>-</td>
<td>-</td>
<td>0.07</td>
<td>66.31</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1200</td>
<td>0</td>
<td>0.91</td>
<td>-</td>
<td>-</td>
<td>0.24</td>
<td>292.18</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1600</td>
<td>0</td>
<td>1.21</td>
<td>-</td>
<td>-</td>
<td>9.21</td>
<td>14736.27</td>
<td>1384.28</td>
</tr>
<tr>
<td>5</td>
<td>1500</td>
<td>282</td>
<td>1.35</td>
<td>12.83</td>
<td>30.49</td>
<td>-</td>
<td>32491.54</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1200</td>
<td>464</td>
<td>1.26</td>
<td>21.10</td>
<td>22.42</td>
<td>-</td>
<td>26113.18</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1000</td>
<td>345</td>
<td>1.02</td>
<td>15.72</td>
<td>2.81</td>
<td>-</td>
<td>9265.13</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>28</td>
<td>27</td>
<td>1.00</td>
<td>1.24</td>
<td>0.06</td>
<td>-</td>
<td>20.10</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>672</td>
<td>0</td>
<td>0.53</td>
<td>-</td>
<td>-</td>
<td>0.02</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>700</td>
<td>0</td>
<td>0.53</td>
<td>-</td>
<td>-</td>
<td>0.02</td>
<td>17.33</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>700</td>
<td>0</td>
<td>0.53</td>
<td>-</td>
<td>-</td>
<td>0.02</td>
<td>17.33</td>
<td></td>
</tr>
</tbody>
</table>
Table 22: Total, Queuing and Moving Delays

<table>
<thead>
<tr>
<th>Percentage Truck</th>
<th>Total Delay (veh-hr)</th>
<th>Queuing Delay</th>
<th>Moving Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Truck</td>
<td>Car</td>
<td>Truck</td>
</tr>
<tr>
<td>0</td>
<td>449.43</td>
<td>0</td>
<td>419.72</td>
</tr>
<tr>
<td>5</td>
<td>646.25</td>
<td>30.827</td>
<td>585.713</td>
</tr>
<tr>
<td>10</td>
<td>865.67</td>
<td>83.596</td>
<td>752.364</td>
</tr>
<tr>
<td>15</td>
<td>1122.42</td>
<td>163.906</td>
<td>928.8</td>
</tr>
<tr>
<td>20</td>
<td>1413.99</td>
<td>276.856</td>
<td>1107.424</td>
</tr>
</tbody>
</table>

---

**Graphs:**

- **Total Delay**
- **Queuing Delay (Truck)**
- **Queuing Delay (Car)**
- **Moving Delay (Truck)**
- **Moving Delay (Car)**

**Percentage of Trucks vs. Total Delay:**

- Delay (veh-h) vs. Percentage of Trucks
  - Total Delay:
  - Queuing Delay (Truck):
  - Queuing Delay (Car):
  - Moving Delay (Truck):
  - Moving Delay (Car):

**Delay (min.) vs. Vehicle:**

- Delay (min.) vs. Vehicle
  - 0 to 10001
  - 2001 to 3001
  - 4001 to 5001
  - 5001 to 6001
  - 7001 to 8001
  - 9001 to 10001
Figure 7. Delay vs. truck percentage.

Figure 8. Queue delay vs vehicle arrival (0% truck).

Figure 9. Queue delay vs vehicle arrival (5% truck).

Figure 10. Queue delay vs vehicle arrival (10% truck).
Figure 11. Queue delay vs vehicle arrival (15% truck).

Figure 12. Queue delay vs vehicle arrival (20% truck).
FORMULATING COSTS & MODELS

Economic Implications and Model
One should note the obvious; movement between points takes time. An individual who travels routinely to work and back budgets for travel time based on experience (allowing a variance, \( v \)). Thus, he expects that it will take \( X \pm v \) minutes to travel and he plans accordingly. However, if the trip breaks away from the travel pattern and takes more than this budgeted amount of time, the individual becomes agitated. Obviously, more so if it takes even more time.

Normal road travel condition could change due to man-made interference. Introducing a work zone along a route could change the trip time. The additional time beyond the budgeted time is the issue of concern. This additional time and its value are the subject of this study. There is also the indirect cost of fuel, etc. but we do not address them. Thus, lane closing could impact directly on this additional time. How does the timing of lane closing effect the trip time during the course of a 24-hour daily cycle? Is it uniform?

In reviewing this issue one finds that there are various studies to consider. However, many of them deal with the UK and other countries, not the US.\(^{(23)}\) Very few address all the issues of our concern. Thus, we follow with a review of the literature, present the model developed, and provide a methodology that provides an answer to improve transport efficiency.

Background
Lane closing effects all road users. The economic impact depends on the economic agents’ socio-economic and demographic characteristics, time of day, duration of lane closing, type of economic activity the agents are engaged in, road characteristics, etc. In order to determine the economic impact of lane closing on economic agents, one needs to know more than the characteristics of the agents. These characteristics have a direct impact on the economic value the agents place on time and a direct cost.
In unraveling those variables, several issues need to be considered. One needs to know if the driving is for leisure or is it work related? Is traveling through the restricted area a part of the work assignment? Is it traveling to or from work? Is the traveling occasional? The analysis will concentrate on additional travel time and cost due to lane closing. This could be based on the time value of travel in general. However, it is preferred if the economic agents’ distribution by group and income is available. Thus, it will be considered.

Two quite distinct methodologies have been developed for time evaluation, the distinction being made between time saved in the course of employment and time saved during non-work travel. The distinction is drawn because work time involves lorry drivers, seamen, pilots, etc., not simply in giving up leisure but also in incurring some actual disutility from the work undertaken. Hence, if they could do the same amount of work in less time, these people would be able to enjoy more leisure and also suffer less disutility. (24)

**Economic Analysis**

Using the traditional economic idea that workers are paid according to the value of their marginal revenue product (MRP), the employer will pay them for the marginal time in addition to doing the job. Thus, one can equate the marginal savings with the marginal wage rate. A different way considers the opportunity cost of time. Delays in getting to work would reduce production. A delay in executing work reduces productivity. Thus, the value of the reduced output is the value of lost time. Again, this associates the MRP and marginal wage paid and can be assumed equal to the full value of the hourly wage. Thus, “Official UK policy is to value work travel time savings as the national average wage for the class of transport user concerned plus the associated cost of social insurance paid by the employer and a premium added to reflect overhead.” (24)
The above, assumed by the employer, implies that employees perceive the disutility of travel time at work hours to be equal to the disutility of work. However, employees might not see it this way. They might consider it a break. Therefore, the value of time should be less than the wage rate base. Others might perceive that it is the opposite. This argument makes it difficult using wage rate as a base.

A different approach to determine the value of non-work travel time is rooted in the behavioral approach. This is based on revealed-preference and stated-preference approaches. The revealed-preference approach considers a trade-off where one is willing to pay in order to save time. This could provide an implicit value of time. Empirical studies frequently use this approach. The trade-off variables frequently used include: route, mode of travel, speed of travel, location of home and work, and destination of travel. Most of these studies address commuters as their subjects.

Using this approach, Waters reports the following (table 23).\(^{(25)}\) The most striking outcome that could be used for the purpose of evaluating lane closing on an interstate highway is reported in the USA “interurban (auto)” listings. Waters shows that the value of time as percent of wage rate was 86 percent (1970) and 82 percent (1987). In the UK it was 73 percent (1975). For USA “leisure (auto)” the value was 63 percent (1975) and 52-254 percent (1985). In Canada it was 116-165 percent (1990).

Using these figures based on the revealed preference approach, a conservative value of time as percent of wage rate would be about 75 percent or better.
The stated-preference approach is where travelers are asked hypothetical questions about the trade-offs between modes of transportation that they would be willing to make. Overall, travelers revealed that they value non-work travel time at 15-45% of hourly income. However, Thomas (1967) found, using USA data, that non-work travel time is valued at 40-83% of average hourly income. Thus, the behavioral approach suggests that the non-work timesaving is valued below average hourly income. In the USA it is also conservative to use the \textit{value of time as percent of wage rate} to be 75 percent.
The value of time should be part of the standard transport analysis for the purpose of investment analysis. This is the case in the UK, which uses information developed by the UK Department of the Environment, UK Department of Transport and the COBA 9 Manual. In the US, reviewing our survey comments indicates that frequently government agencies used the 1977 “Red Book” in estimating time value. The frequently used figure stated in the survey was $6 an hour. It seems to be too low. Economists frequently used one half of the hourly salary for travel time to work.

In general, an economic agent’s value of time differs by activity and income. For example, an hourly paid trucker who is hauling goods is a known expense to his employer. The trucking association calculates the hourly rate for a for-hire trucker at $21 an hour (30 percent of total) or $28.35 with 35 percent overhead, and the independent truckers calculate their value at $27.50 an hour (70 percent of total) or $37.125 with 35 percent overhead. This does not include fuel or other indirect expenses. However, the trucking associations value their time at about $50 an hour. It is difficult to determine the value of an executive traveling to or back from work. Obviously, it will be different than the time of a common laborer. The average hourly income of executive groups ranges from $20 to $40 and even more depending on the executive. Thus, road users should be distinguished by income groups. The time value for each group needs to be estimated using traffic reports and/or surveys. Each group size needs to be estimated to determine its weight in the total. Thus, a weighted average needs to be established to estimate the lane closing social cost. The estimates will have to be sensitive to the time of day as well.

In the absence of this overall weighted average, one looks for some other base. Since “production workers’ hourly earnings” are reported cyclically, one can use them as a base. This value, reported for a long time, is over $14 an hour. However, there are also those who earn minimum wage and those who earn much more and those who travel for leisure where their time value is very high. Could one use the government

1 A Search of “Hourly Wages” in the internet site: WWW. BLS.gov for NJ
allowance of 31.5¢ a mile to be an indicator for the value of time? Assuming that this is reasonable, a 60-mile an-hour trip on the interstate would equal to $18.90 in an hour.

Observing human behavior illustrates the individual sensitivity to the effective use of time. Thus, it impacts this study and the value of time. An observer of human nature would notice that individuals try to conserve travel time through the increase in use of telecommuting and the Internet. Vehicles are allowed to use higher speeds, better highways, public transportation and communications along the highway to reduce travel time and congestion. The use of cars has increased because people perceive the cars as an extension of home. Supporting evidence of this trend could be noticed in the increase of income and the increase of car use, more expensive vacations, and the increased use of restaurants. The aggregate travel time expenditure on travel per head increased roughly proportional to income.\(^{(27)}\) All are indications of premium value on time.

In conclusion, one can use the average hourly earning of $14 as a minimum figure. The amount should be larger, probably close to an average of $20 an hour. Thus, using the figure established before for the value of time as percent of wage rate of 75% suggests that an hour delay on the road is equal to at least $10.50, but more likely $15 an hour, given the composition of drivers on the NJ highway.

The actual value of delay time should be reviewed very closely since it cuts into work time at full cost. Thus, one should consider delayed travel time at 100% of value of time at work.

**Methodology**

Using the principles stated above, one can establish the following methodology:

---

\(^{(27)}\) Various issues of *NJ Economic Indicators*, and various issues of *NJ Department of Labor News Releases*. 

51
In general, without distinguishing between income groups and with an average hourly earning, we get:

Total Delay Cost = Delay time per vehicle x average earning per minute x number of vehicles or

\[ DC = \frac{DT}{V} \times \frac{AHE}{60} \times n \]  \hspace{1cm} (19)

Where:
- \( DC \) = Delay Cost
- \( DT \) = Delay Time
- \( V \) = Vehicle
- \( AHE \) = Average Hourly Earning
- \( n \) = number of vehicles

Alternatively, using a more detailed method which distinguishes between income groups, it modifies the above by including the average income per group and its weight.

Total Delay Cost = Delay time per vehicle x Sum [average hourly earnings per income group/60 minutes x number of vehicles in this income group] or

\[ DC = \frac{DT}{V} \times \sum_{i=1}^{k} \left( \frac{AHEG_i}{60} \times wn_i \right) \]  \hspace{1cm} (20)

Where:
- \( AHEG \) = average hourly earning per income group
- \( wn \) = number of vehicles in the income group
- \( i \) is from 1 to \( k \) groups

In both cases, the delay is a function of: time of day, day of the week, number of lanes closed, road characteristics and grade, etc.
Illustration

Using the example of a 2-lane road with one lane closed along a 0.5-mile work zone with work zone capacity of 1450 pcph and 10 hours duration at an average approach speed of 70mph and average work speed of 50mph, before (tables 15 and 22), the queuing and moving delays were calculated for a total delay. The delays are subject to the number of trucks in the system. Using these results and the value of time as percent of wage rate at the range of $10.5 to $15 an hour, one can estimate the cost of the delay.

Table 24. Total queuing and moving delay costs

<table>
<thead>
<tr>
<th>Percentage Truck</th>
<th>Total Delay (veh-hr)</th>
<th>Cost per hour @</th>
<th>Queuing Delay</th>
<th>Moving Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$6.00*</td>
<td>$10.50</td>
<td>$15.00</td>
</tr>
<tr>
<td>0</td>
<td>449.43</td>
<td>2696.58</td>
<td>4719.02</td>
<td>6741.45</td>
</tr>
<tr>
<td>5</td>
<td>646.25</td>
<td>3877.50</td>
<td>8061.97</td>
<td>10824.69</td>
</tr>
<tr>
<td>10</td>
<td>865.67</td>
<td>5194.02</td>
<td>12508.93</td>
<td>16014.90</td>
</tr>
<tr>
<td>15</td>
<td>1122.42</td>
<td>6734.52</td>
<td>18435.69</td>
<td>22728.93</td>
</tr>
<tr>
<td>20</td>
<td>1413.99</td>
<td>8483.94</td>
<td>26017.40</td>
<td>31107.70</td>
</tr>
</tbody>
</table>

*The $6 an hour is used across the board.
Thus, without trucks in the system the cost ranges between $4,719 and $6,741 an hour (table 24). At the present time with $6 an hour charges, the lane closing charges would have been $2,696.58, which is only 57 percent of the calculated minimum. However, one can also show that the cost is much larger with trucks in the system. Taking the average scenario of 10% trucks with an opportunity cost per truck of $50 an hour and cost per other vehicle of $15 an hour, the total delay cost can reach $16,014.84.\(^3\) This is 3.4 times larger than the smaller amount before and almost 6 times larger than the present practice.

Under no circumstances should the road delay charges be less than the minimum of $4,719 per hour. This amount should be modified depending on the type of road and the road use. The road charges should reflect the social cost of closing a lane. Even the minimum charges will recognize this economic cost and provide for better distribution of resources.

In order to determine the cost more accurately one needs to survey the road users in order to determine:

\(^3\) Determined by \(83.596 \times 50 + 752.364 \times 15 + 2.971 \times 50 + 26.739 \times 15 = 16,014.84\)
• the mix of users between trucks, buses, and cars,
• the income groups of each user category,
• the congestion level per time of day, and
• the vehicle hour delay per hour of the day.

Thus, there is a need to obtain a weighted average of users and their value of time to further modify the calculation.
SUMMARY & CONCLUSIONS

Summary & Conclusions
The methodology defined in this research considers the traffic characteristics of specific work zone scenarios and highway characteristics in order to estimate traffic delays for alternative scenarios. CORSIM, a microscopic traffic simulation model, was used to mimic the traffic operation at work zones and thus estimate queuing delays at work zone. Specifically, queuing delay was estimated by combining the simulation results and a deterministic model, while a mathematical model was developed for estimating moving delay.

Lane occupancy charges were then defined using the delay as a function of: time of day, day of the week, number of lanes closed, road characteristics and grade, etc. In addition the methodology for defining lane occupancy charges considers traffic characteristics and demographics of road users income. Alternatively, average values of income may be considered for simplifying the analysis. As it appears from the illustrative example, the methodology is sensitive to the percentage of trucks using the roadway since delays on the moving of goods will provide significant impact on both traffic and revenue loss.

As indicated in chapter 4, in order to determine the lane occupancy charges accurately, one needs to survey the road users in order to determine:

- the mix of users between trucks, buses and cars,
- the income groups of each user category,
- the congestion level per time of day,
- the vehicle hour delay per hour of the day.

Alternatively a weighted average of users and their value of time may be used to simplify the calculations.
The methodology developed and presented herein is flexible enough to consider any model and eventual assumptions that NJDOT engineers feel better represent the specific conditions where lane occupancy charges are applied.
REFERENCES


Bibliography


23. NJ Department of Labor News Releases. 1998

24. NJ Economic Indicators. 1998


APPENDIX

STATE RESPONSES

Oregon DOT

Use of Lane Occupancy/Rental Charges

Please check all that apply.

1. Does your agency use _X_ or plan to use _X_ occupancy charges for lane closure during construction, maintenance, or rehabilitation?

   In use   Plan to use
   a. construction ___ X ___  ___ X ___
   b. maintenance ___ ___  ___ ___
   c. rehabilitation ___ ___  ___ ___

2. Please describe the characteristics of lane rental charges including lane closure characteristics (i.e., one lane, one lane and a shoulder, two lanes, e.t.c.), duration and charges. Please be specific and include any additional documentation if necessary)

   As described in TR News, September – October 1992, reported below:

   **TABLE 1 Daily Lane Rental Charges**

<table>
<thead>
<tr>
<th>CLOSURE/OBSTRUCTION</th>
<th>RENTAL CHARGE ($/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One lane</td>
<td>20,000</td>
</tr>
<tr>
<td>One shoulder</td>
<td>5,000</td>
</tr>
<tr>
<td>One lane and shoulder</td>
<td>25,500</td>
</tr>
<tr>
<td>Two lanes</td>
<td>45,000</td>
</tr>
<tr>
<td>Two lanes and shoulder</td>
<td>50,000</td>
</tr>
</tbody>
</table>

   **TABLE 2 Rental Charge Assessed Hourly**

<table>
<thead>
<tr>
<th>HOURLY RENTAL CHARGE ($/hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:30-9:00 am,</td>
</tr>
<tr>
<td>Closure/Obstruction</td>
</tr>
<tr>
<td>&amp; 3:00-6:00 p.m</td>
</tr>
<tr>
<td>All Other Hours</td>
</tr>
<tr>
<td>One lane</td>
</tr>
<tr>
<td>2,000</td>
</tr>
<tr>
<td>500</td>
</tr>
<tr>
<td>One shoulder</td>
</tr>
<tr>
<td>500</td>
</tr>
<tr>
<td>125</td>
</tr>
<tr>
<td>One lane and shoulder</td>
</tr>
<tr>
<td>2,500</td>
</tr>
<tr>
<td>625</td>
</tr>
<tr>
<td>Two lanes</td>
</tr>
<tr>
<td>4,500</td>
</tr>
<tr>
<td>1,250</td>
</tr>
<tr>
<td>Two lanes and shoulder</td>
</tr>
<tr>
<td>5,000</td>
</tr>
<tr>
<td>1,375</td>
</tr>
</tbody>
</table>

3. Are lane rental charges applicable to all _X_ or specific _X_ freeway/highway projects?
   (Please check one)

   a. If used on specific projects please identify criteria for selecting projects:

64
(please describe project characteristics)

Project Type ______Freeway________________________________________________________

Project Size_______$20M________________________________________________________

Location________________________________________________________

Traffic Characteristics________________________________________________________

Other__________________________________________________________

4. Are lane rental charges applicable to all _ or specific _No_ projects in arterial roads? (Please check one)
   a. If used on specific projects please identify criteria on how projects are selected: (please describe)

Project Type _______________________________________________________

Project Size________________________________________________________

Location__________________________________________________________

Traffic Characteristics_______________________________________________

5. Lane charges were developed/defined considering the impact of lane closure to the following parameters:
   Please check all that apply 
   Complete section
   a. _____Impact on traffic characteristics (traffic measurements) A
   b. _____Traffic simulation analysis A
   c. _____Impact on accidents in work zones A
   d. ___X__Impact on user costs B
   e. _____Impact on agency costs B
   f. _____Impact on businesses B
   g. _____Set arbitrarily (please specify rational)……………………………………
      …………………………………………………………………………………

SECTION A – TRAFFIC ANALYSIS AND TRAFFIC SIMULATION

1. Does your agency use _X_ or plan to use _X_ simulation tools to estimate vehicle delays caused by lane closures on highways/arterials?
   In use Plan to use
   a. Highways __X__ __X__
   b. Arterials ______

If not, please describe what methods your agency employs:

2. Among the following factors, which one do you think significantly influences vehicle delays in the vicinity of work zone areas on highways or arterials? Please check all that apply.
   Significantly Moderate Not at all
   a. Speed reduction ________ __X__ ______
   b. Work zone length ________ __X__ ______
   c. # of lane closures/total lanes ___X__ ______

65
3. How much does accident rate increase in the vicinity of work zone areas compared to the similar cases with no work zone areas? (check one)
   a. _____ 0 – 10 %
   b. _____ 10 – 20 %
   c. _____ 20 – 30 %
   d. _____ 30 – 40 %
   e. _____ Other (please specify) ____________________

4. In your experience, at which place accidents happen more frequently than at others? (check one)
   a. _____ Prior to work zone areas
   b. _____ Front of work zone areas
   c. _____ Middle of work zone areas
   d. _____ End of work zone areas

5. What are the common work zone configurations on highways/arterials? Roadway shoulder can be an opened lane, if any. Please check any scenario that applies.

<table>
<thead>
<tr>
<th>Highways</th>
<th>Arterials</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 2-lane mainline with 1-lane open</td>
<td>___ X ___ __ X _</td>
</tr>
<tr>
<td>b. 3-lane mainline with 1-lane open</td>
<td>__</td>
</tr>
<tr>
<td>c. 3-lane mainline with 2-lane open</td>
<td>__ X __ __ X __</td>
</tr>
<tr>
<td>d. 4-lane mainline with 2-lane open</td>
<td>__</td>
</tr>
<tr>
<td>e. 4-lane mainline with 3-lane open</td>
<td>_ X ___ __ X _</td>
</tr>
<tr>
<td>f. Other (specify) <em><strong>use shoulder to replace lane</strong></em>___________________</td>
<td></td>
</tr>
</tbody>
</table>

SECTION B – USER AND AGENCY COST ANALYSIS

1. Does your agency conduct economic analysis on the impact of lane closure on construction cost _____, user cost _____, surrounding businesses _____, construction cost _____?
   _____ Yes    _____ No

For any items checked above please provide further details

……Economic Analysis based on 1977 AASHTO publication “A manual on user benefit analysis of highway and bus transit improvements”

...........................................................................................................................................

2. Are these economic analysis been used for defining lane closure charges?
   ___X___ Yes    _____ No
   (if no, please go to question2)
Please indicate method and type of charges considered (any relevant documentation will be helpful)

………. As described in TR News, September – October 1992…………………
……………………………………………………………………………………………….

3. Are different lane closure charges been used for different construction/maintenance activities, type of highways, and/or locations?

___ Yes ___X__ No

If yes please describe
……………………………………………………………………………………………………
……………………………………………………………………………………………….

4. If travel delays are considered in defining lane closure charges

a) what is an acceptable (normal) delay? (before charges are levied)

…….None…………………………………………………………………………………………

b) how is the value of time been determined for individuals caught in the delay?

…………………………………………………………………………………Used $6 per vehicle/hour of delay for the……………………………………...

………………………………………………………………………………………………

c) how is the value of wear and tear been determined (quantified) for the individuals caught in the delay?

………………………………………………………………………………………………

5. Are accidents, or speeding violations been considered a result of lane closure delays?

___ Yes ___X__ No

6. Please indicate the sources of economic data for the analysis and identify how they are collected (in house, outside contracts, other)?

……………………………………………………………………………………………………
as above……………………………………………………………………………………

……………………………………………………………………………………………….

7. Please indicate how the effects of lane closure on user travel time and vehicle operations cost are evaluated?

(please indicate type of analysis and models used - long-term vs short-term economic models/analysis)

……………………………………………………………………………………………………
as above……………………………………………………………………………………

……………………………………………………………………………………………….

8. Is simulation been used in the economic analysis? (please be specific)

……………………………………………………………………………………………………
9. In evaluating the effects of lane closure are any field data being used? (please identify type of data and frequency)


10. Did any studies examined the trade off between day/night (peak/off peak) maintenance closure and construction schedule/progress and traffic demand? (please be specific)


11. Were any labor difficulties identified due to the work at night and/or off peak hours? (please explain)


12. Was there any additional cost related to the work performed at night and off peak hours?


13. To what degree was the overall project cost increased due to night and off peak hours work?


14. Were there any effects of traffic spill-over to near-by roads examined due to lane closures?


15. Were there any traffic diversion strategies and related benefit/cost implications examined?


16. What are the typical complains and/or feedback/suggestions from drivers, local community, local businesses, others, due to road closures?
17. What type of roads may be considered for alternative routing in the events of lane closure?
………………………………………………………………………………………………………

...Arterial roads that have capacity to accommodate the additional traffic demand
………………………………………………………………………………………………………

18. Are there any environmental considerations related to lane closure? (if yes please identify how they are quantified)
……………………………………………………………………………………………………

19. Are any innovative construction and monitoring methods been used for reducing construction time?
……….Use of cost + time, A+B method of contract bidding………………………………
……………………………………………………………………………………………………

20. For projects where lane rental was used was the total duration of the construction projects reduced?
……………………………………………………………………………………………………

Arkansas State Highway and Transportation Department

Use of Lane Occupancy/Rental Charges

Please check all that apply.
1. Does your agency use _X__ or plan to use ___ occupancy charges for lane closure during construction, maintenance, or rehabilitation?
   In use Plan to use
   a. construction_____ _____ ____ _____
   b. maintenance_____ _____ ____ _____
   c. rehabilitation_____ _X_ _____ ____

2. Please describe the characteristics of lane rental charges including lane closure characteristics (i.e., one lane, one lane and a shoulder, two lanes, e.t.c.), duration and charges. Please be specific and include any additional documentation if necessary)

___$ amount based on road users cost. Normally about $2,000/day, and as much as $17,000/day ____________________________________________
3. Are lane rental charges applicable to all \_X\_ or specific \_ \_ freeway/highway projects?
(Please check one)

a. If used on specific projects please identify criteria for selecting projects:
(please describe project characteristics)

   Project Type _______________________________________________________

   Project Size________________________________________________________

   Location__________________________________________________________

   Traffic Characteristics_______________________________________________

   Other________________________________________________________________

4. Are lane rental charges applicable to all \_ \_ or specific \_ \_ projects in arterial roads?
(Please check one)

a. If used on specific projects please identify criteria on how projects are selected:
(please describe)

   Project Type _______________________________________________________

   Project Size________________________________________________________

   Location__________________________________________________________

   Traffic Characteristics_______________________________________________

5. Lane charges were developed/defined considering the impact of lane closure to the following parameters:

   Please check all that apply

   h. \_\_\_Impact on traffic characteristics (traffic measurements) \_A

   i. \_\_\_Traffic simulation analysis \_A

   j. \_\_\_Impact on accidents in work zones \_A

   k. \_X\_\_Impact on user costs \_B

   l. \_\_\_Impact on agency costs \_B

   m. \_\_\_Impact on businesses \_B

   n. \_\_\_Set arbitrarily (please specify rational)...........................................

   o. \_\_\_Other (please specify rational)......................................................

   .............................................................................................................


SECTION B – USER AND AGENCY COST ANALYSIS

1. Does your agency conduct economic analysis on the impact of lane closure on construction cost \_ \_ \_ \_ , user cost \_X\_\_ \_ , surrounding businesses \_ \_ \_ , construction cost \_ \_ \_ ?
X Yes  No

For any items checked above please provide further details

additional user cost due to construction

2. Are these economic analysis been used for defining lane closure charges?

X Yes  No
(if no, please go to question2)

Please indicate method and type of charges considered (any relevant documentation will be helpful)

daily additional road user cost based on decreased travel speed, increased travel time, increased accident costs as defined in red book - 1977 AASHTO publication “A manual on user benefit analysis of highway and bus transit improvements”

3. Are different lane closure charges been used for different construction/ maintenance activities, type of highways, and/or locations?

X Yes  No
If yes please describe

yes, based on speed limit, construction zone length, ADT, % trucks

4. If travel delays are considered in defining lane closure charges

a) what is an acceptable (normal) delay? (before charges are levied)

delay under no construction scenario

b) how is the value of time been determined for individuals caught in the delay?

using the red book

c) how is the value of wear and tear been determined (quantified) for the individuals caught in the delay?

5. Are accidents, or speeding violations been considered a result of lane closure delays?
6. Please indicate the sources of economic data for the analysis and identify how they are collected (in house, outside contracts, other)?

7. Please indicate how the effects of lane closure on user travel time and vehicle operations cost are evaluated? (please indicate type of analysis and models used - long-term vs short-term economic models/analysis)

   Based on differences in travel speeds.

8. Is simulation been used in the economic analysis? (please be specific)

9. In evaluating the effects of lane closure are any field data being used? (please identify type of data and frequency)

   Traffic counts collected before but not during construction.

10. Did any studies examined the trade off between day/night (peak/off peak) maintenance closure and construction schedule/progress and traffic demand? (please be specific)

11. Were any labor difficulties identified due to the work at night and/or off peak hours? (please explain)

   Related to equipment failure.

12. Was there any additional cost related to the work performed at night and off peak hours?

13. To what degree was the overall project cost increased due to night and off peak hours work?

14. Were there any effects of traffic spill-over to near-by roads examined due to lane closures?
Yes. Temporary stop placed at intersection on alternative route.

15. Were there any traffic diversion strategies and related benefit/cost implications examined?

……on one occasion, a small % of traffic / up to capacity/ was detoured around the site and the increased
distance and lower speed was added to the road user
cost……………………………………………………………………………………………

16. What are the typical complaints and/or feedback/suggestions from drivers, local community, local businesses, others, due to road closures?

……………………………………………………………………………………………

17. What type of roads may be considered for alternative routing in the events of lane closure?

……………………………………………………………………………………………

……the most direct parallel route………………………………………………
……………………………………………………………………………………………

18. Are there any environmental considerations related to lane closure? (if yes please identify how they are quantified)

……………………………………………………………………………………………

19 Are any innovative construction and monitoring methods been used for reducing construction time?

……………………………………………………………………………………………

……incentive/ disincentive clauses……………………………………
……………………………………………………………………………………………

20. For projects where lane rental was used was the total duration of the construction projects reduced?

……………………………………………………………………………………………

……Yes……………………………………………………………………………………
……………………………………………………………………………………………

21. Is there any lane closure strategy and computer programs (such as LANCLOSE for example) been used?

……………………………………………………………………………………………

……No……………………………………………………………………………………
……………………………………………………………………………………………

22. Does better information to drivers, (through road displays and/or ITS displays for example) reduce the effects of lane closure on traffic and the overall project cost?

…….variable signs were used to direct traffic………………………………………

Wisconsin DOT
Use of Lane Occupancy/Rental Charges

Please check all that apply.

1. Does your agency use _)X_ or plan to use ___ occupancy charges for lane closure during construction, maintenance, or rehabilitation?

   In use      Plan to use
   a. construction_____ _)X______ __
   b. maintenance _____ _____ __
   c. rehabilitation_____ _)X______ __

2. Please describe the characteristics of lane rental charges including lane closure characteristics (i.e., one lane, one lane and a shoulder, two lanes, e.t.c.), duration and charges. Please be specific and include any additional documentation if necessary)

   ___ used on small number of projects where one lane had to be closed. On one project, $2,500/day rental charge was assessed. On another an hourly rate of $100 to $400 /hour was used per lane closure.______________________________

3. Are lane rental charges applicable to all ___ or specific _)X_ freeway/highway projects?
   (Please check one)
   a. If used on specific projects please identify criteria for selecting projects:
      (please describe project characteristics)

      Project Type __Freeway resurfacing/rehabilitation projects at discretion of design engineer____________________________

      Project Size____________________________________________________

      Location________________________________________________________

      Traffic Characteristics__Vehicle volumes exceed capacity of the freeway with the lane closure at certain times of the day or week._____  
      Other____________________________________________________________

4. Are lane rental charges applicable to all ___ or specific _)X_ projects in arterial roads?
   (Please check one)
   a. If used on specific projects please identify criteria on how projects are selected:
      (please describe)

      Project Type __Resurfacing/rehabilitation project at discretion of design engineer
Traffic Characteristics: Vehicle volumes exceed capacity of the roadway with lane closure at certain times of the day or week.

5. Lane charges were developed/defined considering the impact of lane closure to the following parameters:

<table>
<thead>
<tr>
<th>Please check all that apply</th>
<th>Complete section</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. <strong>X</strong> Impact on traffic characteristics (traffic measurements)</td>
<td>A</td>
</tr>
<tr>
<td>b. <strong>X</strong> Traffic simulation analysis</td>
<td>A</td>
</tr>
<tr>
<td>c. ____ Impact on accidents in work zones</td>
<td>A</td>
</tr>
<tr>
<td>d. <strong>X</strong> Impact on user costs</td>
<td>B</td>
</tr>
<tr>
<td>e. ____ Impact on agency costs</td>
<td>B</td>
</tr>
<tr>
<td>f. ____ Impact on businesses</td>
<td>B</td>
</tr>
<tr>
<td>g. ____ Set arbitrarily (please specify rationale)</td>
<td></td>
</tr>
<tr>
<td>h. ____ Other (please specify rationale)</td>
<td></td>
</tr>
</tbody>
</table>

6. What was the effectiveness of lane occupancy charges?

<table>
<thead>
<tr>
<th>Please identify impact and method used to evaluate effectiveness</th>
<th>Number of projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Reduced traffic delays</td>
<td>Highways 2  Arterials 1</td>
</tr>
<tr>
<td>____ Very few instances of excessive delays during the projects</td>
<td></td>
</tr>
<tr>
<td>b. Reduced accidents</td>
<td>Highways  ____ Arterials  ____</td>
</tr>
<tr>
<td>Please identify impact and method used to evaluate effectiveness</td>
<td></td>
</tr>
<tr>
<td>c. Reduced cost related to traffic control</td>
<td>Highways 2  Arterials 1</td>
</tr>
<tr>
<td>Please identify impact and method used to evaluate effectiveness</td>
<td>The number of projects and/or duration of lanes closures was reduced, so traffic control devices were placed less often and for shorter time periods.</td>
</tr>
<tr>
<td>d. Reduced actual construction cost</td>
<td>Highways  ____ Arterials  ____</td>
</tr>
<tr>
<td>Increased actual construction cost</td>
<td>Highways  ____ Arterials  ____</td>
</tr>
<tr>
<td>Please identify impact and method used to evaluate effectiveness</td>
<td></td>
</tr>
<tr>
<td>e. Reduced project bid cost</td>
<td>Highways  ____ Arterials  ____</td>
</tr>
<tr>
<td>Increased project bid cost</td>
<td>Highways  ____ Arterials  ____</td>
</tr>
<tr>
<td>Please identify impact and method used to evaluate effectiveness</td>
<td></td>
</tr>
</tbody>
</table>
f. Reduced project completion time

Please identify impact and method used to evaluate effectiveness______________

Contractors made effort to expedite the work, Coordination of the work of multiple subcontractors was improved.

Number of projects

g. Reduced business losses

Please identify impact and method used to evaluate effectiveness______________

h. Promoted the use of Innovative Construction Techniques

Please specify __ see response to f. ________________

i. Other Effects (please specify)

SECTION A – TRAFFIC ANALYSIS AND TRAFFIC SIMULATION

1. Does your agency use ___X___ or plan to use _____ simulation tools to estimate vehicle delays caused by lane closures on highways/arterials?

<table>
<thead>
<tr>
<th></th>
<th>In use</th>
<th>Plan to use</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Highways</td>
<td><em><strong>X</strong></em></td>
<td>___</td>
</tr>
<tr>
<td>b. Arterials</td>
<td>___</td>
<td>___</td>
</tr>
</tbody>
</table>

If not, please describe what methods your agency employs:

If simulation tools are not used, manual comparisons of hourly volume to work zone capacity are made for some projects. ____________________________

2. Among the following factors, which one do you think significantly influences vehicle delays in the vicinity of work zone areas on highways or arterials? Please check all that apply.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Significantly</th>
<th>Moderate</th>
<th>Not at all</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Speed reduction</td>
<td><em><strong>X</strong></em></td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>b. Work zone length</td>
<td>___</td>
<td><em><strong>X</strong></em></td>
<td>___</td>
</tr>
<tr>
<td>c. # of lane closures/total lanes</td>
<td><em><strong>X</strong></em></td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>d. Grade percentage</td>
<td>___</td>
<td><em><strong>X</strong></em></td>
<td>___</td>
</tr>
<tr>
<td>e. Warning sign location</td>
<td>___</td>
<td><em><strong>X</strong></em></td>
<td>___</td>
</tr>
<tr>
<td>f. Heavy vehicle percentage</td>
<td>___</td>
<td><em><strong>X</strong></em></td>
<td>___</td>
</tr>
<tr>
<td>g. Other (please specify)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proximity of the active work area to traffic. Presence of ramps near the end of lane closure tapers.

3. How much does accident rate increase in the vicinity of work zone areas compared to the similar cases with no work zone areas? (check one)

a. _____ 0 – 10 %
b. _____ 10 – 20 %
c. _____ 20 – 30 %
d. __X__ 30 – 40 %
e. _____ Other (please specify) ____________________

4. In your experience, at which place accidents happen more frequently than at others? (check one)
a. __X__ Prior to work zone areas (at tapers and on approach to lane closure tapers)
b. _____ Front of work zone areas
c. _____ Middle of work zone areas
d. _____ End of work zone areas

5. What are the common work zone configurations on highways/arterials? Roadway shoulder can be an opened lane, if any. Please check any scenario that applies.

<table>
<thead>
<tr>
<th>(number of lanes in each direction)</th>
<th>Highways</th>
<th>Arterials</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 2-lane mainline with 1-lane open</td>
<td><strong>X</strong></td>
<td><strong>X</strong></td>
</tr>
<tr>
<td>b. 3-lane mainline with 1-lane open</td>
<td><strong>X</strong></td>
<td>___</td>
</tr>
<tr>
<td>c. 3-lane mainline with 2-lane open</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>d. 4-lane mainline with 2-lane open</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>e. 4-lane mainline with 3-lane open</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>f. Other (specify) __________________</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. What is the average vehicle speed within a work zone on level terrain highways/arterials? Please specify. (estimates)

<table>
<thead>
<tr>
<th>Highways</th>
<th>Arterials</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 2-lane mainline with 1-lane open :</td>
<td><strong>X</strong></td>
</tr>
<tr>
<td>b. 3-lane mainline with 1-lane open :</td>
<td><strong>X</strong></td>
</tr>
<tr>
<td>c. 3-lane mainline with 2-lane open :</td>
<td>___</td>
</tr>
<tr>
<td>d. 4-lane mainline with 2-lane open :</td>
<td>___</td>
</tr>
<tr>
<td>e. 4-lane mainline with 3-lane open :</td>
<td>___</td>
</tr>
</tbody>
</table>

7. According to your experience, what is the maximum traffic volume (number of vehicles per hour per lane) through work zones you observed? Please specify.

___________1600_________________ vphpl.

8. What is the percentage of roadway capacity reduction (vphpl) that you experienced in work zone areas? (check one for each scenario)

<table>
<thead>
<tr>
<th>Capacity Reduction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-20</td>
</tr>
<tr>
<td>a. 2-lane mainline with 1-lane open :</td>
</tr>
<tr>
<td>b. 3-lane mainline with 1-lane open :</td>
</tr>
<tr>
<td>c. 3-lane mainline with 2-lane open :</td>
</tr>
<tr>
<td>d. 4-lane mainline with 2-lane open :</td>
</tr>
<tr>
<td>e. 4-lane mainline with 3-lane open :</td>
</tr>
</tbody>
</table>

9. For the case of 3-lane mainline with 2 opened lanes, does the following lane closure have different impacts on vehicle delays?
   I. Right lane closure
   II. Middle lane closure
   III. Left lane closure
   a. __X__ Yes   b. _____No
If yes, please explain: Middle lane closure will have lower vehicle capacity and potentially higher vehicles delays due to motorist confusion/unfamiliarity, and active work area adjacent to each open lane.

10. If there is a reason to stop and delay maintenance/construction activities in a work zone area, what is the maximum time that it takes to reopen the lanes to traffic? (Check one)
   a. ____ 0 – 20 minutes
   b. X ___ 20 – 40 minutes
   c. ___ 40 – 60 minutes
   d. ____ Other (specify) _________________________________

11. For the projects that lane occupancy charges apply, what is the maximum percentage of heavy vehicles on highways or arterials? (check one)

   
   
   # projects   % heavy vehicles
   a. ________   0-5 %
   b. ________   5-10%
   c. ___1____   10-15%
   d. ___2____   15-20 %
   e. ________   Other (specify)__________________________________

12. What is the range of work zone length that you typically encounter? Please specify.

   a. short-term project (< 24 hours) : __ up to 3 miles__ ~ ___15,000___ ft.
   b. long-term project (> 24 hours) : __ up to 10 miles__ ~ ___50,000___ ft.

13. For the cases of (a) 3-lane mainline with 1-lane open and (b) 4-lane mainline with 2-lane open, shown in the following figure, please specify the length of the transition section prior to the work zone areas for the various speed limits.

   L
    _
    n
   _g
   _h
   _t
   _n
   _s
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n
   _s
   _t
   _i
   _o
   _n
   _s
   _c
   _t
   _i
   _o
   _n

   a. 3-lane mainline with 1-lane open : 980 2160 2640 2640 ft.
   b. 4-lane mainline with 2-lane open : 980 2160 2640 2640 ft.

14. Does your agency uses the “Manual on Uniform Traffic Control Devices (MUTCD)” for determining warning sign locations in the vicinity of work zone areas?

   a. ___X___ Yes   b. _____ No

   If no, please describe what methods your agency employs:

   Also may place additional warning signs further in advance, especially on more congested roadways where vehicle queues on the approach to the work zone would be more likely.
SECTION B – USER AND AGENCY COST ANALYSIS

1. Does your agency conduct economic analysis on the impact of lane closure on construction cost ___, user cost ___, surrounding businesses ___, construction cost ____?
   __ Yes ___ No

   For any items checked above please provide further details
   ……Have used QUEWZ software to estimate user costs for alternative work zone scenarios on some high-volume roadway projects. ………………………………...

2. Are these economic analysis been used for defining lane closure charges?
   __ Yes ___ No
   (if no, please go to question2)

   Please indicate method and type of charges considered (any relevant documentation will be helpful)
   ……User costs have been considered in determining lane rental charges although not necessarily a “dollar – for – dollar” correlation. Some fraction of the user cost has been used at the judgement of the design engineer.……………………………

3. Are different lane closure charges been used for different construction/ maintenance activities, type of highways, and/or locations?
   __ X__ Yes ___ No

   If yes please describe
   ……One project used a $2,500 per day fee. Other project used an hourly fee of $100 - $400. Hourly fees were preferred. Higher fees should be considered for lane closures at higher – volume times of the day than lower- volume times of the day…………

4. If travel delays are considered in defining lane closure charges
   a) what is an acceptable (normal) delay? (before charges are levied)
      ……Up to 15 minutes, although we may charge even at times of the day when this amount of delay is not incurred. ……………………………………………
   b) how is the value of time been determined for individuals caught in the delay?
      …………………………………………………………………………………………………………………………………………… QUEWZ software has values of time, as do our DOT planning and design studies….
   c) how is the value of ware and tare been determined (quantified) for the individuals caught in the delay?
      ……………………………………………………………………………………………………………………………………………

5. Are accidents, or speeding violations been considered a result of lane closure delays?
   __ X__ Yes ___ No

   Accidents primarily have ccured when traffic was stopped on approaches to lane taper (e.g. rear-end accidents)
6. Please indicate the sources of economic data for the analysis and identify how they are collected (in house, outside contracts, other)?

………………………………………………………………………………….QUEWZ software, and DOT estimates. ……………………………………….

7. Please indicate how the effects of lane closure on user travel time and vehicle operations cost are evaluated? (please indicate type of analysis and models used - long-term vs short-term economic models/analysis)

…… QUEWZ software………………………………………………………………………

8. Is simulation been used in the economic analysis? (please be specific)

…… Yes, see #7………………………………………………………………………………

9. In evaluating the effects of lane closure are any field data being used? (please identify type of data and frequency)

…………………………………………………………………………………………………….Have done traffic volume studies of vehicle capacity single-lane work zones. Occasionally have compared field-observed queues and volume delays with results of simulation modeling.

………………………………………………………………………………………………

10. Did any studies examined the trade-off between day/night (peak/off peak) maintenance closure and construction schedule/progress and traffic demand? (please be specific)

……No detail study. ………………………………………………………………………

……………………………………………………………………………………………..

11. Were any labor difficulties identified due to the work at night and/or off peak hours? (please explain)

……Fatigue among drivers……………………………………………………………..

12. Was there any additional cost related to the work performed at night and off peak hours?

……Higher labor rates at night. Additional traffic control if lane closures must be set up and taken down multiples times……………………………………………………………………

13. To what degree was the overall project cost increased due to night and off peak hours work?

……Haven’t quantified it……………………………………………………………………

14. Were there any effects of traffic spill-over to near-by roads examined due to lane closures?

……Yes, has observed. For some projects it has been necessary to re-time traffic signals or use police officers to direct traffic on nearby alternate routes……………………

15. Were there any traffic diversion strategies and related benefit/cost implications examined?
Public information efforts have been used to direct traffic.

16. What are the typical complains and/or feedback/suggestions from drivers, local community, local businesses, others, due to road closures?

Not always enough advance notice of projects prior to the date of closure. Difficult access to businesses / lost business.

17. What type of roads may be considered for alternative routing in the events of lane closure?

Higher – speed arterials.

18. Are there any environmental considerations related to lane closure? (if yes please identify how they are quantified)

Yes, added fuel usage if vehicles are delayed. Impacts on surrounding communities if they have additional traffic due to diversion. Try to avoid routing traffic on alternative routes through residential/school areas.

19. Are any innovative construction and monitoring methods been used for reducing construction time?

Added work shifts, use of quicker concrete, night work.

20. For projects where lane rental was used was the total duration of the construction projects reduced?

Yes, although we haven’t quantified it as it directly relates to lane rental.

21. Is there any lane closure strategy and computer programs (such as LANCLOSE for example) been used?

Yes, have used QUEWZ to estimate the relative user costs and delays of alternative work zone scenarios/strategies on some high-volume roadway projects.

22. Does better information to drivers, (through road displays and/or ITS displays for example) reduce the effects of lane closure on traffic and the overall project cost?

Yes, congestion can be reduced considerably by providing project and delay information in advance to drivers to choose an alternative route. Notice prior to the date of closure is also an alternative route. Notice prior to the date of closure is also very helpful on routes with repeat/commuter traffic.

Indiana DOT

Use of Lane Occupancy/Rental Charges
1. Does your agency use ___ or plan to use ___ occupancy charges for lane closure during construction, maintenance, or rehabilitation?

   a. construction_____ X__ __
   b. maintenance ____ ____  __
   c. rehabilitation_____ X__ __

2. Please describe the characteristics of lane rental charges including lane closure characteristics (i.e., one lane, one lane and a shoulder, two lanes, e.t.c.), duration and charges. Please be specific and include any additional documentation if necessary)

   Peak lane closure periods: a lane closure period will be any period when traffic is restricted from use of a lane between time as follows: ______________________

   Monday – Thursday: 6:00 am – 8:00 pm____________________
   Friday    6:00 am – 10:00 pm___________________
   Saturday         8:00 am – 8:00 pm______________________
   Sunday          10:00 am – 10:00 pm____________________

   Peak lane closure period charge is $7,000/ lane/ period

3. Are lane rental charges applicable to all ___ or specific ___ freeway/highway projects?
   (Please check one)

   a. If used on specific projects please identify criteria for selecting projects:
   (please describe project characteristics)

   Project Type ___Interstate- High Volume Traffic________________________
   Project Size______$5Million or greater_______________________________
   Location_______ Urban or Rural________________________
   Traffic Characteristics__30,000 AADT_or greater_______________________
   Other___________________________________________________________

4. Are lane rental charges applicable to all ___ or specific ___ projects in arterial roads?
   (Please check one)

   a. If used on specific projects please identify criteria on how projects are selected:
   (please describe)

   Project Type _______________________________________________________
   Project Size________________________________________________________
   Location__________________________________________________________
   Traffic Characteristics___________________________________________
5. Lane charges were developed/defined considering the impact of lane closure to the following parameters:

Please check all that apply

a. __X__ Impact on traffic characteristics (traffic measurements) A
b. _____ Traffic simulation analysis A
c. _____ Impact on accidents in work zones A
d. __X__ Impact on user costs B
e. _____ Impact on agency costs B
f. _____ Impact on businesses B
g. _____ Set arbitrarily (please specify rational)……………………………………
………………………………………………………………………………
h. _____ Other (please specify rational)…………………………………………
……………………………………………………………………………………

6. What was the effectiveness of lane occupancy charges?

Number of projects
a. Reduced traffic delays
   Highways _12_ Arterials ___
   Please identify impact and method used to evaluate effectiveness
   ____________
   __ Quicker completion time noted ________________________________

Number of projects
b. Reduced accidents
   Highways ___ Arterials ___
   Please identify impact and method used to evaluate effectiveness
   ____________

c. Reduced cost related to traffic control
   Highways ___ Arterials ___
   Please identify impact and method used to evaluate effectiveness
   ____________

Number of projects
d. Reduced actual construction cost
   Highways ___ Arterials ___
   Increased actual construction cost
   Highways _12_ Arterials ___
   Please identify impact and method used to evaluate effectiveness
   ____________

Number of projects
e. Reduced project bid cost
   Highways ___ Arterials ___
   Increased project bid cost
   Highways _12_ Arterials ___
   Please identify impact and method used to evaluate effectiveness
   ____________

Number of projects
f. Reduced project completion time
   Highways _12_ Arterials ___
   Please identify impact and method used to evaluate effectiveness
   ____________
   ____Tracking completion times against similar contract without charges ______

Number of projects
g. Reduced business losses
   Highways ___ Arterials ___
   Please identify impact and method used to evaluate effectiveness
   ____________
Number of projects
Number of projects

h. Promoted the use of Innovative Construction
   Techniques

   Please specify______A+B+C contracts , B is the bid and C is warranty_____

i. Other Effects (please specify)
   ____________________________________________________________________

SECTION A – TRAFFIC ANALYSIS AND TRAFFIC SIMULATION

1. Does your agency use ____ or plan to use _____simulation tools to estimate vehicle delays caused by lane
   closures on highways/arterials?

         In use                          Plan to use
   a. Highways          __X__                    ______
   b. Arterials          ______                    ______

   If not, please describe what methods your agency employs:
   ____________________________________________________________________

2. Among the following factors, which one do you think significantly influences vehicle delays in the vicinity of
   work zone areas on highways or arterials? Please check all that apply.

         Significantly  Moderate  Not at all
   a. Speed reduction          _______       __X__          ______
   b. Work zone length       _______       __X__          ______
   c. # of lane closures/total lanes     _____  __X__       _______          ______
   d. Grade percentage          _______       _______          ______
   e. Warning sign location              _______       _______          ______
   f. Heavy vehicle percentage         _______       _______          ______
   g. Other (please specify)   ________________________________

3. How much does accident rate increase in the vicinity of work zone areas compared to the similar cases with
   no work zone areas? (check one)

   a. _____ 0 – 10 %
   b. _____ 10 – 20 %
   c. _____ 20 – 30 %
   d. _____ 30 – 40 %
   e. __X_ Other (please specify) __100% (1990-1993)________________

4. In your experience, at which place accidents happen more frequently than at others? (check one)

   a. _____ Prior to work zone areas
b. _____ Front of work zone areas  
c. _____ Middle of work zone areas  
d. _____ End of work zone areas

5. What are the common work zone configurations on highways/arterials? Roadway shoulder can be an opened lane, if any. Please check any scenario that applies.

<table>
<thead>
<tr>
<th></th>
<th>Highways</th>
<th>Arterials</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 2-lane mainline with 1-lane open</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>b. 3-lane mainline with 1-lane open</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. 3-lane mainline with 2-lane open</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>d. 4-lane mainline with 2-lane open</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. 4-lane mainline with 3-lane open</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>f. Other (specify)</td>
<td>____________________________</td>
<td></td>
</tr>
</tbody>
</table>

6. What is the average vehicle speed within a work zone on level terrain highways/arterials? Please specify.

<table>
<thead>
<tr>
<th></th>
<th>Highways</th>
<th>Arterials</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 2-lane mainline with 1-lane open</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. 3-lane mainline with 1-lane open</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. 3-lane mainline with 2-lane open</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>d. 4-lane mainline with 2-lane open</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. 4-lane mainline with 3-lane open</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. According to your experience, what is the maximum traffic volume (number of vehicles per hour per lane) through work zones you observed? Please specify.  
_______________________ 1800 for 2 lanes maintained_____________________ vphpl.

8. What is the percentage of roadway capacity reduction (vphpl) that you experienced in work zone areas? (check one for each scenario)

<table>
<thead>
<tr>
<th>Capacity Reduction (%)</th>
<th>0-20</th>
<th>20-40</th>
<th>40-60</th>
<th>60-80</th>
<th>80 or more</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 2-lane mainline with 1-lane open</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. 3-lane mainline with 1-lane open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. 3-lane mainline with 2-lane open</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. 4-lane mainline with 2-lane open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. 4-lane mainline with 3-lane open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9. For the case of 3-lane mainline with 2 opened lanes, does the following lane closure have different impacts on vehicle delays?  
I. Right lane closure  
II. Middle lane closure  
III. Left lane closure  
IV.  
   a. X Yes  
   b. No  
If yes, please explain: Any lane closure will affect traffic in peak periods 

10 If there is a reason to stop and delay maintenance/construction activities in a work zone area, what is the maximum time that it takes to reopen the lanes to traffic? (Check one)

<table>
<thead>
<tr>
<th></th>
<th>0 – 20 minutes</th>
<th>20 – 40 minutes</th>
<th>40 – 60 minutes</th>
<th>Other (specify)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. _____</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. _____</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. _____</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. _____</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
11. For the projects that lane occupancy charges apply, what is the maximum percentage of heavy vehicles on highways or arterials? (check one)

<table>
<thead>
<tr>
<th># projects</th>
<th>% heavy vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. ________</td>
<td>0-5 %</td>
</tr>
<tr>
<td>b. ________</td>
<td>5-10%</td>
</tr>
<tr>
<td>c. ________</td>
<td>10-15%</td>
</tr>
<tr>
<td>d. ________</td>
<td>15-20%</td>
</tr>
<tr>
<td>e. ________</td>
<td>Other (specify)</td>
</tr>
</tbody>
</table>

12. What is the range of work zone length that you typically encounter? Please specify.

a. short-term project (< 24 hours) : _______ ~ _______ ft.

b. long-term project (> 24 hours) : _______~ _______ ft.

13. For the cases of (a) 3-lane mainline with 1-lane open and (b) 4-lane mainline with 2-lane open, shown in the following figure, please specify the length of the transition section prior to the work zone areas for the various speed limits.

![Diagram of transition section]

<table>
<thead>
<tr>
<th>Length of Transition Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed Limit (mph) Ahead of the Work Zone Area</td>
</tr>
<tr>
<td>35</td>
</tr>
<tr>
<td>a. 3-lane mainline with 1-lane open</td>
</tr>
<tr>
<td>b. 4-lane mainline with 2-lane open</td>
</tr>
</tbody>
</table>

14. Does your agency use the “Manual on Uniform Traffic Control Devices (MUTCD)” for determining warning sign locations in the vicinity of work zone areas?

   a. __X__ Yes       b. _____ No

If no, please describe what methods your agency employs:
_________________________________________________________________________________

SECTION B – USER AND AGENCY COST ANALYSIS

1. Does your agency conduct economic analysis on the impact of lane closure on construction cost _____, user cost __X__, surrounding businesses _____, construction cost _____?

   a. __X__ Yes       b. _____ No

For any items checked above please provide further details...

...QUEWZ (McTrans) for use cost analysis on freeway rehab projects and bridge replacements on arterials and collectors…………………………………………………………
2. Are these economic analysis been used for defining lane closure charges?  
   ____ Yes   ____ No  
   (if no, please go to question2) 

Please indicate method and type of charges considered (any relevant documentation will be helpful) 

3. Are different lane closure charges been used for different construction/maintenance activities, type of highways, and/or locations?  
   ____ Yes   ____ No  
   If yes please describe  
   ………………………………………………………………………………………………………………………

4. If travel delays are considered in defining lane closure charges 
   a) what is an acceptable (normal) delay? (before charges are levied)  
      ……as in occupancy charges question 2…………………………………………………………

   b) how is the value of time been determined for individuals caught in the delay?  
      ………………………………………………………………………………………………………$5/hr………………  
      ………………………………………………………………………………………………………………………

   c) how is the value of ware and tare been determined (quantified) for the individuals caught in the delay?  
      ………………………………………………………………………………………………………………………

5. Are accidents, or speeding violations been considered a result of lane closure delays?  
   ____ Yes   ____ No 

6. Please indicate the sources of economic data for the analysis and identify how they are collected (in house, outside contracts, other)?  
   ………………………………………………………………………………………………………………………

7. Please indicate how the effects of lane closure on user travel time and vehicle operations cost are evaluated?  
   (please indicate type of analysis and models used - long-term vs short-term economic models/analysis)  
   ………………………………………………………………………………………………………………….QUEWZ gives average travel speed with restrictions so that extra travel time is calculated and vehicle operations costs is included in the overall user cost. ………...

8. Is simulation been used in the economic analysis? (please be specific)  
   ………………………………………………………………………………………………………………………

9. In evaluating the effects of lane closure are any field data being used? (please identify type of data and frequency)  
   ……Measured volumes, speed changes and applied the results on a regular bases (10-20 projects per year)  
   ………………………………………………………………………………………………………………………
10. Did any studies examined the trade off between day/night (peak/off peak) maintenance closure and construction schedule/progress and traffic demand? (please be specific)

……No…………………………………………………………………………………………
………………………………………………………………………………………………

11. Were any labor difficulties identified due to the work at night and/or off peak hours? (please explain)

……No…………………………………………………………………………………………
………………………………………………………………………………………………

12. Was there any additional cost related to the work performed at night and off peak hours?

……Some, lights, wages……………………………………………………………………
………………………………………………………………………………………………

13. To what degree was the overall project cost increased due to night and off peak hours work?

……Not sure………………………………………………………………………………

14. Were there any effects of traffic spill-over to near-by roads examined due to lane closures?

……Yes, on several major reconstructions on high volume interstates………………
………………………………………………………………………………………………

15. Were there any traffic diversion strategies and related benefit/cost implications examined?

………………………………………………………………………………………………
……Yes, signal improvements and intersections have been set up for the diverted traffic. The cost of improvements was weighted qualitatively against the decrease in used cost.
………………………………………………………………………………………………

16. What are the typical complains and/or feedback/suggestions from drivers, local community, local businesses, others, due to road closures?

………………………………………………………………………………………………

17. What type of roads may be considered for alternative routing in the events of lane closure?

………………………………………………………………………………………………
……Any highway, major local arterials………………………………………………
………………………………………………………………………………………………

18. Are there any environmental considerations related to lane closure? (if yes please identify how they are quantified)

……Not at the time………………………………………………………………………
………………………………………………………………………………………………

19. Are any innovative construction and monitoring methods been used for reducing construction time?

………………………………………………………………………………………………

20. For projects where lane rental was used was the total duration of the construction projects reduced?
21. Is there any lane closure strategy and computer programs (such as LANCLOSE for example) been used?

22. Does better information to drivers, (through road displays and/or ITS displays for example) reduce the effects of lane closure on traffic and the overall project cost?

……haven't deployed real time information to a great extent to measure. ………

Colorado DOT
Use of Lane Occupancy/Rental Charges

Please check all that apply.

1. Does your agency use _X_ or plan to use ___ occupancy charges for lane closure during construction, maintenance, or rehabilitation?

<table>
<thead>
<tr>
<th>In use</th>
<th>Plan to use</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. construction _____ X__ ______</td>
<td></td>
</tr>
<tr>
<td>b. maintenance _____ X__ ______</td>
<td></td>
</tr>
<tr>
<td>c. rehabilitation _____ X__ ______</td>
<td></td>
</tr>
</tbody>
</table>

2. Please describe the characteristics of lane rental charges including lane closure characteristics (i.e., one lane, one lane and a shoulder, two lanes, e.t.c.), duration and charges. Please be specific and include any additional documentation if necessary)

   Generally measured as lane per length per duration; less frequent as lane per duration; shoulders are not included in occupancy charges. A variety of techniques is used, where contractor is restricted to occupation of a limited number of lanes at specific times of day and week. The occupancy charge is based on road user cost.

3. Are lane rental charges applicable to all __ or specific _X_ freeway/highway projects?

   a. If used on specific projects please identify criteria for selecting projects:
      (please describe project characteristics)

      Project Type _simple projects or portions of complex projects_____________

      Project Size________________________________________________________

      Location_____Urban or interstate between major urban areas_____________

      Traffic Characteristics__high volume_____________________________________

      Other_________________________________________________________________

4. Are lane rental charges applicable to all __ or specific _X_ projects in arterial roads?

   (Please check one)
a. If used on specific projects please identify criteria on how projects are selected:
(please describe)

Project Type ____________________________________________________________

Project Size____________________________________________________________

Location_______________________________________________________________

Traffic Characteristics__________________________________________________

5. Lane charges were developed/defined considering the impact of lane closure to the following parameters:

Please check all that apply

<table>
<thead>
<tr>
<th>Section</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Impact on traffic characteristics (traffic measurements)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>b. Traffic simulation analysis</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>c. Impact on accidents in work zones</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>d. Impact on user costs</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>e. Impact on agency costs</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>f. Impact on businesses</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>g. Set arbitrarily (please specify rational)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h. Other (please specify rational)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. What was the effectiveness of lane occupancy charges?

Number of projects

a. Reduced traffic delays

Highways 20 Arterials 6

Please identify impact and method used to evaluate effectiveness

Accelerated project completion

b. Reduced accidents

Highways ___ Arterials ___

Please identify impact and method used to evaluate effectiveness

c. Reduced cost related to traffic control

Highways ___ Arterials ___

Please identify impact and method used to evaluate effectiveness

d. Reduced actual construction cost

Highways ___ Arterials ___

Increased actual construction cost

Highways ___ Arterials ___

Please identify impact and method used to evaluate effectiveness

e. Reduced project bid cost

Highways ___ Arterials ___

Increased project bid cost

Highways ___ Arterials ___

Please identify impact and method used to evaluate effectiveness
SECTION A – TRAFFIC ANALYSIS AND TRAFFIC SIMULATION

1. Does your agency use __X__ or plan to use _____simulation tools to estimate vehicle delays caused by lane closures on highways/arterials?

   In use                                      Plan to use
   a. Highways   __X____                    ______
   b. Arterials  __X____                    ______

   If not, please describe what methods your agency employs:

2. Among the following factors, which one do you think significantly influences vehicle delays in the vicinity of work zone areas on highways or arterials? Please check all that apply.

   Significantly  Moderate  Not at all
   a. Speed reduction  _______  ____X_____  _______  _______
   b. Work zone length  _______  ____X_____  _______  _______
   c. # of lane closures/total lanes  ____X____  _______  _______

   Significantly  Moderate  Not at all
   d. Grade percentage  _______  ____X_____  _______  _______
   e. Warning sign location  _______  _______  ____X____
   f. Heavy vehicle percentage  ____X____  _______  _______
   g. Other (please specify)  __________________________________

3. How much does accident rate increase in the vicinity of work zone areas compared to the similar cases with no work zone areas? (check one)

   a. _____ 0 – 10 %
   b. _____ 10 – 20 %
   c. _____ 20 – 30 %
   d. _____ 30 – 40 %
   e. _____ Other (please specify) _________________________

4. In your experience, at which place accidents happen more frequently than at others? (check one)
a. _____ Prior to work zone areas  
b. _____ Front of work zone areas  
c. _____ Middle of work zone areas  
d. _____ End of work zone areas 

Table 3. State responses (continue)

5. What are the common work zone configurations on highways/arterials? Roadway shoulder can be an opened lane, if any. Please check any scenario that applies.

<table>
<thead>
<tr>
<th></th>
<th>Highways</th>
<th>Arterials</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 2-lane mainline with 1-lane open</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>b. 3-lane mainline with 1-lane open</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. 3-lane mainline with 2-lane open</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>d. 4-lane mainline with 2-lane open</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>e. 4-lane mainline with 3-lane open</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>f. Other (specify)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. What is the average vehicle speed within a work zone on level terrain highways/arterials? Please specify.

<table>
<thead>
<tr>
<th></th>
<th>Highways</th>
<th>Arterials</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 2-lane mainline with 1-lane open</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>b. 3-lane mainline with 1-lane open</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>c. 3-lane mainline with 2-lane open</td>
<td>65</td>
<td>45</td>
</tr>
<tr>
<td>d. 4-lane mainline with 2-lane open</td>
<td>65</td>
<td>50</td>
</tr>
<tr>
<td>e. 4-lane mainline with 3-lane open</td>
<td>65</td>
<td>50</td>
</tr>
</tbody>
</table>

7. According to your experience, what is the maximum traffic volume (number of vehicles per hour per lane) through work zones you observed? Please specify.  
______________________________________________ vphpl.

8. What is the percentage of roadway capacity reduction (vphpl) that you experienced in work zone areas? (check one for each scenario)

<table>
<thead>
<tr>
<th></th>
<th>0-20</th>
<th>20-40</th>
<th>40-60</th>
<th>60-80</th>
<th>80 or more</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 2-lane mainline with 1-lane open</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>b. 3-lane mainline with 1-lane open</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>c. 3-lane mainline with 2-lane open</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>d. 4-lane mainline with 2-lane open</td>
<td>___</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>e. 4-lane mainline with 3-lane open</td>
<td>___</td>
<td>X</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
</tbody>
</table>

9. For the case of 3-lane mainline with 2 opened lanes, does the following lane closure have different impacts on vehicle delays?  
I. Right lane closure  
II. Middle lane closure  
iii. Left lane closure  
   a. _____ Yes  
   b. _____ No  
If yes, please explain: __more of driver curiosity and concentration______________

10. If there is a reason to stop and delay maintenance/construction activities in a work zone area, what is the maximum time that it takes to reopen the lanes to traffic? (Check one)

a. _____ 0 – 20 minutes
b. ____ 20 – 40 minutes

c. ____ 40 – 60 minutes

d. ____ Other (specify) _________________________________

11. For the projects that lane occupancy charges apply, what is the maximum percentage of heavy vehicles on highways or arterials? (check one)

<table>
<thead>
<tr>
<th># projects</th>
<th>% heavy vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. _________</td>
<td>0-5 %</td>
</tr>
<tr>
<td>b. _________</td>
<td>5-10%</td>
</tr>
<tr>
<td>c. _________</td>
<td>10-15%</td>
</tr>
<tr>
<td>d. _________</td>
<td>15-20%</td>
</tr>
<tr>
<td>e. _________</td>
<td>Other (specify)</td>
</tr>
</tbody>
</table>

__depends on the location. Data from collected (ATR) sites are used. The data provide ADT, % single unit trucks, % semi trailers.

12. What is the range of work zone length that you typically encounter? Please specify.

<table>
<thead>
<tr>
<th>Type of Project</th>
<th>Duration</th>
<th>Length (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. short-term</td>
<td>8hrs</td>
<td>8-1250</td>
</tr>
<tr>
<td>b. long-term</td>
<td>weeks</td>
<td>5280</td>
</tr>
</tbody>
</table>

13. For the cases of (a) 3-lane mainline with 1-lane open and (b) 4-lane mainline with 2-lane open, shown in the following figure, please specify the length of the transition section prior to the work zone areas for the various speed limits.

<table>
<thead>
<tr>
<th>Speed Limit (mph) Ahead of the Work Zone Area</th>
<th>35</th>
<th>45</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 3-lane mainline with 1-lane open</td>
<td>980</td>
<td>2160</td>
<td>2640</td>
</tr>
<tr>
<td>b. 4-lane mainline with 2-lane open</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

14. Does your agency uses the “Manual on Uniform Traffic Control Devices (MUTCD)” for determining warning sign locations in the vicinity of work zone areas?

a. _X_ Yes   b. _____ No

If no, please describe what methods your agency employs:

________________________________________________________________

SECTION B – USER AND AGENCY COST ANALYSIS

1. Does your agency conduct economic analysis on the impact of lane closure on construction cost ____, user cost _X__, surrounding businesses ____, construction cost ____?

_ X__ Yes   ____ No

For any items checked above please provide further details
2. Are these economic analysis been used for defining lane closure charges?  
   _X_ Yes    ___ No  
   (if no, please go to question2)  
   Please indicate method and type of charges considered (any relevant documentation will be helpful)  

3. Are different lane closure charges been used for different construction/maintenance activities, type of highways, and/or locations?  
   _X_ Yes    ___ No  
   If yes please describe  

4. If travel delays are considered in defining lane closure charges  
   a) what is an acceptable (normal) delay? (before charges are levied)  
   ……when construction delay exceeds normal delay…………………………  
   b) how is the value of time been determined for individuals caught in the delay?  
      ……………………………………...could vary per project…………………………  
   c) how is the value of ware and tare been determined (quantified) for the individuals caught in the delay?  
      ……………………………………………………………………………………...time, maintenance and fuel cost…………………………………………………..  

5. Are accidents, or speeding violations been considered a result of lane closure delays?  
   ___ Yes    _X_ No  

6. Please indicate the sources of economic data for the analysis and identify how they are collected (in house, outside contracts, other)?  
   ……………………………………………………………………………………………..In house by Division of Transportation Development (DTD)…………………  
   ……………………………………………………………………………………………..  

7. Please indicate how the effects of lane closure on user travel time and vehicle operations cost are evaluated?  
   (please indicate type of analysis and models used - long-term vs short-term economic models/analysis)  
   ……………………………………………………………………………………………..  

8. Is simulation been used in the economic analysis? (please be specific)  
   …..to determine delay times………………………………………………………….  
   ……………………………………………………………………………………………..  

9. In evaluating the effects of lane closure are any field data being used? (please identify type of data and frequency)  
   ……………………………………………………………………………………………..  
   ……………………………………………………………………………………………..
10. Did any studies examined the trade off between day/night (peak/off peak) maintenance closure and construction schedule/progress and traffic demand? (please be specific)

……No.........................................................................................................................

11. Were any labor difficulties identified due to the work at night and/or off peak hours? (please explain)

……Night work: contractors have occasionally worked their crews two shifts on different jobs degrading workmanship. Due to high demand of contractor resources projects are redid due to lack of bidders.

.........................................................................................................................

12. Was there any additional cost related to the work performed at night and off peak hours?

……past two years, some night work rebid.................................................................

13. To what degree was the overall project cost increased due to night and off peak hours work?

……did not analyze........................................................................................................

.........................................................................................................................

14. Were there any effects of traffic spill-over to near-by roads examined due to lane closures?

.................................................................................................................................

15. Were there any traffic diversion strategies and related benefit/cost implications examined?

……No.........................................................................................................................

.........................................................................................................................

16. What are the typical complains and/or feedback/suggestions from drivers, local community, local businesses, others, due to road closures?

.................................................................................................................................

……most probably prefer not to have road closure at all. .................................

17. What type of roads may be considered for alternative routing in the events of lane closure?

……State highways, frontage roads, county roads by permission. ....................

18. Are there any environmental considerations related to lane closure? (if yes please identify how they are quantified)

.................................................................................................................................

……No.........................................................................................................................

19. Are any innovative construction and monitoring methods been used for reducing construction time?
……Yes: lane rental; cost and time bidding; design/build;…………………………...

………………………………………………………………………………………………

20. For projects where lane rental was used was the total duration of the construction projects reduced?
……Every time …………………………………………………………………………………………………

………………………………………………………………………………………………

21. Is there any lane closure strategy and computer programs (such as LANCLOSE for example) been used?
………………………………………………………………………………………………………………...

……Quewz………………………………………………………………………………………………

………………………………………………………………………………………………

22. Does better information to drivers, (through road displays and/or ITS displays for example) reduce the effects of lane closure on traffic and the overall project cost?

………………………………………………………………………………………………………………...